Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
7202f425
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7202f425
编写于
8月 10, 2017
作者:
Q
qingqing01
提交者:
GitHub
8月 10, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'refactorize_framework_proto' into feature/refactorize_framework_proto
上级
030f4302
36709d05
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
264 addition
and
478 deletion
+264
-478
paddle/framework/grad_op_builder.cc
paddle/framework/grad_op_builder.cc
+14
-54
paddle/framework/grad_op_builder_test.cc
paddle/framework/grad_op_builder_test.cc
+19
-21
paddle/framework/op_registry_test.cc
paddle/framework/op_registry_test.cc
+0
-10
paddle/framework/operator_test.cc
paddle/framework/operator_test.cc
+2
-17
paddle/operators/recurrent_op_test.cc
paddle/operators/recurrent_op_test.cc
+227
-376
python/paddle/v2/framework/tests/test_operator.py
python/paddle/v2/framework/tests/test_operator.py
+2
-0
未找到文件。
paddle/framework/grad_op_builder.cc
浏览文件 @
7202f425
...
@@ -18,59 +18,32 @@ permissions and limitations under the License. */
...
@@ -18,59 +18,32 @@ permissions and limitations under the License. */
namespace
paddle
{
namespace
paddle
{
namespace
framework
{
namespace
framework
{
/**
class
OpRegistry
;
class
OpRegistry
;
using
VarIndexMap
=
std
::
unordered_map
<
std
::
string
,
int
>
;
using
VarIndexMap
=
std
::
unordered_map
<
std
::
string
,
int
>
;
enum
class
OpArgType
{
IN
,
OUT
};
enum
class
OpArgType
{
IN
,
OUT
};
static std::vector<int>* GetOpFormat(OperatorBase* op, const OpArgType& type) {
std::string key = type == OpArgType::IN ? "input_format" : "output_format";
return op->attrs_.count(key)
? &boost::get<std::vector<int>>(op->attrs_.at(key))
: nullptr;
}
static const std::vector<int>* GetOpFormat(const OperatorBase* op,
const OpArgType& type) {
std::string key = type == OpArgType::IN ? "input_format" : "output_format";
return op->attrs_.count(key)
? &boost::get<std::vector<int>>(op->attrs_.at(key))
: nullptr;
}
static
void
TransOpArg
(
const
OperatorBase
*
src_op
,
OperatorBase
*
dst_op
,
static
void
TransOpArg
(
const
OperatorBase
*
src_op
,
OperatorBase
*
dst_op
,
const
OpArgType
&
src_type
,
const
OpArgType
&
dst_type
,
const
OpArgType
&
src_type
,
const
OpArgType
&
dst_type
,
int& idx,
bool is_grad) {
bool
is_grad
)
{
const
std::vector<std::string>
& src_inout =
const
auto
&
src_inout
=
src_type
==
OpArgType
::
IN
?
src_op
->
inputs_
:
src_op
->
outputs_
;
src_type
==
OpArgType
::
IN
?
src_op
->
inputs_
:
src_op
->
outputs_
;
const std::vector<int>* src_format = GetOpFormat(src_op, src_type);
std::vector<std::string>
& dst_inout =
auto
&
dst_inout
=
dst_type
==
OpArgType
::
IN
?
dst_op
->
inputs_
:
dst_op
->
outputs_
;
dst_type
==
OpArgType
::
IN
?
dst_op
->
inputs_
:
dst_op
->
outputs_
;
std::vector<int>* dst_format = GetOpFormat(dst_op, dst_type);
const
OpProto
&
proto
=
OpRegistry
::
protos
().
at
(
src_op
->
type_
);
const
OpProto
&
proto
=
OpRegistry
::
protos
().
at
(
src_op
->
type_
);
const
auto
&
src_arg_list
=
const
auto
&
src_arg_list
=
src_type
==
OpArgType
::
IN
?
proto
.
inputs
()
:
proto
.
outputs
();
src_type
==
OpArgType
::
IN
?
proto
.
inputs
()
:
proto
.
outputs
();
for
(
const
auto
&
arg
:
src_arg_list
)
{
for
(
const
auto
&
arg
:
src_arg_list
)
{
std
::
string
src_name
=
arg
.
name
();
std
::
string
src_name
=
arg
.
name
();
std::string dst_name = is_grad ? src_name + kGradVarSuffix : src_name;
std
::
string
dst_name
=
is_grad
?
GradVarName
(
src_name
)
:
src_name
;
(*dst_op->in_out_idxs_)[dst_name] = idx++;
for
(
auto
&
var_name
:
src_inout
.
at
(
src_name
))
{
int src_arg_idx = src_op->in_out_idxs_->at(src_name);
std
::
string
s
=
is_grad
?
GradVarName
(
var_name
)
int src_begin =
:
(
arg
.
no_gradient
()
?
kEmptyVarName
:
var_name
);
src_format == nullptr ? src_arg_idx : src_format->at(src_arg_idx);
dst_inout
[
dst_name
].
emplace_back
(
s
);
int src_end = src_format == nullptr ? src_arg_idx + 1
: src_format->at(src_arg_idx + 1);
for (int i = src_begin; i < src_end; ++i) {
std::string s =
is_grad ? src_inout[i] + kGradVarSuffix
: (arg.ignore_gradient() ? kEmptyVarName : src_inout[i]);
dst_inout.emplace_back(s);
}
if (dst_format != nullptr) {
dst_format->push_back(dst_inout.size());
}
}
}
}
}
}
...
@@ -80,25 +53,12 @@ OperatorBase* BuildGradOp(const OperatorBase* op) {
...
@@ -80,25 +53,12 @@ OperatorBase* BuildGradOp(const OperatorBase* op) {
OperatorBase
*
grad_op
=
OpRegistry
::
op_creators
().
at
(
grad_op_type
)();
OperatorBase
*
grad_op
=
OpRegistry
::
op_creators
().
