From 73583f862b7ac88328b201e5ac8d22bc4c122078 Mon Sep 17 00:00:00 2001 From: lilong12 Date: Tue, 8 Mar 2022 16:04:05 +0800 Subject: [PATCH] add the implementation of process group for hccl (#40228) * add pg_hccl --- .../distributed/collective/CMakeLists.txt | 3 + .../fluid/distributed/collective/HCCLTools.h | 174 +++++++++ .../collective/ProcessGroupHCCL.cc | 356 ++++++++++++++++++ .../distributed/collective/ProcessGroupHCCL.h | 152 ++++++++ .../fluid/platform/device/npu/hccl_helper.h | 17 + paddle/fluid/pybind/CMakeLists.txt | 3 + paddle/fluid/pybind/distributed_py.cc | 12 + .../tests/unittests/npu/process_group_hccl.py | 249 ++++++++++++ .../npu/test_collective_process_group_hccl.py | 29 ++ 9 files changed, 995 insertions(+) create mode 100644 paddle/fluid/distributed/collective/HCCLTools.h create mode 100644 paddle/fluid/distributed/collective/ProcessGroupHCCL.cc create mode 100644 paddle/fluid/distributed/collective/ProcessGroupHCCL.h create mode 100644 python/paddle/fluid/tests/unittests/npu/process_group_hccl.py create mode 100644 python/paddle/fluid/tests/unittests/npu/test_collective_process_group_hccl.py diff --git a/paddle/fluid/distributed/collective/CMakeLists.txt b/paddle/fluid/distributed/collective/CMakeLists.txt index 96bc4a710f..f88c993d85 100644 --- a/paddle/fluid/distributed/collective/CMakeLists.txt +++ b/paddle/fluid/distributed/collective/CMakeLists.txt @@ -7,3 +7,6 @@ cc_library(eager_reducer SRCS reducer.cc DEPS eager_api processgroup) if(WITH_NCCL) cc_library(processgroup_nccl SRCS ProcessGroupNCCL.cc DEPS place cuda_stream enforce collective_helper device_context phi phi_api eager_api) endif() +if(WITH_ASCEND_CL) + cc_library(processgroup_hccl SRCS ProcessGroupHCCL.cc DEPS place npu_stream enforce collective_helper device_context phi phi_api eager_api) +endif() diff --git a/paddle/fluid/distributed/collective/HCCLTools.h b/paddle/fluid/distributed/collective/HCCLTools.h new file mode 100644 index 0000000000..09789bd4d3 --- /dev/null +++ b/paddle/fluid/distributed/collective/HCCLTools.h @@ -0,0 +1,174 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include + +#include "boost/variant.hpp" +#include "paddle/fluid/framework/data_type.h" +#include "paddle/fluid/framework/variable.h" +#include "paddle/fluid/platform/collective_helper.h" +#include "paddle/fluid/platform/device/npu/enforce_npu.h" +#include "paddle/fluid/platform/device/npu/npu_info.h" +#include "paddle/fluid/platform/device_context.h" +#include "paddle/fluid/platform/enforce.h" + +namespace paddle { +namespace distributed { + +class NPUEventManager { + public: + NPUEventManager() = default; + + ~NPUEventManager() { + if (is_created_) { + platform::NPUDeviceGuard guard(device_index_); + platform::NPUEventDestroy(event_); + } + } + + NPUEventManager(const NPUEventManager&) = delete; + NPUEventManager& operator=(const NPUEventManager&) = delete; + + NPUEventManager(NPUEventManager&& other) { + std::swap(is_created_, other.is_created_); + std::swap(device_index_, other.device_index_); + std::swap(event_, other.event_); + } + + NPUEventManager& operator=(NPUEventManager&& other) { + std::swap(is_created_, other.is_created_); + std::swap(device_index_, other.device_index_); + std::swap(event_, other.event_); + return *this; + } + + bool IsCreated() const { return is_created_; } + bool DeviceId() const { return device_index_; } + aclrtEvent GetRawNPUEvent() const { return event_; } + + void Record(const paddle::platform::NPUDeviceContext& ctx) { + auto device_index = ctx.GetPlace().device; + if (!is_created_) { + CreateEvent(device_index); + } + PADDLE_ENFORCE_EQ(device_index, device_index_, + platform::errors::PreconditionNotMet( + "NPUDeviceContext's device %d does not match" + "Event's device %d", + device_index, device_index_)); + + platform::NPUDeviceGuard