Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
72869543
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
72869543
编写于
4月 17, 2018
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add more comments
上级
a1d910b1
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
27 addition
and
0 deletion
+27
-0
python/paddle/fluid/parallel_executor.py
python/paddle/fluid/parallel_executor.py
+27
-0
未找到文件。
python/paddle/fluid/parallel_executor.py
浏览文件 @
72869543
...
...
@@ -16,6 +16,7 @@ import core
import
multiprocessing
import
framework
import
executor
import
sys
__all__
=
[
'ParallelExecutor'
]
...
...
@@ -125,6 +126,30 @@ class ParallelExecutor(object):
def
run
(
self
,
fetch_list
,
feed
=
None
,
feed_dict
=
None
):
"""
Run a parallel executor with fetch_list.
The feed parameter can be a dict or a list. If feed is a dict, the
feed data will be split into multiple devices. If feed is a list, we
assume the data has been splitted into multiple devices, the each
element in the list will be copied to each device directly.
For example, if the feed is a dict:
>>> exe = ParallelExecutor()
>>> # the image will be splitted into devices. If there is two devices
>>> # each device will process an image with shape (24, 1, 28, 28)
>>> exe.run(feed={'image': numpy.random.random(size=(48, 1, 28, 28))})
For example, if the feed is a list:
>>> exe = ParallelExecutor()
>>> # each device will process each element in the list.
>>> # the 1st device will process an image with shape (48, 1, 28, 28)
>>> # the 2nd device will process an image with shape (32, 1, 28, 28)
>>> #
>>> # you can use exe.device_count to get the device number.
>>> exe.run(feed=[{"image": numpy.random.random(size=(48, 1, 28, 28))},
>>> {"image": numpy.random.random(size=(32, 1, 28, 28))},
>>> ])
Args:
fetch_list(list): The fetched variable names
...
...
@@ -133,12 +158,14 @@ class ParallelExecutor(object):
the feed is a list, each element of the list will be copied
to each device.
feed_dict: Alias for feed parameter, for backward compatibility.
This parameter is deprecated.
Returns: fetched result list.
"""
if
feed
is
None
:
feed
=
feed_dict
print
>>
sys
.
stderr
,
"`feed_dict` is deprecated. Please use `feed=`"
if
isinstance
(
feed
,
dict
):
feed_tensor_dict
=
dict
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录