at
(
grad_op_type
)();
grad_op
->
type_
=
grad_op_type
;
grad_op
->
type_
=
grad_op_type
;
grad_op
->
attrs_
=
op
->
attrs_
;
grad_op
->
attrs_
=
op
->
attrs_
;
grad_op->attrs_.erase("input_format");
TransOpArg
(
op
,
grad_op
,
OpArgType
::
IN
,
OpArgType
::
IN
,
false
);
// I
grad_op->attrs_.erase("output_format");
TransOpArg
(
op
,
grad_op
,
OpArgType
::
OUT
,
OpArgType
::
IN
,
false
);
// O
if (GetOpFormat(op, OpArgType::IN) != nullptr) {
TransOpArg
(
op
,
grad_op
,
OpArgType
::
OUT
,
OpArgType
::
IN
,
true
);
// OG
grad_op->attrs_["output_format"] = std::vector<int>({0});
TransOpArg
(
op
,
grad_op
,
OpArgType
::
IN
,
OpArgType
::
OUT
,
true
);
// IG
}
if (GetOpFormat(op, OpArgType::IN) != nullptr ||
GetOpFormat(op, OpArgType::OUT) != nullptr) {
grad_op->attrs_["input_format"] = std::vector<int>({0});
}
grad_op->in_out_idxs_.reset(new VarIndexMap());
int in_idx = 0;
int out_idx = 0;
TransOpArg(op, grad_op, OpArgType::IN, OpArgType::IN, in_idx, false); // I
TransOpArg(op, grad_op, OpArgType::OUT, OpArgType::IN, in_idx, false); // G
TransOpArg(op, grad_op, OpArgType::OUT, OpArgType::IN, in_idx, true); // OG
TransOpArg(op, grad_op, OpArgType::IN, OpArgType::OUT, out_idx, true); // IG
return
grad_op
;
return
grad_op
;
}
}
**/
OperatorBase
*
BuildGradOp
(
const
OperatorBase
*
op
)
{
return
nullptr
;
}
}
// namespace framework
}
// namespace framework
}
// namespace paddle
}
// namespace paddle
paddle/framework/grad_op_builder_test.cc
浏览文件 @
7202f425
...
@@ -51,14 +51,14 @@ TEST(GradOpBuilder, AddTwo) {
...
@@ -51,14 +51,14 @@ TEST(GradOpBuilder, AddTwo) {
"add_two"
,
{{
"X"
,
{
"x"
}},
{
"Y"
,
{
"y"
}}},
{{
"Out"
,
{
"out"
}}},
{}));
"add_two"
,
{{
"X"
,
{
"x"
}},
{
"Y"
,
{
"y"
}}},
{{
"Out"
,
{
"out"
}}},
{}));
std
::
shared_ptr
<
f
::
OperatorBase
>
grad_add_op
=
std
::
shared_ptr
<
f
::
OperatorBase
>
grad_add_op
=
f
::
OpRegistry
::
CreateGradOp
(
*
add_op
);
f
::
OpRegistry
::
CreateGradOp
(
*
add_op
);
EXPECT_EQ
(
static_cast
<
int
>
(
grad_add_op
->
inputs_
.
size
()),
4
);
EXPECT_EQ
(
grad_add_op
->
inputs_
.
size
(),
4UL
);
EXPECT_EQ
(
static_cast
<
int
>
(
grad_add_op
->
outputs_
.
size
()),
2
);
EXPECT_EQ
(
grad_add_op
->
outputs_
.
size
(),
2UL
);
EXPECT_EQ
(
grad_add_op
->
Input
(
"X"
),
"x"
);
EXPECT_EQ
(
grad_add_op
->
Input
(
"X"
),
"x"
);
EXPECT_EQ
(
grad_add_op
->
Input
(
"Y"
),
"y"
);
EXPECT_EQ
(
grad_add_op
->
Input
(
"Y"
),
"y"
);
EXPECT_EQ
(
grad_add_op
->
Input
(
"Out"
),
"out"
);
EXPECT_EQ
(
grad_add_op
->
Input
(
"Out"
),
"out"
);
EXPECT_EQ
(
grad_add_op
->
Input
(
"Out@GRAD"
),
"out@GRAD"
);
EXPECT_EQ
(
grad_add_op
->
Input
(
f
::
GradVarName
(
"Out"
)),
f
::
GradVarName
(
"out"
)
);
EXPECT_EQ
(
grad_add_op
->
Output
(
"X@GRAD"
),
"x@GRAD"
);
EXPECT_EQ
(
grad_add_op
->
Output
(
f
::
GradVarName
(
"X"
)),
f
::
GradVarName
(
"x"
)
);
EXPECT_EQ
(
grad_add_op
->
Output
(
"Y@GRAD"
),
"y@GRAD"
);
EXPECT_EQ
(
grad_add_op
->
Output
(
f
::
GradVarName
(
"Y"
)),
f
::
GradVarName
(
"y"
)
);
}
}
REGISTER_OP
(
mult_io
,
f
::
NOP
,
f
::
MutiInOutOpMaker
);
REGISTER_OP
(
mult_io
,
f
::
NOP
,
f
::
MutiInOutOpMaker
);
...
@@ -67,17 +67,16 @@ REGISTER_OP(io_ignored, f::NOP, f::IOIgnoredOpMaker);
...
@@ -67,17 +67,16 @@ REGISTER_OP(io_ignored, f::NOP, f::IOIgnoredOpMaker);
REGISTER_GRADIENT_OP
(
io_ignored
,
io_ignored_grad
,
f
::
NOP
);
REGISTER_GRADIENT_OP
(
io_ignored
,
io_ignored_grad
,
f
::
NOP
);
TEST
(
GradOpBuilder
,
MutiInOut
)
{
TEST
(
GradOpBuilder
,
MutiInOut
)
{
f
::
AttributeMap
attrs
{{
"input_format"
,
std
::
vector
<
int
>
{
0
,
1
,
4
,
5
}},
{
"output_format"
,
std
::
vector
<
int
>
{
0
,
1
,
3
}}};
std
::
shared_ptr
<
f
::
OperatorBase
>
test_op
(
f
::
OpRegistry
::
CreateOp
(
std
::
shared_ptr
<
f
::
OperatorBase
>
test_op
(
f
::
OpRegistry
::
CreateOp
(
"mult_io"
,
{{
"In1"
,
{
"in1"
}},
"mult_io"
,
{{
"In1"
,
{
"in1"
}},
{
"In2_mult"
,
{
"in2_1"
,
"in2_2"
,
"in2_3"
}},
{
"In2_mult"
,
{
"in2_1"
,
"in2_2"
,
"in2_3"
}},
{
"In3"
,
{
"in3"
}}},
{
"In3"
,
{
"in3"
}}},
{{
"Out1"
,
{
"
Out2_mult"
}},
{
"Out2"
,
{
"out2_1"
,
"out2_2"
}}},
attrs
));
{{
"Out1"
,
{
"
out1"
}},
{
"Out2_mult"
,
{
"out2_1"
,
"out2_2"
}}},
{}
));
std
::
shared_ptr
<
f
::
OperatorBase
>
grad_test_op
=
std
::
shared_ptr
<
f
::
OperatorBase
>
grad_test_op
=
f
::
OpRegistry
::
CreateGradOp
(
*
test_op
);
f
::
OpRegistry
::
CreateGradOp
(
*
test_op
);
ASSERT_EQ
(
grad_test_op
->
inputs_
.
size
(),
5UL
+
3UL
+
3
UL
);
ASSERT_EQ
(
grad_test_op
->
inputs_
.
size
(),
3UL
+
2UL
+
2
UL
);
EXPECT_EQ
(
grad_test_op
->
Input
(
"In1"
),
"in1"
);
EXPECT_EQ
(
grad_test_op
->
Input
(
"In1"
),
"in1"
);
EXPECT_EQ
(
grad_test_op
->
Inputs
(
"In2_mult"
),
EXPECT_EQ
(
grad_test_op
->
Inputs
(
"In2_mult"
),
std
::
vector
<
std
::
string
>
({
"in2_1"
,
"in2_2"
,
"in2_3"
}));
std
::
vector
<
std
::
string
>
({
"in2_1"
,
"in2_2"
,
"in2_3"
}));
...