guard(device_index_); + platform::NPUEventRecord(event_, ctx.stream()); + } + + bool Query() const { + aclrtEventStatus status = ACL_EVENT_STATUS_COMPLETE; + platform::NPUEventQuery(event_, &status); + if (status == ACL_EVENT_STATUS_COMPLETE) { + return true; + } + return false; + } + + void Block(const paddle::platform::NPUDeviceContext& ctx) const { + if (is_created_) { + auto device_index = ctx.GetPlace().device; + PADDLE_ENFORCE_EQ(device_index, device_index_, + platform::errors::PreconditionNotMet( + "CUDADeviceContext's device %d does not match" + "Event's device %d", + device_index, device_index_)); + platform::NPUDeviceGuard guard(device_index_); + platform::NPUStreamWaitEvent(ctx.stream(), event_); + } + } + + private: + bool is_created_{false}; + aclrtEvent event_{}; + int8_t device_index_{0}; + + private: + void CreateEvent(int device_index) { + device_index_ = device_index; + platform::NPUDeviceGuard guard(device_index); + platform::NPUEventCreate(&event_); + is_created_ = true; + } +}; + +class HCCLCommManager { + public: + explicit HCCLCommManager(HcclComm hcclComm) : hccl_comm_(hcclComm) {} + + HCCLCommManager() : HCCLCommManager(nullptr) {} + + ~HCCLCommManager() noexcept { + std::unique_lock lock(mutex_); + if (hccl_comm_) { + platform::dynload::HcclCommDestroy(hccl_comm_); + } + } + + static std::shared_ptr Create(int num_ranks, int rank, + HcclRootInfo* comm_id, + HcclComm hccl_comm) { + auto hccl_manager = std::make_shared(); + auto ret = platform::dynload::HcclCommInitRootInfo(num_ranks, comm_id, rank, + &hccl_comm); + using __NPU_STATUS_TYPE__ = decltype(ret); + constexpr auto __success_type__ = + platform::details::NPUStatusType<__NPU_STATUS_TYPE__>::kSuccess; + if (UNLIKELY(ret != __success_type__)) { + VLOG(0) << "Error: create hccl_id error."; + exit(-1); + } + + hccl_manager->hccl_id_ = comm_id; + hccl_manager->rank_ = rank; + hccl_manager->hccl_comm_ = hccl_comm; + return hccl_manager; + } + + HcclRootInfo* GetHcclId() const { + std::unique_lock lock(mutex_); + return hccl_id_; + } + + HcclComm GetHcclComm() const { + std::unique_lock lock(mutex_); + return hccl_comm_; + } + + HCCLCommManager(const HCCLCommManager&) = delete; + HCCLCommManager& operator=(const HCCLCommManager&) = delete; + HCCLCommManager& operator=(HCCLCommManager&& other) = delete; + + HCCLCommManager(HCCLCommManager&& other) { + std::unique_lock lock(other.mutex_); + std::swap(hccl_comm_, other.hccl_comm_); + } + + protected: + HcclComm hccl_comm_; + HcclRootInfo* hccl_id_; + int rank_; + mutable std::mutex mutex_; +}; + +} // namespace distributed +} // namespace paddle diff --git a/paddle/fluid/distributed/collective/ProcessGroupHCCL.cc b/paddle/fluid/distributed/collective/ProcessGroupHCCL.cc new file mode 100644 index 0000000000..84f5ca48d2 --- /dev/null +++ b/paddle/fluid/distributed/collective/ProcessGroupHCCL.cc @@ -0,0 +1,356 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/distributed/collective/ProcessGroupHCCL.h" +#include "paddle/fluid/memory/malloc.h" +#include "paddle/fluid/platform/device/npu/hccl_helper.h" +#include "paddle/fluid/platform/device_context.h" +#include "paddle/fluid/platform/place.h" +#include "paddle/phi/api/include/api.h" +#include "paddle/phi/common/place.h" + +DECLARE_bool(hccl_blocking_wait); +// DECLARE_bool(use_stream_safe_npu_allocator); + +constexpr int64_t kWaitBlockTImeout = 10; + +namespace paddle { +namespace distributed { + +static HcclReduceOp ToHCCLRedType(ReduceOp reduction) { + static const std::map red_type = { + {ReduceOp::MIN, HCCL_REDUCE_MIN}, + {ReduceOp::MAX, HCCL_REDUCE_MAX}, + {ReduceOp::SUM, HCCL_REDUCE_SUM}, + {ReduceOp::PRODUCT, HCCL_REDUCE_PROD}, + }; + auto it = red_type.find(reduction); + PADDLE_ENFORCE_EQ( + it != red_type.end(), true, + platform::errors::InvalidArgument("Invalid hccl reduction. " + "Must be Min | Max | Prod | Sum")); + return