diff --git a/paddle/operators/math/im2col.cc b/paddle/operators/math/im2col.cc new file mode 100644 index 0000000000000000000000000000000000000000..dafb21b335f734362ab98f97fafe2fc0778cf0d0 --- /dev/null +++ b/paddle/operators/math/im2col.cc @@ -0,0 +1,215 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "Im2Col.h" + +namespace paddle { + +/* + * imShape = [inputChannels, inputHeight, inputWidth] + * colShape = + * [inputChannels, filterHeight, filterWidth, outputHeight, outputWidth] + */ +template +class Im2ColFunctor { + public: + void operator()(const T* imData, const TensorShape& imShape, T* colData, + const TensorShape& colShape, int strideHeight, + int strideWidth, int paddingHeight, int paddingWidth) { + int inputChannels = imShape[0]; + int inputHeight = imShape[1]; + int inputWidth = imShape[2]; + int filterHeight = colShape[1]; + int filterWidth = colShape[2]; + int outputHeight = colShape[3]; + int outputWidth = colShape[4]; + int channelsCol = inputChannels * filterHeight * filterWidth; + + for (int c = 0; c < channelsCol; ++c) { + int wOffset = c % filterWidth; + int hOffset = (c / filterWidth) % filterHeight; + int c_im = c / filterWidth / filterHeight; + for (int h = 0; h < outputHeight; ++h) { + for (int w = 0; w < outputWidth; ++w) { + int imRowIdx = h * strideHeight + hOffset; + int imColIdx = w * strideWidth + wOffset; + if ((imRowIdx - paddingHeight) < 0 || + (imRowIdx - paddingHeight) >= inputHeight || + (imColIdx - paddingWidth) < 0 || + (imColIdx - paddingWidth) >= inputWidth) { + colData[(c * outputHeight + h) * outputWidth + w] = T(0); + } else { + imRowIdx += c_im * inputHeight - paddingHeight; + imColIdx -= paddingWidth; + colData[(c * outputHeight + h) * outputWidth + w] = + imData[imRowIdx * inputWidth + imColIdx]; + } + } + } + } + } +}; + +/* + * imShape = [inputChannels, inputHeight, inputWidth] + * colShape = + * [inputChannels, filterHeight, filterWidth, outputHeight, outputWidth] + */ +template +class Col2ImFunctor { + public: + void operator()(T* imData, const TensorShape& imShape, const T* colData, + const TensorShape& colShape, int strideHeight, + int strideWidth, int paddingHeight, int paddingWidth) { + int inputChannels = imShape[0]; + int inputHeight = imShape[1]; + int inputWidth = imShape[2]; + int filterHeight = colShape[1]; + int filterWidth = colShape[2]; + int outputHeight = colShape[3]; + int outputWidth = colShape[4]; + int channelsCol = inputChannels * filterHeight * filterWidth; + + for (int c = 0; c < channelsCol; ++c) { + int wOffset = c % filterWidth; + int hOffset = (c / filterWidth) % filterHeight; + int c_im = c / filterWidth / filterHeight; + for (int h = 0; h < outputHeight; ++h) { + for (int w = 0; w < outputWidth; ++w) { + int imRowIdx = h * strideHeight + hOffset; + int imColIdx = w * strideWidth + wOffset; + if ((imRowIdx - paddingHeight) >= 0 && + (imRowIdx - paddingHeight) < inputHeight && + (imColIdx - paddingWidth) >= 0 && + (imColIdx - paddingWidth) < inputWidth) { + imRowIdx += c_im * inputHeight - paddingHeight; + imColIdx -= paddingWidth; + imData[imRowIdx * inputWidth + imColIdx] += + colData[(c * outputHeight + h) * outputWidth + w]; + } + } + } + } + } +}; + +template class Im2ColFunctor; +template class Im2ColFunctor; +template class Col2ImFunctor; +template class Col2ImFunctor; + +/* + * imShape = [inputChannels, inputHeight, inputWidth] + * colShape = + * [outputHeight, outputWidth, inputChannels, filterHeight, filterWidth] + */ +template +class Im2ColFunctor { + public: + void operator()(const T* imData, const TensorShape& imShape, T* colData, + const TensorShape& colShape, int strideHeight, + int strideWidth, int paddingHeight, int paddingWidth) { + int inputChannels = imShape[0]; + int inputHeight = imShape[1]; + int inputWidth = imShape[2]; + int filterHeight = colShape[3]; + int filterWidth = colShape[4]; + int outputHeight = colShape[0]; + int outputWidth = colShape[1]; + for (int outputH = 0; outputH < outputHeight; ++outputH) { + for (int outputW = 0; outputW < outputWidth; ++outputW) { + for (int channel = 0; channel < inputChannels; ++channel) { + for (int filterH = 0; filterH < filterHeight; ++filterH) { + for (int filterW = 0; filterW < filterWidth; ++filterW) { + int imRowOffset = + outputH * strideHeight + filterH - paddingHeight; + int imColOffset = outputW * strideWidth + filterW - paddingWidth; + int colDataOffset = + (((outputH * outputWidth + outputW) * inputChannels + + channel) * + filterHeight + + filterH) * + filterWidth + + filterW; + if (imRowOffset < 0 || imRowOffset >= inputHeight || + imColOffset < 0 || imColOffset >= inputWidth) { + colData[colDataOffset] = float(0); + } else { + int imDataOffset = + (channel * inputHeight + imRowOffset) * inputWidth + + imColOffset; + colData[colDataOffset] = imData[imDataOffset]; + } + } + } + } + } + } + } +}; + +/* + * imShape = [inputChannels, inputHeight, inputWidth] + * colShape = + * [outputHeight, outputWidth, inputChannels, filterHeight, filterWidth] + */ +template +class Col2ImFunctor { + public: + void operator()(T* imData, const TensorShape& imShape, const T* colData, + const TensorShape& colShape, int strideHeight, + int strideWidth, int paddingHeight, int paddingWidth) { + int inputChannels = imShape[0]; + int inputHeight = imShape[1]; + int inputWidth = imShape[2]; + int filterHeight = colShape[3]; + int filterWidth = colShape[4]; + int outputHeight = colShape[0]; + int outputWidth = colShape[1]; + for (int outputH = 0; outputH < outputHeight; ++outputH) { + for (int outputW = 0; outputW < outputWidth; ++outputW) { + for (int channel = 0; channel < inputChannels; ++channel) { + for (int filterH = 0; filterH < filterHeight; ++filterH) { + for (int filterW = 0; filterW < filterWidth; ++filterW) { + int imRowOffset = + outputH * strideHeight + filterH - paddingHeight; + int imColOffset = outputW * strideWidth + filterW - paddingWidth; + int colDataOffset = + (((outputH * outputWidth + outputW) * inputChannels + + channel) * + filterHeight + + filterH) * + filterWidth + + filterW; + if (imRowOffset >= 0 && imRowOffset < inputHeight && + imColOffset >= 0 && imColOffset < inputWidth) { + int imDataOffset = + (channel * inputHeight + imRowOffset) * inputWidth + + imColOffset; + imData[imDataOffset] += colData[colDataOffset]; + } + } + } + } + } + } + } +}; + +template class Im2ColFunctor; +template class Im2ColFunctor; +template class Col2ImFunctor; +template class Col2ImFunctor; + +} // namespace paddle diff --git a/paddle/operators/math/im2col.cu b/paddle/operators/math/im2col.cu new file mode 100644 index 0000000000000000000000000000000000000000..60bcdf8acc6933c4aa40be9d3a35fece8c5bea6b --- /dev/null +++ b/paddle/operators/math/im2col.cu @@ -0,0 +1,334 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "Im2Col.h" +#include "hl_device_functions.cuh" + +namespace paddle { + +template +__global__ void im2col(const T* data_im, int numOuts, int height, int width, + int blockH, int blockW, int strideH, int strideW, + int paddingH, int paddingW, int height_col, + int width_col, T* data_col) { + int index = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x; + if (index < numOuts) { + int w_out = index % width_col; + index /= width_col; + int h_out = index % height_col; + int channel_in = index / height_col; + int channel_out = channel_in * blockH * blockW; + int h_in = h_out * strideH; + int w_in = w_out * strideW; + + data_col += (channel_out * height_col + h_out) * width_col + w_out; + for (int i = 0; i < blockH; ++i) { + for (int j = 0; j < blockW; ++j) { + int rIdx = int(h_in + i); + int cIdx = int(w_in + j); + if ((rIdx - (int)paddingH) >= (int)height || + (rIdx - (int)paddingH) < 0 || + (cIdx - (int)paddingW) >= (int)width || + (cIdx - (int)paddingW) < 0) { + *data_col = 0; + } else { + rIdx = rIdx + channel_in * height - paddingH; + cIdx = cIdx - paddingW; + *data_col = data_im[rIdx * width + cIdx]; + } + data_col += height_col * width_col; + } + } + } +} + +/* + * imShape = [inputChannels, inputHeight, inputWidth] + * colShape = + * [inputChannels, filterHeight, filterWidth, outputHeight, outputWidth] + */ +template +class Im2ColFunctor { + public: + void operator()(const T* imData, const TensorShape& imShape, T* colData, + const TensorShape& colShape, int strideHeight, + int strideWidth, int paddingHeight, int paddingWidth) { + int inputChannels = imShape[0]; + int inputHeight = imShape[1]; + int inputWidth = imShape[2]; + int filterHeight = colShape[1]; + int filterWidth = colShape[2]; + int outputHeight = colShape[3]; + int outputWidth = colShape[4]; + + int numKernels = inputChannels * outputHeight * outputWidth; + int blocks = (numKernels + 1024 - 1) / 1024; + int blockX = 512; + int blockY = (blocks + 512 - 1) / 512; + dim3 threads(1024, 1); + dim3 grid(blockX, blockY); + im2col<<>>( + imData, numKernels, inputHeight, inputWidth, filterHeight, filterWidth, + strideHeight, strideWidth, paddingHeight, paddingWidth, outputHeight, + outputWidth, colData); + CHECK_SYNC("Im2ColFunctor GPU failed"); + } +}; + +template +__global__ void col2im(size_t n, const T* data_col, size_t height, size_t width, + size_t channels, size_t blockH, size_t blockW, + size_t strideH, size_t strideW, size_t paddingH, + size_t paddingW, size_t height_col, size_t width_col, + T* data_im) { + size_t index = + (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x; + if (index < n) { + T val = 0; + int w = int(index % width); + int h = int((index / width) % height); + int c = int(index / (width * height)); + if ((w - (int)paddingW) >= 0 && + (w - (int)paddingW) < (width - 2 * paddingW) && + (h - (int)paddingH) >= 0 && (h - paddingH) < (height - 2 * paddingH)) { + // compute the start and end of the output + int w_col_start = + (w < (int)blockW) ? 0 : (w - int(blockW)) / (int)strideW + 1; + int w_col_end = min((int)(w / (int)strideW + 1), (int)(width_col)); + int h_col_start = + (h < (int)blockH) ? 0 : (h - (int)blockH) / (int)strideH + 1; + int h_col_end = min(int(h / strideH + 1), int(height_col)); + for (int h_col = h_col_start; h_col < h_col_end; ++h_col) { + for (int w_col = w_col_start; w_col < w_col_end; ++w_col) { + // the col location: [c * width * height + h_out, w_out] + int c_col = int(c * blockH * blockW) + + (h - h_col * (int)strideH) * (int)blockW + + (w - w_col * (int)strideW); + val += data_col[(c_col * height_col + h_col) * width_col + w_col]; + } + } + h -= paddingH; + w -= paddingW; + data_im[c * ((width - 2 * paddingW) * (height - 2 * paddingH)) + + h * (width - 2 * paddingW) + w] += val; + } + } +} + +/* + * imShape = [inputChannels, inputHeight, inputWidth] + * colShape = + * [inputChannels, filterHeight, filterWidth, outputHeight, outputWidth] + */ +template +class Col2ImFunctor { + public: + void operator()(T* imData, const TensorShape& imShape, const T* colData, + const TensorShape& colShape, int strideHeight, + int strideWidth, int paddingHeight, int paddingWidth) { + int inputChannels = imShape[0]; + int inputHeight = imShape[1]; + int inputWidth = imShape[2]; + int filterHeight = colShape[1]; + int filterWidth = colShape[2]; + int outputHeight = colShape[3]; + int outputWidth = colShape[4]; + + size_t numKernels = inputChannels * (inputHeight + 2 * paddingHeight) * + (inputWidth + 2 * paddingWidth); + + size_t blocks = (numKernels + 1024 - 1) / 1024; + size_t blockX = 512; + size_t blockY = (blocks + 512 - 1) / 512; + dim3 threads(1024, 1); + dim3 grid(blockX, blockY); + + // To avoid involving atomic operations, we will launch one kernel per + // bottom dimension, and then in the kernel add up the top dimensions. + col2im<<>>( + numKernels, colData, inputHeight + 2 * paddingHeight, + inputWidth + 2 * paddingWidth, inputChannels, filterHeight, filterWidth, + strideHeight, strideWidth, paddingHeight, paddingWidth, outputHeight, + outputWidth, imData); + CHECK_SYNC("Col2ImFunctor GPU failed"); + } +}; + +template class Im2ColFunctor; +template class Im2ColFunctor; +template class Col2ImFunctor; +template class Col2ImFunctor; + +template +__global__ void im2colOCF(const T* imData, T* colData, int