@@ -91,7 +90,7 @@ TEST(GradOpBuilder, MutiInOut) {
...
@@ -91,7 +90,7 @@ TEST(GradOpBuilder, MutiInOut) {
std
::
vector
<
std
::
string
>
(
std
::
vector
<
std
::
string
>
(
{
f
::
GradVarName
(
"out2_1"
),
f
::
GradVarName
(
"out2_2"
)}));
{
f
::
GradVarName
(
"out2_1"
),
f
::
GradVarName
(
"out2_2"
)}));
ASSERT_EQ
(
grad_test_op
->
outputs_
.
size
(),
5
UL
);
ASSERT_EQ
(
grad_test_op
->
outputs_
.
size
(),
3
UL
);
EXPECT_EQ
(
grad_test_op
->
Output
(
f
::
GradVarName
(
"In1"
)),
f
::
GradVarName
(
"in1"
));
EXPECT_EQ
(
grad_test_op
->
Output
(
f
::
GradVarName
(
"In1"
)),
f
::
GradVarName
(
"in1"
));
EXPECT_EQ
(
grad_test_op
->
Outputs
(
f
::
GradVarName
(
"In2_mult"
)),
EXPECT_EQ
(
grad_test_op
->
Outputs
(
f
::
GradVarName
(
"In2_mult"
)),
std
::
vector
<
std
::
string
>
({
f
::
GradVarName
(
"in2_1"
),
std
::
vector
<
std
::
string
>
({
f
::
GradVarName
(
"in2_1"
),
...
@@ -101,18 +100,17 @@ TEST(GradOpBuilder, MutiInOut) {
...
@@ -101,18 +100,17 @@ TEST(GradOpBuilder, MutiInOut) {
}
}
TEST
(
GradOpBuilder
,
IOIgnoredInGradient
)
{
TEST
(
GradOpBuilder
,
IOIgnoredInGradient
)
{
f
::
AttributeMap
attrs
{{
"input_format"
,
std
::
vector
<
int
>
{
0
,
1
,
3
,
5
}},
{
"output_format"
,
std
::
vector
<
int
>
{
0
,
2
,
3
}}};
std
::
shared_ptr
<
f
::
OperatorBase
>
test_op
(
f
::
OpRegistry
::
CreateOp
(
std
::
shared_ptr
<
f
::
OperatorBase
>
test_op
(
f
::
OpRegistry
::
CreateOp
(
"io_ignored"
,
{{
"In1"
,
{
"in1"
}},
"io_ignored"
,
{{
"In1"
,
{
"in1"
}},
{
"In2_mult"
,
{
"in2_1"
,
"in2_2"
}},
{
"In2_mult"
,
{
"in2_1"
,
"in2_2"
}},
{
"In3_mult"
,
{
"in3_1"
,
"in3_2"
}}},
{
"In3_mult"
,
{
"in3_1"
,
"in3_2"
}}},
{{
"Out1_mult"
,
{
"out1_1"
,
"out1_2"
}},
{
"Out2"
,
{
"out2"
}}},
attrs
));
{{
"Out1_mult"
,
{
"out1_1"
,
"out1_2"
}},
{
"Out2"
,
{
"out2"
}}},
{}
));
std
::
shared_ptr
<
f
::
OperatorBase
>
grad_test_op
=
std
::
shared_ptr
<
f
::
OperatorBase
>
grad_test_op
=
f
::
OpRegistry
::
CreateGradOp
(
*
test_op
);
f
::
OpRegistry
::
CreateGradOp
(
*
test_op
);
// 'In2' and 'Out2' are ignored in gradient calculating
// 'In2' and 'Out2' are ignored in gradient calculating
ASSERT_EQ
(
grad_test_op
->
inputs_
.
size
(),
5UL
+
3UL
+
3
UL
);
ASSERT_EQ
(
grad_test_op
->
inputs_
.
size
(),
3UL
+
2UL
+
2
UL
);
EXPECT_EQ
(
grad_test_op
->
Input
(
"In1"
),
"in1"
);
EXPECT_EQ
(
grad_test_op
->
Input
(
"In1"
),
"in1"
);
EXPECT_EQ
(
grad_test_op
->
Inputs
(
"In2_mult"
),
EXPECT_EQ
(
grad_test_op
->
Inputs
(
"In2_mult"
),
std
::
vector
<
std
::
string
>
({
f
::
kEmptyVarName
,
f
::
kEmptyVarName
}));
std
::
vector
<
std
::
string
>
({
f
::
kEmptyVarName
,
f
::
kEmptyVarName
}));
...
@@ -127,7 +125,7 @@ TEST(GradOpBuilder, IOIgnoredInGradient) {
...
@@ -127,7 +125,7 @@ TEST(GradOpBuilder, IOIgnoredInGradient) {
EXPECT_EQ
(
grad_test_op
->
Input
(
f
::
GradVarName
(
"Out2"
)),
EXPECT_EQ
(
grad_test_op
->
Input
(
f
::
GradVarName
(
"Out2"
)),
f
::
GradVarName
(
"out2"
));
f
::
GradVarName
(
"out2"
));
ASSERT_EQ
(
grad_test_op
->
outputs_
.
size
(),
5
UL
);
ASSERT_EQ
(
grad_test_op
->
outputs_
.
size
(),
3
UL
);
EXPECT_EQ
(
grad_test_op
->
Output
(
f
::
GradVarName
(
"In1"
)),
f
::
GradVarName
(
"in1"
));
EXPECT_EQ
(
grad_test_op
->
Output
(
f
::
GradVarName
(
"In1"
)),
f
::
GradVarName
(
"in1"
));
EXPECT_EQ
(
grad_test_op
->
Outputs
(
f
::
GradVarName
(
"In2_mult"
)),
EXPECT_EQ
(
grad_test_op
->
Outputs
(
f
::
GradVarName
(
"In2_mult"
)),
std
::
vector
<
std
::
string
>
(
std
::
vector
<
std
::
string
>
(
...
...
paddle/framework/op_registry_test.cc
浏览文件 @
7202f425
...
@@ -131,14 +131,6 @@ TEST(OpRegistry, DefaultValue) {
...
