From 71dff503ce6934fd78508879545debdbf8776c51 Mon Sep 17 00:00:00 2001 From: zchen0211 Date: Tue, 3 Oct 2017 15:28:44 -0700 Subject: [PATCH] API of GAN --- doc/design/gan_api.md | 134 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 134 insertions(+) create mode 100644 doc/design/gan_api.md diff --git a/doc/design/gan_api.md b/doc/design/gan_api.md new file mode 100644 index 0000000000..65ca49410a --- /dev/null +++ b/doc/design/gan_api.md @@ -0,0 +1,134 @@ +''' +GAN implementation, just a demo. +''' +# pd for short, should be more concise. +from paddle.v2 as pd +import numpy as np +import logging + +X = pd.data(pd.float_vector(784)) + +# Conditional-GAN should be a class. +### Class member function: the initializer. +class DCGAN(object): + def __init__(self, y_dim=None): + + # hyper parameters + self.y_dim = y_dim # conditional gan or not + self.batch_size = 100 + self.z_dim = z_dim # input noise dimension + + # define parameters of discriminators + self.D_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer()) + self.D_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a numpy data + self.D_W2 = pd.Varialble(np.random.rand(128, 1)) + self.D_b2 = pd.Variable(np.zeros(128)) + self.theta_D = [D_W1, D_b1, D_W2, D_b2] + + # define parameters of generators + self.G_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer()) + self.G_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a numpy data + self.G_W2 = pd.Varialble(np.random.rand(128, 1)) + self.G_b2 = pd.Variable(np.zeros(128)) + self.theta_G = [D_W1, D_b1, D_W2, D_b2] + + self.build_model() + +### Class member function: Generator Net +def generator(self, z, y = None): + + # Generator Net + if not self.y_dim: + z = pd.concat(1, [z, y]) + + G_h0 = pd.fc(z, self.G_w0, self.G_b0) + G_h0_bn = pd.batch_norm(G_h0) + G_h0_relu = pd.relu(G_h0_bn) + + G_h1 = pd.fc(G_h0_relu, self.G_w1, self.G_b1) + G_h1_bn = pd.batch_norm(G_h1) + G_h1_relu = pd.relu(G_h1_bn) + + G_h2 = pd.deconv(G_h1_relu, self.G_W2, self.G_b2)) + G_im = pd.tanh(G_im) + return G_im + +### Class member function: Discriminator Net +def discriminator(self, image): + + # Discriminator Net + D_h0 = pd.conv2d(image, self.D_w0, self.D_b0) + D_h0_bn = pd.batchnorm(h0) + D_h0_relu = pd.lrelu(h0_bn) + + D_h1 = pd.conv2d(D_h0_relu, self.D_w1, self.D_b1) + D_h1_bn = pd.batchnorm(D_h1) + D_h1_relu = pd.lrelu(D_h1_bn) + + D_h2 = pd.fc(D_h1_relu, self.D_w2, self.D_b2) + return D_h2 + +### Class member function: Build the model +def build_model(self): + + # input data + if self.y_dim: + self.y = pd.data(pd.float32, [self.batch_size, self.y_dim]) + self.images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size]) + self.faked_images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size]) + self.z = pd.data(tf.float32, [None, self.z_size]) + + # if conditional GAN + if self.y_dim: + self.G = self.generator(self.z, self.y) + self.D_t = self.discriminator(self.images) + # generated fake images + self.sampled = self.sampler(self.z, self.y) + self.D_f = self.discriminator(self.images) + else: # original version of GAN + self.G = self.generator(self.z) + self.D_t = self.discriminator(self.images) + # generate fake images + self.sampled = self.sampler(self.z) + self.D_f = self.discriminator(self.images) + + self.d_loss_real = pd.reduce_mean(pd.cross_entropy(self.D_t, np.ones(self.batch_size)) + self.d_loss_fake = pd.reduce_mean(pd.cross_entropy(self.D_f, np.zeros(self.batch_size)) + self.d_loss = self.d_loss_real + self.d_loss_fake + + self.g_loss = pd.reduce_mean(pd.cross_entropy(self.D_f, np.ones(self.batch_szie)) + +# Main function for the demo: +if __name__ == "__main__": + + # dcgan + dcgan = DCGAN() + dcgan.build_model() + + # load mnist data + data_X, data_y = self.load_mnist() + + # Two subgraphs required!!! + d_optim = pd.train.Adam(lr = .001, beta= .1).minimize(self.d_loss) + g_optim = pd.train.Adam(lr = .001, beta= .1).minimize(self.g_loss) + + # executor + sess = pd.executor() + + # training + for epoch in xrange(10000): + for batch_id in range(N / batch_size): + idx = ... + # sample a batch + batch_im, batch_label = data_X[idx:idx+batch_size], data_y[idx:idx+batch_size] + # sample z + batch_z = np.random.uniform(-1., 1., [batch_size, z_dim]) + + if batch_id % 2 == 0: + sess.run(d_optim, + feed_dict = {dcgan.images: batch_im, + dcgan.y: batch_label, + dcgan.z: batch_z}) + else: + sess.run(g_optim, + feed_dict = {dcgan.z: batch_z}) -- GitLab