From 6f4b968f5618adce529d12bd2e3b72d4d1b64f61 Mon Sep 17 00:00:00 2001 From: qiaolongfei Date: Wed, 23 Aug 2017 00:58:02 -0700 Subject: [PATCH] can train the parameters --- python/paddle/v2/framework/tests/mnist.py | 39 +++++++++++++++++------ 1 file changed, 29 insertions(+), 10 deletions(-) diff --git a/python/paddle/v2/framework/tests/mnist.py b/python/paddle/v2/framework/tests/mnist.py index 32349b8d4d..ededf767bc 100644 --- a/python/paddle/v2/framework/tests/mnist.py +++ b/python/paddle/v2/framework/tests/mnist.py @@ -69,7 +69,7 @@ def init_param(param_name, dims): tensor = var.get_tensor() tensor.set_dims(dims) data = numpy.random.uniform( - low=0.0, high=1.0, size=tensor.shape()).astype("float32") + low=-0.5, high=0.5, size=tensor.shape()).astype("float32") tensor.set(data, place) @@ -109,7 +109,7 @@ def fc_layer(net, input, size, act="softmax", bias=True, param=None, name=None): bias_name = name + ".b" init_param(param_name=bias_name, dims=[size]) sgd_optimizer( - net=optimize_net, param_name=bias_name, learning_rate=0.01) + net=optimize_net, param_name=bias_name, learning_rate=0.001) bias_out = name + ".rowwise_add.out" scope.new_var(bias_out) rowwise_append_op = Operator( @@ -158,20 +158,33 @@ def print_inputs_outputs(op): def set_cost(): - cost_data = numpy.array(scope.find_var("cross_entropy_1").get_tensor()) + cost_shape = numpy.array(scope.find_var("cross_entropy_3").get_tensor( + )).shape + cost_grad = scope.find_var(grad_var_name("cross_entropy_3")).get_tensor() + cost_grad.set_dims(cost_shape) + cost_grad.alloc_float(place) + cost_grad.set(numpy.ones(cost_shape).astype("float32"), place) + + +def print_cost(): + cost_data = numpy.array(scope.find_var("cross_entropy_3").get_tensor()) print(cost_data.sum() / len(cost_data)) - cost_grad = scope.find_var(grad_var_name("cross_entropy_1")).get_tensor() - cost_grad.set_dims(cost_data.shape) - cost_grad.alloc_float(place) - cost_grad.set(numpy.ones(cost_data.shape).astype("float32"), place) +def error_rate(predict, label): + predict_var = numpy.array(scope.find_var(predict).get_tensor()).argmax( + axis=1) + label = numpy.array(scope.find_var(label).get_tensor()) + error_num = numpy.sum(predict_var != label) + print(error_num / float(len(label))) images = data_layer(name='pixel', dims=[BATCH_SIZE, 784]) label = data_layer(name='label', dims=[BATCH_SIZE]) -fc = fc_layer(net=forward_network, input=images, size=10, act="softmax") -cost = cross_entropy_layer(net=forward_network, input=fc, label=label) +fc1 = fc_layer(net=forward_network, input=images, size=100, act="sigmoid") +fc2 = fc_layer(net=forward_network, input=fc1, size=100, act="sigmoid") +predict = fc_layer(net=forward_network, input=fc2, size=100, act="softmax") +cost = cross_entropy_layer(net=forward_network, input=predict, label=label) forward_network.complete_add_op(True) backward_net = get_backward_net(forward_network) @@ -192,8 +205,8 @@ reader = paddle.batch( PASS_NUM = 1000 for pass_id in range(PASS_NUM): + batch_id = 0 - print("pass[" + str(pass_id) + "]") for data in reader(): image = numpy.array(map(lambda x: x[0], data)).astype("float32") label = numpy.array(map(lambda x: x[1], data)).astype("int32") @@ -207,3 +220,9 @@ for pass_id in range(PASS_NUM): backward_net.run(scope, dev_ctx) optimize_net.run(scope, dev_ctx) + if batch_id % 100 == 0: + print("pass[" + str(pass_id) + "] batch_id[" + str(batch_id) + "]") + print_cost() + error_rate(predict, "label") + + batch_id = batch_id + 1 -- GitLab