@@ -131,14 +131,6 @@ TEST(OpRegistry, DefaultValue) {
ASSERT_EQ
(
op
->
GetAttr
<
float
>
(
"scale"
),
1.0
);
ASSERT_EQ
(
op
->
GetAttr
<
float
>
(
"scale"
),
1.0
);
}
}
static
void
SetInputFormat
(
paddle
::
framework
::
OpDesc
*
desc
)
{
auto
attr
=
desc
->
add_attrs
();
attr
->
set_name
(
"input_format"
);
attr
->
set_type
(
paddle
::
framework
::
INTS
);
attr
->
mutable_ints
()
->
Add
(
0
);
attr
->
mutable_ints
()
->
Add
(
1
);
}
TEST
(
OpRegistry
,
CustomChecker
)
{
TEST
(
OpRegistry
,
CustomChecker
)
{
paddle
::
framework
::
OpDesc
op_desc
;
paddle
::
framework
::
OpDesc
op_desc
;
op_desc
.
set_type
(
"my_test_op"
);
op_desc
.
set_type
(
"my_test_op"
);
...
@@ -149,7 +141,6 @@ TEST(OpRegistry, CustomChecker) {
...
@@ -149,7 +141,6 @@ TEST(OpRegistry, CustomChecker) {
auto
output
=
op_desc
.
add_outputs
();
auto
output
=
op_desc
.
add_outputs
();
output
->
set_parameter
(
"output"
);
output
->
set_parameter
(
"output"
);
*
output
->
mutable_arguments
()
->
Add
()
=
"oo"
;
*
output
->
mutable_arguments
()
->
Add
()
=
"oo"
;
SetInputFormat
(
&
op_desc
);
// attr 'test_attr' is not set
// attr 'test_attr' is not set
bool
caught
=
false
;
bool
caught
=
false
;
...
@@ -189,7 +180,6 @@ TEST(OpRegistry, CustomChecker) {
...
@@ -189,7 +180,6 @@ TEST(OpRegistry, CustomChecker) {
attr
->
set_name
(
"test_attr"
);
attr
->
set_name
(
"test_attr"
);
attr
->
set_type
(
paddle
::
framework
::
AttrType
::
INT
);
attr
->
set_type
(
paddle
::
framework
::
AttrType
::
INT
);
attr
->
set_i
(
4
);
attr
->
set_i
(
4
);
SetInputFormat
(
&
op_desc
);
auto
op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
op_desc
);
auto
op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
op_desc
);
paddle
::
platform
::
CPUDeviceContext
dev_ctx
;
paddle
::
platform
::
CPUDeviceContext
dev_ctx
;
paddle
::
framework
::
Scope
scope
;
paddle
::
framework
::
Scope
scope
;
...
...
paddle/framework/operator_test.cc
浏览文件 @
7202f425
...
@@ -185,11 +185,11 @@ TEST(OpKernel, all) {
...
@@ -185,11 +185,11 @@ TEST(OpKernel, all) {
op_desc
.
set_type
(
"op_with_kernel"
);
op_desc
.
set_type
(
"op_with_kernel"
);
auto
*
ipt
=
op_desc
.
mutable_inputs
()
->
Add
();
auto
*
ipt
=
op_desc
.
mutable_inputs
()
->
Add
();
*
ipt
->
mutable_arguments
()
->
Add
()
=
"IN1"
;
*
ipt
->
mutable_arguments
()
->
Add
()
=
"IN1"
;
ipt
->
set_parameter
(
"
input
"
);
ipt
->
set_parameter
(
"
x
"
);
auto
*
output
=
op_desc
.
mutable_outputs
()
->
Add
();
auto
*
output
=
op_desc
.
mutable_outputs
()
->
Add
();
*
output
->
mutable_arguments
()
->
Add
()
=
"OUT1"
;
*
output
->
mutable_arguments
()
->
Add
()
=
"OUT1"
;
output
->
set_parameter
(
"
output
"
);
output
->
set_parameter
(
"
y
"
);
auto
attr
=
op_desc
.
mutable_attrs
()
->
Add
();
auto
attr
=
op_desc
.
mutable_attrs
()
->
Add
();
attr
->
set_name
(
"scale"
);
attr
->
set_name
(
"scale"
);
...
@@ -234,21 +234,6 @@ TEST(OpKernel, multi_inputs) {
...
@@ -234,21 +234,6 @@ TEST(OpKernel, multi_inputs) {
attr
->
set_type
(
paddle
::
framework
::
AttrType
::
FLOAT
);
attr
->
set_type
(
paddle
::
framework
::
AttrType
::
FLOAT
);
attr
->
set_f
(
3.14
);
attr
->
set_f
(
3.14
);
auto
attr0
=
op_desc
.
mutable_attrs
()
->
Add
();
attr0
->
set_name
(
"input_format"
);
attr0
->
set_type
(
paddle
::
framework
::
AttrType
::
INTS
);
auto
input_format
=
attr0
->
mutable_ints
();
input_format
->
Add
(
0
);
// x0
input_format
->
Add
(
3
);
// k
input_format
->
Add
(
4
);
// end
auto
attr1
=
op_desc
.
mutable_attrs
()
->
Add
();
attr1
->
set_name
(
"output_format"
);
attr1
->
set_type
(
paddle
::
framework
::
AttrType
::
INTS
);
auto
output_format
=
attr1
->
mutable_ints
();
output_format
->
Add
(
0
);
// y0
output_format
->
Add
(
2
);
// y1
paddle
::
platform
::
CPUDeviceContext
cpu_device_context
;
paddle
::
platform
::
CPUDeviceContext
cpu_device_context
;
paddle
::
framework
::
Scope
scope
;
paddle
::
framework
::
Scope
scope
;
scope
.
NewVar
(
"x0"
)
->
GetMutable
<
Tensor
>
();
scope
.
NewVar
(
"x0"
)
->
GetMutable
<
Tensor
>
();
...
...
paddle/operators/recurrent_op_test.cc
浏览文件 @
7202f425
...
@@ -22,382 +22,233 @@
...
