From 72091aa5f8d02e45bd6eeed4e4058bf0c4ab1dd7 Mon Sep 17 00:00:00 2001 From: ying Date: Fri, 12 Jan 2018 14:31:38 +0800 Subject: [PATCH] fix display error of C-API doc. --- doc/howto/usage/capi/workflow_of_capi_cn.md | 7 +++---- 1 file changed, 3 insertions(+), 4 deletions(-) diff --git a/doc/howto/usage/capi/workflow_of_capi_cn.md b/doc/howto/usage/capi/workflow_of_capi_cn.md index c1c2c86d0c..449bda76e8 100644 --- a/doc/howto/usage/capi/workflow_of_capi_cn.md +++ b/doc/howto/usage/capi/workflow_of_capi_cn.md @@ -26,10 +26,9 @@ ### 准备预测模型 -在准备预测模型部分的介绍,我们以手写数字识别任务为例。手写数字识别任务定义了一个含有[两个隐层的简单全连接网络](https://github.com/PaddlePaddle/book/blob/develop/02.recognize_digits/README.cn.md#softmax回归softmax-regression),网络接受一幅图片作为输入,将图片分类到 0 ~ 9 类别标签之一。完整代码可以查看[此目录](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/capi/examples/model_inference/dense) 中的相关脚本。 +准备预测模型部分,我们以手写数字识别任务为例进行介绍。手写数字识别任务定义了一个含有[两个隐层的简单全连接网络](https://github.com/PaddlePaddle/book/blob/develop/02.recognize_digits/README.cn.md#softmax回归softmax-regression),网络接受一幅图片作为输入,将图片分类到 0 ~ 9 类别标签之一。完整代码可以查看[此目录](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/capi/examples/model_inference/dense) 中的相关脚本。 -调用C-API开发预测程序需要一个训练好的模型,在终端执行`python mnist_v2.py` -运行[目录](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/capi/examples/model_inference/dense) 会使用 PaddlePaddle 内置的 [MNIST 数据集](http://yann.lecun.com/exdb/mnist/)进行训练。训练好的模型默认保存在当前运行目录下的`models`目录中。 +调用C-API开发预测程序需要一个训练好的模型,运行[MNIST手写数字识别目录](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/capi/examples/model_inference/dense)下的[mnist_v2.py](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/examples/model_inference/dense/mnist_v2.py)脚本,在终端执行`python mnist_v2.py`,会使用 PaddlePaddle 内置的 [MNIST 数据集](http://yann.lecun.com/exdb/mnist/)进行训练。训练好的模型默认保存在当前运行目录下的`models`目录中。 下面,我们将训练结束后存储下来的模型转换成预测模型。 @@ -113,7 +112,7 @@ C-API支持的所有输入数据类型和他们的组织方式,请参考“输 #### step 4. 前向计算 -完成上述准备之后,通过调用 `[paddle_gradient_machine_forward](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/gradient_machine.h#L73)` 接口完成神经网络的前向计算。 +完成上述准备之后,通过调用 [`paddle_gradient_machine_forward`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/gradient_machine.h#L73) 接口完成神经网络的前向计算。 #### step 5. 清理 -- GitLab