it->second; +} + +std::string SerializeHCCLUniqueId(const HcclRootInfo& hcclID) { + const uint8_t* bytes = reinterpret_cast(&hcclID); + std::ostringstream oss; + for (size_t i = 0; i < sizeof(hcclID); ++i) { + oss << std::hex << static_cast(bytes[i]); + } + return oss.str(); +} + +// Get the list of devices from list of tensors +std::vector GetPlaceList(const std::vector& tensors) { + std::vector places; + places.reserve(tensors.size()); + for (auto& tensor : tensors) { + places.push_back(tensor.inner_place()); + } + return places; +} + +// Get the deviceList String from the list of devices +std::string GetKeyFromPlaces(const std::vector& places) { + std::string placeList; + for (auto& place : places) { + std::stringstream tmp; + tmp << place; + if (placeList.empty()) { + placeList += tmp.str(); + } else { + placeList += "," + tmp.str(); + } + } + return placeList; +} + +// bool CheckTensorsInNPUPlace(const std::vector& tensors) { +// return std::all_of(tensors.cbegin(), tensors.cend(), [&](const Tensor& t) { +// return t.place() == platform::DeviceType::NPU; +// }); +// } + +void SyncDefaultStream( + const std::vector& places, + std::vector& hcclEvents, // NOLINT + std::vector>& dev_ctx) { // NOLINT + for (size_t i = 0; i < places.size(); ++i) { + auto* default_ctx = static_cast( + platform::DeviceContextPool::Instance().Get(places[i])); + hcclEvents[i].Record(*dev_ctx[i]); + hcclEvents[i].Block(*default_ctx); + } +} + +std::shared_ptr ProcessGroupHCCL::CreateTask( + std::vector places, int rank, CommType comm_type, + const std::vector& inputs) { + return std::make_shared(places, rank, comm_type, + inputs); +} + +ProcessGroupHCCL::HCCLTask::HCCLTask(const std::vector& places, int rank, + CommType CommType, + const std::vector& inputs) + : Task(rank, inputs, CommType), places_(places) { + control_events_.resize(places.size()); + hcclComms_.resize(places.size()); +} + +ProcessGroupHCCL::HCCLTask::~HCCLTask() {} + +void ProcessGroupHCCL::HCCLTask::SetOutputs( + std::vector& outputs) { // NOLINT + outputs_ = std::make_shared>(outputs); +} + +void ProcessGroupHCCL::HCCLTask::SynchronizeStreams() { + for (size_t i = 0; i < places_.size(); ++i) { + auto* default_ctx = static_cast( + platform::DeviceContextPool::Instance().Get(places_[i])); + platform::NPUStreamWaitEvent(default_ctx->stream(), + control_events_[i].GetRawNPUEvent()); + } +} + +bool ProcessGroupHCCL::HCCLTask::IsCompleted() { + for (size_t i = 0; i < places_.size(); ++i) { + if (!control_events_[i].Query()) { + return false; + } + } + + return true; +} + +// TODO(sandyhouse): Add timeout for wait, now timeout unused +bool ProcessGroupHCCL::HCCLTask::Wait(std::chrono::milliseconds timeout) { + SynchronizeStreams(); + if (FLAGS_hccl_blocking_wait) { + // NOTE(sandyhouse): It will block host for sync + while (!IsCompleted()) { + std::this_thread::sleep_for(std::chrono::milliseconds(kWaitBlockTImeout)); + } + } + return true; +} + +// Same as Wait +void ProcessGroupHCCL::HCCLTask::Synchronize() { Wait(kWaitTimeout); } + +ProcessGroupHCCL::ProcessGroupHCCL(const std::shared_ptr& store, + int rank, int size) + : ProcessGroup(rank, size), store_(store) {} + +void ProcessGroupHCCL::BroadcastUniqueHCCLID( + std::vector& hccl_ids) { // NOLINT + if (rank_ == 0) { + for (size_t i = 0; i < hccl_ids.size(); i++) { + auto key = "ProcessGroupHCCL/hccl_ids/" + std::to_string(i); + auto hccl_id = std::vector( + reinterpret_cast(&hccl_ids[i]), + reinterpret_cast(&hccl_ids[i]) + sizeof(HcclRootInfo)); + store_->set(key, hccl_id); + } + } else { + for (size_t i = 0; i < hccl_ids.size(); i++) { + auto key = "ProcessGroupHCCL/hccl_ids/" + std::to_string(i); + auto ret = store_->get(key); + std::memcpy(&hccl_ids[i], ret.data(), ret.size()); + } + } +} + +// create HCCLManager cache for places_key +void ProcessGroupHCCL::CreateHCCLManagerCache( + const