@@ -22,382 +22,233 @@
#include "paddle/framework/tensor.h"
#include "paddle/framework/tensor.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/net_op.h"
TEST
(
rnn
,
bad
)
{
ASSERT_TRUE
(
false
);
}
namespace
paddle
{
namespace
operators
{
// namespace paddle {
using
namespace
paddle
::
framework
;
// namespace operators {
//
// using framework::make_ddim;
// using framework::make_ddim;
// using framework::DDim;
// using framework::DDim;
//
// class RecurrentOpTest : public ::testing::Test {
class
RecurrentGradientAlgorithmTest
:
public
::
testing
::
Test
{
// protected:
protected:
// virtual void SetUp() override {
virtual
void
SetUp
()
override
{
// CreateGlobalVariables();
CreateGlobalVariables
();
// CreateStepNet();
CreateStepScopes
();
// CreateRNNOp();
CreateStepNet
();
// }
CreateRNNGradientAlgorithm
();
//
// virtual void TearDown() override {}
// segment inputs
//
SegmentInputs
();
// void CreateGlobalVariables() {
// link forward memories
// // create input, and init content
LinkeMemories
();
// LOG(INFO) << "create global variable x";
}
// for (auto inlink : std::vector<std::string>{"x", "x0", "x1", "h"}) {
// Variable* x = scope_.NewVar(inlink);
virtual
void
TearDown
()
override
{}
// DDim dims = make_ddim(std::vector<int>{
// 10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/});
void
CreateGlobalVariables
()
{
// x->GetMutable<Tensor>()->mutable_data<float>(dims,
// inputs: x
// platform::CPUPlace());
LOG
(
INFO
)
<<
"create global variable x"
;
// }
Variable
*
x
=
scope_
.
NewVar
(
"x"
);
// // create output alias just for test
DDim
dims
=
// for (auto inlink : std::vector<std::string>{"h@alias"}) {
make_ddim
({
10
/*sent size*/
,
20
/*batch size*/
,
30
/*input dim*/
});
// Variable* x = scope_.NewVar(inlink);
x
->
GetMutable
<
Tensor
>
()
->
mutable_data
<
float
>
(
dims
,
platform
::
CPUPlace
());
// DDim dims =
// inputs: h_boot
// make_ddim(std::vector<int>{20 /*batch size*/, 30 /*input dim*/});
LOG
(
INFO
)
<<
"create global variable h_boot"
;
// x->GetMutable<Tensor>()->mutable_data<float>(dims,
Variable
*
h_boot
=
scope_
.
NewVar
(
"h_boot"
);
// platform::CPUPlace());
h_boot
->
GetMutable
<
Tensor
>
()
->
mutable_data
<
float
>
(
// }
make_ddim
({
20
/*batch size*/
,
30
/*input dim*/
}),
platform
::
CPUPlace
());
//
// inputs: w
// LOG(INFO) << "create global variable w";
LOG
(
INFO
)
<<
"create global variable w"
;
// Variable* w = scope_.NewVar("rnn/w");
Variable
*
w
=
scope_
.
NewVar
(
"rnn/w"
);
// w->GetMutable<Tensor>()->mutable_data<float>(
w
->
GetMutable
<
Tensor
>
()
->
mutable_data
<
float
>
(
make_ddim
({
30
,
30
}),
// make_ddim(std::vector<int>{30, 30}), platform::CPUPlace());
platform
::
CPUPlace
());
//
// inputs: h_grad
// for (auto boot : std::vector<std::string>{"h_boot"}) {
LOG
(
INFO
)
<<
"create variable h_grad"
;
// LOG(INFO) << "create global variable " << boot;
Variable
*
dh
=
scope_
.
NewVar
(
"h_grad"
);
// Variable* h_boot = scope_.NewVar(boot);
dh
->
GetMutable
<
Tensor
>
()
->
mutable_data
<
float
>
(
make_ddim
({
10
,
20
,
30
}),
// h_boot->GetMutable<Tensor>()->mutable_data<float>(
platform
::
CPUPlace
());
// make_ddim(std::vector<int>{20 /*batch size*/, 30 /*input dim*/}),
// inputs: step_scopes
// platform::CPUPlace());
LOG
(
INFO
)
<<
"create variable step_scopes"
;
// }
scope_
.
NewVar
(
"step_scopes"
);
//
// inputs: step_net
// LOG(INFO) << "create variable step_scopes";
LOG
(
INFO
)
<<
"create variable step_net"
;
// scope_.NewVar("step_scopes");
scope_
.
NewVar
(
"step_net"
);
//
// outputs: w_grad
// LOG(INFO) << "create variable h";
LOG
(
INFO
)
<<
"create global variable w_grad"
;
// scope_.NewVar("h");
scope_
.
NewVar
(
"rnn/w_grad"
);
// }
// outputs: x_grad
//
LOG
(
INFO
)
<<
"create global variable x_grad"
;
// void CreateRNNOp() {
scope_
.
NewVar
(
"x_grad"
);
// framework::OpDesc op_desc;
// outputs: h_boot_grad
//
LOG
(
INFO
)
<<
"create global variable h_boot_grad"
;
// op_desc.set_type("recurrent_op");
scope_
.
NewVar
(
"h_boot_grad"
);
// // inlinks 0
}
// op_desc.add_inputs("x");
// op_desc.add_inputs("x0");
void
CreateStepScopes
()
{
// op_desc.add_inputs("x1");
auto
step_scopes
=
// // boot_memories 3
scope_
.
FindVar
(
"step_scopes"
)
->
GetMutable
<
std
::
vector
<
Scope
*>>
();
// op_desc.add_inputs("h_boot");
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
// // step net 5
auto
&
scope
=
scope_
.
NewScope
();
// op_desc.add_inputs("step_net");
auto
pre_t
=
scope
.
NewVar
(
"rnn/pre_h"
)
->
GetMutable
<
Tensor
>
();
// // outlinks 6
pre_t
->
mutable_data
<
float
>
({
20
,
30
},
platform
::
CPUPlace
());
// op_desc.add_outputs("h");
auto
tensor
=
scope
.
NewVar
(
"rnn/h"
)
->
GetMutable
<
Tensor
>
();
// // step scopes 7
tensor
->
mutable_data
<
float
>
({
20
,
30
},
platform
::
CPUPlace
());
// op_desc.add_outputs("step_scopes");
//
// for unit test of ConcatOutputs
// auto _input_format = std::vector<int>{
auto
xg
=
scope
.
NewVar
(
"rnn/x_grad"
)
->
GetMutable
<
Tensor
>
();
// 0, // in_link
xg
->
mutable_data
<
float
>
({
20
,
30
},
platform
::
CPUPlace
());
// 3, // memories
// 4 // step_net
step_scopes
->
emplace_back
(
&
scope
);
// };
}
// auto input_format = op_desc.add_attrs();
// input_format->set_name("input_format");
// last time step
// input_format->set_type(paddle::framework::AttrType::INTS);
auto
g
=
(
*
step_scopes
)[
9
]
->
NewVar
(
"rnn/h_pre_grad"
)
->
GetMutable
<
Tensor
>
();
// for (auto i : _input_format) {
g
->
mutable_data
<
float
>
({
20
,
30
},
platform
::
CPUPlace
());
// input_format->add_ints(i);
}
// }
//
void
CreateRNNGradientAlgorithm
()
{
// auto output_format = op_desc.add_attrs();
std
::
unique_ptr
<
rnn
::
Argument
>
arg
(
new
rnn
::
Argument
());
// output_format->set_name("output_format");
arg
->
step_net
=
"step_net"
;
// output_format->set_type(paddle::framework::AttrType::INTS);
arg
->
step_scopes
=
"step_scopes"
;
// for (auto i : std::vector<int>{0, 1, 2}) {
rnn
::
Link
inlink
;
// output_format->add_ints(i);
inlink
.
external
=
"h_grad"
;
// }
inlink
.
internal
=
"rnn/h_grad"
;
//
arg
->
inlinks
=
std
::
vector
<
rnn
::
Link
>
{
inlink
};
// auto inlink_alias = op_desc.add_attrs();
// inlink_alias->set_name("inlink_alias");
rnn
::
Link
outlink
;
// inlink_alias->set_type(paddle::framework::AttrType::STRINGS);
outlink
.
external
=
"x_grad"
;
//
outlink
.
internal
=
"rnn/x_grad"
;
// auto outlink_alias = op_desc.add_attrs();
arg
->
outlinks
=
std
::
vector
<
rnn
::
Link
>
{
outlink
};
// outlink_alias->set_name("outlink_alias");
// outlink_alias->set_type(paddle::framework::AttrType::STRINGS);
rnn
::
MemoryAttr
mem_attr
;
//
mem_attr
.
pre_var
=
"rnn/h_pre_grad"
;
// auto pre_memories = op_desc.add_attrs();
mem_attr
.
var
=
"rnn/h_grad"
;
// pre_memories->set_name("pre_memories");
mem_attr
.
boot_var
=
"h_boot_grad"
;
// pre_memories->set_type(paddle::framework::AttrType::STRINGS);
arg
->
memories
=
std
::
vector
<
rnn
::
MemoryAttr
>
{
mem_attr
};
//
// auto memories = op_desc.add_attrs();
rnn_grad_algo_
.
Init
(
std
::
move
(
arg
));
// memories->set_name("memories");
}
// memories->set_type(paddle::framework::AttrType::STRINGS);
//
void
CreateStepNet
()
{
// // create inlink_alias
LOG
(
INFO
)
<<
"create variable step_net"
;
// for (const auto& item :
Variable
*
var
=
scope_
.
NewVar
(
"step_net"
);
// std::vector<std::string>{"x@alias", "x0@alias", "x1@alias"}) {
auto
net
=
var
->
GetMutable
<
NetOp
>
();
// inlink_alias->add_strings(item);
// TODO(qingqing) modify backward op create for RNNOp unit test
// }
// and the unit test will be removed to Python.
// // pre memories
// net->AddOp(OpRegistry::CreateOp("mul", {"X", {"rnn/h_pre", "rnn/w",
// for (const auto& item : std::vector<std::string>{"rnn/h@pre"}) {
// "rnn/s_grad"}}, {"Y", {"rnn/h_pre_grad", "rnn/w_grad"}}, {}));
// pre_memories->add_strings(item);
// }
// net->AddOp(OpRegistry::CreateOp("add_two", {"X", {"rnn/h_grad"}},
// // memories
// {"Y", {"rnn/x_grad"}}, {"Out", "rnn/s_grad"}}, {}));
// for (const auto& item : std::vector<std::string>{"rnn/h"}) {
net
->
CompleteAddOp
();
// memories->add_strings(item);
}
// }
// // output alias
void
SegmentInputs
()
{
// for (const auto& item : std::vector<std::string>{"h@alias"}) {
LOG
(
INFO
)
<<
"segment inputs"
;
// outlink_alias->add_strings(item);
std
::
vector
<
std
::
string
>
inlinks
=
{
"x"
};
// }
std
::
vector
<
std
::
string
>
inlinks_alias
=
{
"rnn/x"
};
//
// rnn_op_ = OpRegistry::CreateOp(op_desc);
rnn
::
Link
inlink
;
//
inlink
.
external
=
"x"
;
// LOG(INFO) << "rnn_op finish init";
inlink
.
internal
=
"rnn/x"
;
// }
auto
step_scopes
=
//
scope_
.
FindVar
(
"step_scopes"
)
->
GetMutable
<
std
::
vector
<
Scope
*>>
();
// void CreateStepNet() {
rnn
::
SegmentInputs
(
*
step_scopes
,
std
::
vector
<
rnn
::
Link
>
{
inlink
},
10
,
// LOG(INFO) << "create variable step_net";
true
/*infer_shape_mode*/
);
// Variable* var = scope_.NewVar("step_net");
}
// auto net = var->GetMutable<NetOp>();
// net->AddOp(
void
LinkeMemories
()
{
// OpRegistry::CreateOp("mul", {"rnn/h@pre", "rnn/w"}, {"rnn/s"}, {}));
LOG
(
INFO
)
<<
"link memories"
;
//
rnn
::
MemoryAttr
mem_attr
;
// net->AddOp(
mem_attr
.
pre_var
=
"rnn/h_pre"
;
// OpRegistry::CreateOp("add_two", {"x@alias", "rnn/s"}, {"rnn/h"}, {}));
mem_attr
.
var
=
"rnn/h"
;
// net->CompleteAddOp();
mem_attr
.
boot_var
=
"boot_h"
;
// }
std
::
vector
<
rnn
::
MemoryAttr
>
memories
;
//
memories
.
push_back
(
mem_attr
);
// // father scope
auto
step_scopes
=
// Scope scope_;
scope_
.