std::string& places_key, const std::vector& places) { + PADDLE_ENFORCE_EQ(places_key.empty(), false, + platform::errors::PreconditionNotMet( + "Not able to create/get the HCCL Communicator since " + "the NPU place are not known")); + + std::vector> hccl_comms; + hccl_comms.resize(places.size()); + + // using vector just for broadcast + std::vector hccl_ids; + hccl_ids.resize(1); + auto& hccl_id = hccl_ids.front(); + + if (rank_ == 0) { + PADDLE_ENFORCE_NPU_SUCCESS(platform::dynload::HcclGetRootInfo(&hccl_id)); + } + BroadcastUniqueHCCLID(hccl_ids); + + VLOG(3) << "init hccl rank: " << rank_ << ", nranks: " << size_ + << ", place: " << places_key + << ", hccl uniqueid: " << SerializeHCCLUniqueId(hccl_id); + + std::vector> dev_ctx; + dev_ctx.resize(places.size()); + + std::unique_ptr comms(new HcclComm[places.size()]); + for (size_t i = 0; i < places.size(); ++i) { + platform::NPUDeviceGuard guard(places[i].GetDeviceId()); + hccl_comms[i] = HCCLCommManager::Create(GetSize(), GetRank(), &hccl_id, + comms.get() + i); + dev_ctx[i].reset(new NPUDeviceContext(places[i])); + } + + std::vector events; + events.resize(places.size()); + + // These caches will be useful to process sync/wait/communicate + places_to_events_.emplace(places_key, std::move(events)); + places_to_hcclcomm_.emplace(places_key, std::move(hccl_comms)); + places_to_ctx_.emplace(places_key, std::move(dev_ctx)); +} + +template +std::shared_ptr ProcessGroupHCCL::Collective( + std::vector& inputs, std::vector& outputs, Fn fn, + CommType op_type) { + const auto places = GetPlaceList(inputs); + const auto key = GetKeyFromPlaces(places); + + { + std::lock_guard lock(mutex_); + if (places_to_hcclcomm_.find(key) == places_to_hcclcomm_.end()) { + CreateHCCLManagerCache(key, places); + } + } + + auto& hccl_comms = places_to_hcclcomm_[key]; + + SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]); + + auto task = CreateTask(places, rank_, op_type, inputs); + task->SetOutputs(outputs); + + // if (FLAGS_use_stream_safe_npu_allocator) { + // for (size_t i = 0; i < inputs.size(); ++i) { + // platform::NPUDeviceGuard guard(places[i].GetDeviceId()); + // auto dense_tensor = + // std::dynamic_pointer_cast(inputs[i].impl()); + // memory::RecordStream(dense_tensor->Holder(), + // places_to_ctx_[key][i]->stream()); + // } + // } + + for (size_t i = 0; i < inputs.size(); ++i) { + platform::NPUDeviceGuard guard(places[i].GetDeviceId()); + const auto& hccl_stream = places_to_ctx_[key][i]->stream(); + fn(inputs[i], outputs[i], hccl_comms[i]->GetHcclComm(), hccl_stream); + } + + for (size_t i = 0; i < inputs.size(); ++i) { + platform::NPUDeviceGuard guard(places[i].GetDeviceId()); + task->control_events_[i].Record(*places_to_ctx_[key][i]); + } + return task; +} + +template +std::shared_ptr ProcessGroupHCCL::PointToPoint( + std::vector& tensors, Fn fn, int dst_rank, CommType op_type) { + const auto places = GetPlaceList(tensors); + const auto key = GetKeyFromPlaces(places); + + { + std::lock_guard lock(mutex_); + if (places_to_hcclcomm_.find(key) == places_to_hcclcomm_.end()) { + CreateHCCLManagerCache(key, places); + } + } + + auto& hccl_comms = places_to_hcclcomm_[key]; + + SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]); + + auto task = CreateTask(places, rank_, op_type, tensors); + + // construct uninitialize guard for device + + // if (FLAGS_use_stream_safe_npu_allocator) { + // for (size_t i = 0; i < tensors.size(); ++i) { + // platform::NPUDeviceGuard guard(places[i].GetDeviceId()); + // auto dense_tensor = + // std::dynamic_pointer_cast(tensors[i].impl()); + // memory::RecordStream(dense_tensor->Holder(), + // places_to_ctx_[key][i]->stream()); + // } + // } + + for (size_t i = 0; i < tensors.size(); ++i) { + platform::NPUDeviceGuard guard(places[i].GetDeviceId()); + const auto& hccl_stream = places_to_ctx_[key][i]->stream(); + fn(tensors[i], hccl_comms[i]->GetHcclComm(), hccl_stream, dst_rank); + } + + for (size_t i = 0; i < tensors.size(); ++i) { + platform::NPUDeviceGuard guard(places[i].GetDeviceId()); + task->control_events_[i].Record(*places_to_ctx_[key][i]); + } + return task; +} + +std::shared_ptr ProcessGroupHCCL::AllReduce( + std::vector& tensors, const AllreduceOptions& opts) { + // PADDLE_ENFORCE_EQ( + // CheckTensorsInNPUPlace(tensors), true, + // platform::errors::InvalidArgument("All inputs should be in + // NPUPlace.")); + return Collective( + tensors, tensors, + [&](const Tensor& input, Tensor& output, HcclComm comm, + const aclrtStream& stream) { + auto input_tensor = + std::dynamic_pointer_cast(input.impl()); + auto output_tensor = + std::dynamic_pointer_cast(output.impl()); + return platform::dynload::HcclAllReduce( + input_tensor->data(), output_tensor->data(), input_tensor->numel(), + platform::ToHCCLDataType(input.type()), + ToHCCLRedType(opts.reduce_op), comm, stream); + }, + CommType::ALLREDUCE); +} + +std::shared_ptr ProcessGroupHCCL::Broadcast( + std::vector& tensors, const BroadcastOptions& opts) { + // PADDLE_ENFORCE_EQ( + // CheckTensorsInNPUPlace(tensors), true, + // platform::errors::InvalidArgument("All inputs should be in + // CudaPlace.")); + + return Collective( + tensors, tensors, + [&](Tensor& input, Tensor& output, HcclComm comm, + const aclrtStream& stream) { + const auto root = opts.source_rank * tensors.size() + opts.source_root; + auto input_tensor = + std::dynamic_pointer_cast(input.impl()); + auto output_tensor = + std::dynamic_pointer_cast(output.impl()); + return platform::dynload::HcclBroadcast( + input_tensor->data(), input_tensor->numel(), + platform::ToHCCLDataType(input.type()), root, comm, stream); + }, + CommType::BROADCAST); +} + +} // namespace distributed +} // namespace paddle diff --git a/paddle/fluid/distributed/collective/ProcessGroupHCCL.h b/paddle/fluid/distributed/collective/ProcessGroupHCCL.h new file mode 100644 index 0000000000..f2376b4eed --- /dev/null +++ b/paddle/fluid/distributed/collective/ProcessGroupHCCL.h @@ -0,0 +1,152 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include +#include +#include +#include +#include + +#include "paddle/fluid/distributed/collective/ProcessGroup.h" +#include "paddle/fluid/platform/device/npu/npu_stream.h" +#include "paddle/fluid/platform/device_context.h" + +#include "paddle/fluid/distributed/collective/HCCLTools.h" +#include "paddle/fluid/distributed/store/store.h" +#include "paddle/fluid/platform/enforce.h" +#include "paddle/fluid/platform/gen_comm_id_helper.h" +#include "paddle/fluid/platform/place.h" + +constexpr const char* HCCL_BACKEND_NAME = "HCCL"; + +namespace paddle { +namespace distributed { + +using Place = paddle::platform::Place; +using NPUStream = platform::stream::NPUStream; +using NPUDeviceContext = paddle::platform::NPUDeviceContext; + +class ProcessGroupHCCL : public ProcessGroup { + public: + class HCCLTask : public ProcessGroup::Task, + public std::enable_shared_from_this { + public: + HCCLTask(const std::vector& places, int rank, CommType CommType, + const std::vector& inputs); + + bool IsCompleted(); + + void SynchronizeStreams(); + + bool Wait(std::chrono::milliseconds timeout = kWaitTimeout); + + void Synchronize(); + + void SetOutputs(std::vector& outputs); // NOLINT + + virtual ~HCCLTask(); + + std::vector control_events_; + + protected: + std::vector places_; + std::vector> hcclComms_; + std::shared_ptr> outputs_; + + private: + }; + + ProcessGroupHCCL(const std::shared_ptr& store, int rank, int size); + + const std::string GetBackendName() const override { + return std::string(HCCL_BACKEND_NAME); + } + + std::shared_ptr AllReduce( + std::vector& tensors, + const AllreduceOptions& = AllreduceOptions()) override; + + std::shared_ptr