FindVar
(
"step_scopes"
)
->
GetMutable
<
std
::
vector
<
Scope
*>>
();
// std::shared_ptr<OperatorBase> rnn_op_;
for
(
int
i
=
1
;
i
<
10
;
++
i
)
{
//};
rnn
::
LinkMemories
(
*
step_scopes
,
memories
,
i
,
-
1
,
//
true
/*infer_shape_mode*/
);
// TEST_F(RecurrentOpTest, Run) {
}
}
Scope
scope_
;
RecurrentGradientAlgorithm
rnn_grad_algo_
;
};
// TEST_F(RecurrentGradientAlgorithmTest, Run) {
// platform::CPUDeviceContext ctx;
// platform::CPUDeviceContext ctx;
// rnn_op_->InferShape(scope_);
// rnn_grad_algo_.Run(scope_, ctx);
// rnn_op_->Run(scope_, ctx);
//}
//
// class RecurrentGradientAlgorithmTest : public ::testing::Test {
// protected:
// virtual void SetUp() override {
// CreateGlobalVariables();
// CreateStepScopes();
// CreateStepNet();
// CreateRNNGradientAlgorithm();
//
// // segment inputs
// SegmentInputs();
// // link forward memories
// LinkeMemories();
// }
//
// virtual void TearDown() override {}
//
// void CreateGlobalVariables() {
// // inputs: x
// LOG(INFO) << "create global variable x";
// Variable* x = scope_.NewVar("x");
// DDim dims =
// make_ddim({10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/});
// x->GetMutable<Tensor>()->mutable_data<float>(dims, platform::CPUPlace());
// // inputs: h_boot
// LOG(INFO) << "create global variable h_boot";
// Variable* h_boot = scope_.NewVar("h_boot");
// h_boot->GetMutable<Tensor>()->mutable_data<float>(
// make_ddim({20 /*batch size*/, 30 /*input dim*/}),
// platform::CPUPlace());
// // inputs: w
// LOG(INFO) << "create global variable w";
// Variable* w = scope_.NewVar("rnn/w");
// w->GetMutable<Tensor>()->mutable_data<float>(make_ddim({30, 30}),
// platform::CPUPlace());
// // inputs: h_grad
// LOG(INFO) << "create variable h_grad";
// Variable* dh = scope_.NewVar("h_grad");
// dh->GetMutable<Tensor>()->mutable_data<float>(make_ddim({10, 20, 30}),
// platform::CPUPlace());
// // inputs: step_scopes
// LOG(INFO) << "create variable step_scopes";
// scope_.NewVar("step_scopes");
// // inputs: step_net
// LOG(INFO) << "create variable step_net";
// scope_.NewVar("step_net");
// // outputs: w_grad
// LOG(INFO) << "create global variable w_grad";
// scope_.NewVar("rnn/w_grad");
// // outputs: x_grad
// LOG(INFO) << "create global variable x_grad";
// scope_.NewVar("x_grad");
// // outputs: h_boot_grad
// LOG(INFO) << "create global variable h_boot_grad";
// scope_.NewVar("h_boot_grad");
// }
//
// void CreateStepScopes() {
// auto step_scopes =
// scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>();
// for (int i = 0; i < 10; ++i) {
// auto& scope = scope_.NewScope();
// auto pre_t = scope.NewVar("rnn/pre_h")->GetMutable<Tensor>();
// pre_t->mutable_data<float>({20, 30}, platform::CPUPlace());
// auto tensor = scope.NewVar("rnn/h")->GetMutable<Tensor>();
// tensor->mutable_data<float>({20, 30}, platform::CPUPlace());
//
// // for unit test of ConcatOutputs
// auto xg = scope.NewVar("rnn/x_grad")->GetMutable<Tensor>();
// xg->mutable_data<float>({20, 30}, platform::CPUPlace());
//
// step_scopes->emplace_back(&scope);
// }
//
// // last time step
// auto g =
// (*step_scopes)[9]->NewVar("rnn/h_pre_grad")->GetMutable<Tensor>();
// g->mutable_data<float>({20, 30}, platform::CPUPlace());
// }
//
// void CreateRNNGradientAlgorithm() {
// std::unique_ptr<rnn::Argument> arg(new rnn::Argument());
// arg->step_net = "step_net";
// arg->step_scopes = "step_scopes";
// rnn::Link inlink;
// inlink.external = "h_grad";
// inlink.internal = "rnn/h_grad";
// arg->inlinks = std::vector<rnn::Link>{inlink};
//
// rnn::Link outlink;
// outlink.external = "x_grad";
// outlink.internal = "rnn/x_grad";
// arg->outlinks = std::vector<rnn::Link>{outlink};
//
// rnn::MemoryAttr mem_attr;
// mem_attr.pre_var = "rnn/h_pre_grad";
// mem_attr.var = "rnn/h_grad";
// mem_attr.boot_var = "h_boot_grad";
// arg->memories = std::vector<rnn::MemoryAttr>{mem_attr};
//
// rnn_grad_algo_.Init(std::move(arg));
// }
//
// void CreateStepNet() {
// LOG(INFO) << "create variable step_net";
// Variable* var = scope_.NewVar("step_net");
// auto net = var->GetMutable<NetOp>();
// net->AddOp(OpRegistry::CreateOp("mul", {"rnn/h_pre", "rnn/w",
// "rnn/s_grad"},
// {"rnn/h_pre_grad", "rnn/w_grad"}, {}));
//
// net->AddOp(OpRegistry::CreateOp("add_two", {"rnn/h_grad"},
// {"rnn/x_grad", "rnn/s_grad"}, {}));
// net->CompleteAddOp();
// }
//
// void SegmentInputs() {
// LOG(INFO) << "segment inputs";
// std::vector<std::string> inlinks = {"x"};
// std::vector<std::string> inlinks_alias = {"rnn/x"};
//
// rnn::Link inlink;
// inlink.external = "x";
// inlink.internal = "rnn/x";
// auto step_scopes =
// scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>();
// rnn::SegmentInputs(*step_scopes, std::vector<rnn::Link>{inlink}, 10,
// true /*infer_shape_mode*/);
// }
//
// void LinkeMemories() {
// LOG(INFO) << "link memories";
// rnn::MemoryAttr mem_attr;
// mem_attr.pre_var = "rnn/h_pre";
// mem_attr.var = "rnn/h";
// mem_attr.boot_var = "boot_h";
// std::vector<rnn::MemoryAttr> memories;
// memories.push_back(mem_attr);
// auto step_scopes =
// scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>();
// for (int i = 1; i < 10; ++i) {
// rnn::LinkMemories(*step_scopes, memories, i, -1,
// true /*infer_shape_mode*/);
// }
// }
//
// Scope scope_;
// RecurrentGradientAlgorithm rnn_grad_algo_;
//};
//
//// TEST_F(RecurrentGradientAlgorithmTest, Run) {
//// platform::CPUDeviceContext ctx;
//// rnn_grad_algo_.Run(scope_, ctx);
//// }
//
//} // namespace operators
//} // namespace paddle
//
// TEST(RecurrentOp, LinkMemories) {
// using namespace paddle::framework;
// using namespace paddle::platform;
// using namespace paddle::operators;
//
// // create and init step scopes
// size_t len = 10;
// std::vector<Scope*> step_scopes;
// for (size_t i = 0; i < len; ++i) {
// auto scope = new Scope();
// scope->NewVar("pre_h");
// auto tensor = scope->NewVar("h")->GetMutable<Tensor>();
// float* data = tensor->mutable_data<float>({15, 20}, CPUPlace());
// for (size_t j = 0; j < 15 * 20; ++j) {
// data[j] = rand() * (1. / (double)RAND_MAX);
// }
// step_scopes.push_back(scope);
// }
//
// // create MemoryAttr
// rnn::MemoryAttr mem_attr;
// mem_attr.pre_var = "pre_h";
// mem_attr.var = "h";
// mem_attr.boot_var = "boot_h";
// std::vector<rnn::MemoryAttr> memories;
// memories.push_back(mem_attr);
//
// for (size_t i = 1; i < len; ++i) {
// rnn::LinkMemories(step_scopes, memories, i, -1, false
// /*infer_shape_mode*/);
// }
// }
// // check
// for (size_t i = 0; i < len - 1; ++i) {
}
// namespace operators
// const float* a =
}
// namespace paddle
// step_scopes[i]->FindVar("h")->GetMutable<Tensor>()->data<float>();
// const float* b = step_scopes[i + 1]
TEST
(
RecurrentOp
,
LinkMemories
)
{
// ->FindVar("pre_h")
using
namespace
paddle
::
framework
;
// ->GetMutable<Tensor>()
using
namespace
paddle
::
platform
;
// ->data<float>();
using
namespace
paddle
::
operators
;
// for (size_t j = 0; j < 15 * 20; ++j) {
// ASSERT_FLOAT_EQ(a[j], b[j]);
// create and init step scopes
// }
size_t
len
=
10
;
// }
std
::
vector
<
Scope
*>
step_scopes
;
//
for
(
size_t
i
=
0
;
i
<
len
;
++
i
)
{
// for (int i = len - 2; i >= 0; --i) {
auto
scope
=
new
Scope
();
// rnn::LinkMemories(step_scopes, memories, i, 1, false
scope
->
NewVar
(
"pre_h"
);
// /*infer_shape_mode*/);
auto
tensor
=
scope
->
NewVar
(
"h"
)
->
GetMutable
<
Tensor
>
();
// }
float
*
data
=
tensor
->
mutable_data
<
float
>
({
15
,
20
},
CPUPlace
());
// // check
for
(
size_t
j
=
0
;
j
<
15
*
20
;
++
j
)
{
// for (int i = len - 2; i >= 0; --i) {
data
[
j
]
=
rand
()
*
(
1.
/
(
double
)
RAND_MAX
);
// const float* a =
}
// step_scopes[i]->FindVar("pre_h")->GetMutable<Tensor>()->data<float>();
step_scopes
.
push_back
(
scope
);
// const float* b =
}
// step_scopes[i + 1]->FindVar("h")->GetMutable<Tensor>()->data<float>();
// for (size_t j = 0; j < 15 * 20; ++j) {
// create MemoryAttr
// ASSERT_FLOAT_EQ(a[j], b[j]);
rnn
::
MemoryAttr
mem_attr
;
// }
mem_attr
.
pre_var
=
"pre_h"
;
// }
mem_attr
.
var
=
"h"
;
//
mem_attr
.
boot_var
=
"boot_h"
;
// for (auto s : step_scopes) {
std
::
vector
<
rnn
::
MemoryAttr
>
memories
;
// delete s;
memories
.
push_back
(
mem_attr
);
// }
//}
for
(
size_t
i
=
1
;
i
<
len
;
++
i
)
{
//
rnn
::
LinkMemories
(
step_scopes
,
memories
,
i
,
-
1
,
false
// USE_OP(add_two);
/*infer_shape_mode*/
);
// USE_OP(mul);
}
// USE_OP_WITHOUT_KERNEL(recurrent_op);
// check
for
(
size_t
i
=
0
;
i
<
len
-
1
;
++
i
)
{
const
float
*
a
=
step_scopes
[
i
]
->
FindVar
(
"h"
)
->
GetMutable
<
Tensor
>
()
->
data
<
float
>
();
const
float
*
b
=
step_scopes
[
i
+
1
]
->
FindVar
(
"pre_h"
)
->
GetMutable
<
Tensor
>
()
->
data
<
float
>
();
for
(
size_t
j
=
0
;
j
<
15
*
20
;
++
j
)
{
ASSERT_FLOAT_EQ
(
a
[
j
],
b
[
j
]);
}
}
for
(
int
i
=
len
-
2
;
i
>=
0
;
--
i
)
{
rnn
::
LinkMemories
(
step_scopes
,
memories
,
i
,
1
,
false
/*infer_shape_mode*/
);
}
// check
for
(
int
i
=
len
-
2
;
i
>=
0
;
--
i
)
{
const
float
*
a
=
step_scopes
[
i
]
->
FindVar
(
"pre_h"
)
->
GetMutable
<
Tensor
>
()
->
data
<
float
>
();
const
float
*
b
=
step_scopes
[
i
+
1
]
->
FindVar
(
"h"
)
->
GetMutable
<
Tensor
>
()
->
data
<
float
>
();
for
(
size_t
j
=
0
;
j
<
15
*
20
;
++
j
)
{
ASSERT_FLOAT_EQ
(
a
[
j
],
b
[
j
]);
}
}
for
(
auto
s
:
step_scopes
)
{
delete
s
;
}
}
USE_OP
(
add_two
);
USE_OP
(
mul
);
USE_OP_WITHOUT_KERNEL
(
recurrent_op
);
python/paddle/v2/framework/tests/test_operator.py
浏览文件 @
7202f425
...
@@ -74,6 +74,7 @@ class TestOpDescCreationMethod(unittest.TestCase):
...
@@ -74,6 +74,7 @@ class TestOpDescCreationMethod(unittest.TestCase):
expected1
.
inputs
.
extend
([
'x'
,
'w'
,
'b'
])
expected1
.
inputs
.
extend
([
'x'
,
'w'
,
'b'
])
expected1
.
outputs
.
extend
([
'y'
])
expected1
.
outputs
.
extend
([
'y'
])
expected1
.
type
=
'fc'
expected1
.
type
=
'fc'
# the input_format can be removed after testing
attr
=
expected1
.
attrs
.
add
()
attr
=
expected1
.
attrs
.
add
()
attr
.
name
=
'input_format'
attr
.
name
=
'input_format'
attr
.
type
=
attribute_pb2
.
INTS
attr
.
type
=
attribute_pb2
.
INTS
...
@@ -86,6 +87,7 @@ class TestOpDescCreationMethod(unittest.TestCase):
...
@@ -86,6 +87,7 @@ class TestOpDescCreationMethod(unittest.TestCase):
expected2
.
inputs
.
extend
([
'x1'
,
'x2'
,
'x3'
,
'w1'
,
'w2'
,
'w3'
,
'b'
])
expected2
.
inputs
.
extend
([
'x1'
,
'x2'
,
'x3'
,
'w1'
,
'w2'
,
'w3'
,
'b'
])
expected2
.
outputs
.
extend
([
'y'
])
expected2
.
outputs
.
extend
([
'y'
])
expected2
.
type
=
'fc'
expected2
.
type
=
'fc'
# the input_format can be removed after testing
attr
=
expected2
.
attrs
.
add
()
attr
=
expected2
.
attrs
.
add
()
attr
.
name
=
'input_format'
attr
.
name
=
'input_format'
attr
.
type
=
attribute_pb2
.
INTS
attr
.
type
=
attribute_pb2
.
INTS
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录