Broadcast( + std::vector& tensors, + const BroadcastOptions& = BroadcastOptions()) override; + + std::shared_ptr Barrier( + const BarrierOptions& = BarrierOptions()) override; + + std::shared_ptr Send(std::vector& tensors, + int dst_rank) override; + + std::shared_ptr Recv(std::vector& tensors, + int src_rank) override; + + std::shared_ptr AllGather( + std::vector& in_tensors, + std::vector& out_tensors) override; + + std::shared_ptr AllToAll( + std::vector& in, std::vector& out) override; + + std::shared_ptr Reduce( + std::vector& tensors, const ReduceOptions& opts) override; + + std::shared_ptr Scatter(std::vector& in_tensors, + std::vector& out_tensors, + const ScatterOptions&) override; + + protected: + virtual std::shared_ptr CreateTask( + std::vector places, int rank, CommType opType, + const std::vector& inputs); + + std::shared_ptr store_; + std::shared_ptr hccl_comm_; + std::mutex mutex_; + std::unordered_map>> + places_to_hcclcomm_; + + std::unordered_map> + places_to_events_; + + std::unordered_map>> + places_to_ctx_; + + std::set used_place_ids_; + + private: + void BcastHCCLId(std::vector& hccl_ids, int root, // NOLINT + int server_fd); + + void BroadcastUniqueHCCLID(std::vector& hccl_ids); // NOLINT + + template + std::shared_ptr Collective( + std::vector& inputs, // NOLINT + std::vector& outputs, // NOLINT + Fn fn, CommType op_type); + + template + std::shared_ptr PointToPoint( + std::vector& tensors, // NOLINT + Fn fn, int dst_rank, CommType op_type); + + void CreateHCCLManagerCache(const std::string& places_key, + const std::vector& places); +}; + +} // namespace distributed +} // namespace paddle diff --git a/paddle/fluid/platform/device/npu/hccl_helper.h b/paddle/fluid/platform/device/npu/hccl_helper.h index efbc56bee7..134ec04030 100644 --- a/paddle/fluid/platform/device/npu/hccl_helper.h +++ b/paddle/fluid/platform/device/npu/hccl_helper.h @@ -53,6 +53,23 @@ inline HcclDataType ToHCCLDataType(framework::proto::VarType::Type type) { } } +inline HcclDataType ToHCCLDataType(experimental::DataType type) { + if (type == experimental::DataType::FLOAT32) { + return HCCL_DATA_TYPE_FP32; + } else if (type == experimental::DataType::FLOAT16) { + return HCCL_DATA_TYPE_FP16; + } else if (type == experimental::DataType::INT64) { + return HCCL_DATA_TYPE_INT64; + } else if (type == experimental::DataType::INT32) { + return HCCL_DATA_TYPE_INT32; + } else if (type == experimental::DataType::INT8) { + return HCCL_DATA_TYPE_INT8; + } else { + PADDLE_THROW(platform::errors::Unimplemented( + "This datatype in hccl is not supported.")); + } +} + // NOTE(minqiyang): according to the ncclGroupEnd documentations: // https://docs.nvidia.com/deeplearning/sdk/nccl-api/ncclapidoc.html, // ncclGroupEnd will wait for all communicators to be initialized, which will diff --git a/paddle/fluid/pybind/CMakeLists.txt b/paddle/fluid/pybind/CMakeLists.txt index 7ff501ef43..f40cd51a7b 100644 --- a/paddle/fluid/pybind/CMakeLists.txt +++ b/paddle/fluid/pybind/CMakeLists.txt @@ -88,6 +88,9 @@ if(NOT ON_INFER) if (WITH_GLOO) set (PYBIND_DEPS ${PYBIND_DEPS} processgroup_gloo) endif() + if(WITH_ASCEND) + set (PYBIND_DEPS ${PYBIND_DEPS} processgroup_hccl) + endif() set(PYBIND_SRCS ${PYBIND_SRCS} distributed_py.cc) endif() diff --git a/paddle/fluid/pybind/distributed_py.cc b/paddle/fluid/pybind/distributed_py.cc index 9870eab8da..0b17967038 100644 --- a/paddle/fluid/pybind/distributed_py.cc +++ b/paddle/fluid/pybind/distributed_py.cc @@ -35,6 +35,10 @@ limitations under the License. */ #include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h" #endif +#if defined(PADDLE_WITH_ASCEND_CL) +#include "paddle/fluid/distributed/collective/ProcessGroupHCCL.h" +#endif + #if defined(PADDLE_WITH_GLOO) #include "paddle/fluid/distributed/collective/ProcessGroupGloo.h" #include "paddle/fluid/distributed/store/tcp_store.h" @@ -201,6 +205,14 @@ void BindDistributed(py::module *m) { py::call_guard()); #endif +#if defined(PADDLE_WITH_ASCEND_CL) + py::class_>( + *m, "ProcessGroupHCCL", ProcessGroup) + .def(py::init &, int, int>(), + py::call_guard()); +#endif + py::class_>(*m, "task") .def("is_completed", &distributed::ProcessGroup::Task::IsCompleted) diff --git a/python/paddle/fluid/tests/unittests/npu/process_group_hccl.py b/python/paddle/fluid/tests/unittests/npu/process_group_hccl.py new file mode 100644 index 0000000000..37a24885be --- /dev/null +++ b/python/paddle/fluid/tests/unittests/npu/process_group_hccl.py @@ -0,0 +1,249 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import unittest +import random +import numpy as np +import os +import shutil + +import paddle +from paddle.fluid import core +from datetime import timedelta +import paddle.fluid.core as core +from paddle.fluid.framework import _test_eager_guard +from paddle.fluid.dygraph.parallel import ParallelEnv + + +def init_process_group(strategy=None): + nranks = ParallelEnv().nranks + rank = ParallelEnv().local_rank + is_master = True if rank == 0 else False + store = paddle.fluid.core.TCPStore("127.0.0.1", 6173, is_master, nranks) + pg_group = core.ProcessGroupHCCL(store, rank, nranks) + + return pg_group + + +class TestProcessGroupFp32(unittest.TestCase): + def setUp(self): + paddle.seed(2022) + random.seed(2022) + np.random.seed(2022) + self.config() + + def config(self): + self.dtype = "float32" + self.shape = (2, 10, 5) + + def test_create_process_group_nccl(self): + with _test_eager_guard(): + paddle.set_device('npu:%d' % + paddle.distributed.ParallelEnv().dev_id) + + pg = init_process_group() + + x = np.random.random(self.shape).astype(self.dtype) + tensor_x = paddle.to_tensor(x) + y = np.random.random(self.shape).astype(self.dtype) + tensor_y = paddle.to_tensor(y) + + sum_result = tensor_x + tensor_y + if pg.rank() == 0: + task = pg.allreduce(tensor_x) + task.wait() + assert np.array_equal(tensor_x, sum_result) + else: + task = pg.allreduce(tensor_y) + task.wait() + assert np.array_equal(tensor_y, sum_result) + + print("test allreduce sum api ok") + + x = np.random.random(self.shape).astype(self.dtype) + tensor_x = paddle.to_tensor(x) + y = np.random.random(self.shape).astype(self.dtype) + tensor_y = paddle.to_tensor(y) + + max_result = paddle.maximum(tensor_x, tensor_y) + + if pg.rank() == 0: + task = pg.allreduce(tensor_x, core.ReduceOp.MAX) + task.wait() + assert np.array_equal(tensor_x, max_result) + else: + task = pg.allreduce(tensor_y, core.ReduceOp.MAX) + task.wait() + assert np.array_equal(tensor_y, max_result) + + print("test allreduce max api ok") + + # test broadcast + # rank 0 + x = np.random.random(self.shape).astype(self.dtype) + tensor_x = paddle.to_tensor(x) + # rank 1 + y = np.random.random(self.shape).astype(self.dtype) + tensor_y = paddle.to_tensor(y) + + broadcast_result = paddle.assign(tensor_x) + if pg.rank() == 0: + task = pg.broadcast(tensor_x, 0) + task.synchronize() + paddle.device.cuda.synchronize() + assert task.is_completed() + assert np.array_equal(broadcast_result, tensor_x) + else: + task = pg.broadcast(tensor_y, 0) + task.synchronize() + paddle.device.cuda.synchronize() + assert task.is_completed() + assert np.array_equal(broadcast_result, tensor_y) + + print("test broadcast api ok") + + # test barrier + # rank 0 + if pg.rank() == 0: + task = pg.barrier() + task.wait() + # rank 1 + else: + task = pg.barrier() + task.wait() + + print("test barrier api ok\n") + exit(0) + + # test allgather + # rank 0 + x = np.random.random(self.shape).astype(self.dtype) + y = np.random.random(self.shape).astype(self.dtype) + tensor_x = paddle.to_tensor(x) + tensor_y = paddle.to_tensor(y) + out_shape = list(self.shape) + out_shape[0] *= 2 + out = np.random.random(out_shape).astype(self.dtype) + tensor_out = paddle.to_tensor(out) + if pg.rank() == 0: + task = pg.all_gather(tensor_x, tensor_out) + task.wait() + paddle.device.cuda.synchronize() + # rank 1 + else: + task = pg.all_gather(tensor_y, tensor_out) + task.wait() + paddle.device.cuda.synchronize() + out_1 = paddle.slice(tensor_out, [0], [0], [out_shape[0] // 2]) + out_2 = paddle.slice(tensor_out, [0], [out_shape[0] // 2], + [out_shape[0]]) + assert np.array_equal(tensor_x, out_1) + assert np.array_equal(tensor_y, out_2) + print("test allgather api ok\n") + + # test alltoall + # rank 0 + x = np.random.random(self.shape).astype(self.dtype) + y = np.random.random(self.shape).astype(self.dtype) + out1 = np.random.random(self.shape).astype(self.dtype) + out2 = np.random.random(self.shape).astype(self.dtype) + tensor_x = paddle.to_tensor(x) + tensor_y = paddle.to_tensor(y) + tensor_out1 = paddle.to_tensor(out1) + tensor_out2 = paddle.to_tensor(out2) + raw_tensor_x_2 = paddle.slice(tensor_x, [0], [self.shape[0] // 2], + [self.shape[0]]) + raw_tensor_y_1 = paddle.slice(tensor_y, [0], [0], + [self.shape[0] // 2]) + if pg.rank() == 0: + task = pg.alltoall(tensor_x, tensor_out1) + task.wait() + paddle.device.cuda.synchronize() + # rank 1 + else: + task = pg.alltoall(tensor_y, tensor_out2) + task.wait() + paddle.device.cuda.synchronize() + out1_2 = paddle.slice(tensor_out1, [0], [self.shape[0] // 2], + [self.shape[0]]) + out2_1 = paddle.slice(tensor_out2, [0], [0], [self.shape[0] // 2]) + if pg.rank() == 0: + assert np.array_equal(out1_2.numpy(), raw_tensor_y_1.numpy()) + else: + assert np.array_equal(out2_1, raw_tensor_x_2) + print("test alltoall api ok\n") + + # test Reduce + # rank 0 + x = np.random.random(self.shape).astype(self.dtype) + y = np.random.random(self.shape).astype(self.dtype) + tensor_x = paddle.to_tensor(x) + tensor_y = paddle.to_tensor(y) + sum_result = tensor_x + tensor_y + if pg.rank() == 0: + task = pg.reduce(tensor_x, 0) + task.wait() + paddle.device.cuda.synchronize() + # rank 1 + else: + task = pg.reduce(tensor_y, 0) + task.wait() + paddle.device.cuda.synchronize() + if pg.rank() == 0: + assert np.array_equal(tensor_x, sum_result) + print("test reduce sum api ok\n") + + # test Scatter + # rank 0 + in_shape = list(self.shape) + in_shape[0] *= 2 + x = np.random.random(in_shape).astype(self.dtype) + y = np.random.random(self.shape).astype(self.dtype) + tensor_x = paddle.to_tensor(x) + tensor_y = paddle.to_tensor(y) + if pg.rank() == 0: + task = pg.scatter(tensor_x, tensor_y, 0) + task.wait() + paddle.device.cuda.synchronize() + # rank 1 + else: + task = pg.scatter(tensor_x, tensor_y, 0) + task.wait() + paddle.device.cuda.synchronize() + out1 = paddle.slice(tensor_x, [0], [0], [self.shape[0]]) + out2 = paddle.slice(tensor_x, [0], [self.shape[0]], + [self.shape[0] * 2]) + if pg.rank() == 0: + assert np.array_equal(tensor_y, out1) + else: + assert np.array_equal(tensor_y, out2) + print("test scatter api ok\n") + + +class TestProcessGroupFp16(TestProcessGroupFp32): + def setUp(self): + paddle.seed(2022) + random.seed(2022) + np.random.seed(2022) + self.config() + + def config(self): + self.dtype = "float16" + self.shape = (4, 20, 20) + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/npu/test_collective_process_group_hccl.py b/python/paddle/fluid/tests/unittests/npu/test_collective_process_group_hccl.py new file mode 100644 index 0000000000..9b2c6fae15 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/npu/test_collective_process_group_hccl.py @@ -0,0 +1,29 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import unittest +import sys +sys.path.append("..") +from test_parallel_dygraph_dataparallel import TestMultipleGpus + + +class TestProcessGroup(TestMultipleGpus): + def test_process_group_nccl(self): + self.run_mnist_2gpu('process_group_hccl.py') + + +if __name__ == "__main__": + unittest.main() -- GitLab