inputChannels, + int inputHeight, int inputWidth, int filterHeight, + int filterWidth, int strideHeight, int strideWidth, + int paddingHeight, int paddingWidth, int outputHeight, + int outputWidth) { + int swId = blockIdx.x; + int shId = blockIdx.y; + for (int channelId = threadIdx.z; channelId < inputChannels; + channelId += blockDim.z) { + for (int idy = threadIdx.y; idy < filterHeight; idy += blockDim.y) { + for (int idx = threadIdx.x; idx < filterWidth; idx += blockDim.x) { + int widthOffset = idx + swId * strideWidth - paddingWidth; + int heightOffset = idy + shId * strideHeight - paddingHeight; + int imOffset = widthOffset + heightOffset * inputWidth + + channelId * inputHeight * inputWidth; + + int colOffset = idx + idy * filterWidth + + channelId * filterHeight * filterWidth + + (shId * outputWidth + swId) * + (inputChannels * filterHeight * filterWidth); + + if (heightOffset >= inputHeight || heightOffset < 0 || + widthOffset >= inputWidth || widthOffset < 0) { + colData[colOffset] = T(0); + } else { + colData[colOffset] = imData[imOffset]; + } + } + } + } +} + +/* + * imShape = [inputChannels, inputHeight, inputWidth] + * colShape = + * [outputHeight, outputWidth, inputChannels, filterHeight, filterWidth] + */ +template +class Im2ColFunctor { + public: + void operator()(const T* imData, const TensorShape& imShape, T* colData, + const TensorShape& colShape, int strideHeight, + int strideWidth, int paddingHeight, int paddingWidth) { + int inputChannels = imShape[0]; + int inputHeight = imShape[1]; + int inputWidth = imShape[2]; + int filterHeight = colShape[3]; + int filterWidth = colShape[4]; + int outputHeight = colShape[0]; + int outputWidth = colShape[1]; + + int blockDimX = 0; + int blockDimY = 0; + if (filterHeight <= 4 && filterWidth <= 4) { + blockDimX = 4; + blockDimY = 4; + } else if (filterHeight <= 8 && filterWidth <= 8) { + blockDimX = 8; + blockDimY = 8; + } else if (filterHeight <= 16 && filterWidth <= 16) { + blockDimX = 16; + blockDimY = 16; + } else { + blockDimX = 32; + blockDimY = 32; + } + + int blockDimZ = 1024 / blockDimX / blockDimY; + dim3 threads(blockDimX, blockDimY, std::min(blockDimZ, inputChannels)); + dim3 grid(outputWidth, outputHeight); + im2colOCF<<>>( + imData, colData, inputChannels, inputHeight, inputWidth, filterHeight, + filterWidth, strideHeight, strideWidth, paddingHeight, paddingWidth, + outputHeight, outputWidth); + CHECK_SYNC("Im2ColFunctor GPU failed"); + } +}; + +template +__global__ void col2imOCF(T* imData, const T* colData, int inputChannels, + int inputHeight, int inputWidth, int filterHeight, + int filterWidth, int strideHeight, int strideWidth, + int paddingHeight, int paddingWidth, int outputHeight, + int outputWidth) { + int swId = blockIdx.x; + int shId = blockIdx.y; + for (int channelId = threadIdx.z; channelId < inputChannels; + channelId += blockDim.z) { + for (int idy = threadIdx.y; idy < filterHeight; idy += blockDim.y) { + for (int idx = threadIdx.x; idx < filterWidth; idx += blockDim.x) { + int widthOffset = idx + swId * strideWidth - paddingWidth; + int heightOffset = idy + shId * strideHeight - paddingHeight; + int imOffset = widthOffset + heightOffset * inputWidth + + channelId * inputHeight * inputWidth; + + int colOffset = idx + idy * filterWidth + + channelId * filterHeight * filterWidth + + (shId * outputWidth + swId) * + (inputChannels * filterHeight * filterWidth); + + if (heightOffset >= 0 && heightOffset < inputHeight && + widthOffset >= 0 && widthOffset < inputWidth) { + paddle::paddleAtomicAdd(imData + imOffset, colData[colOffset]); + } + } + } + } +} + +/* + * imShape = [inputChannels, inputHeight, inputWidth] + * colShape = + * [outputHeight, outputWidth, inputChannels, filterHeight, filterWidth] + */ +template +class Col2ImFunctor { + public: + void operator()(T* imData, const TensorShape& imShape, const T* colData, + const TensorShape& colShape, int strideHeight, + int strideWidth, int paddingHeight, int paddingWidth) { + int inputChannels = imShape[0]; + int inputHeight = imShape[1]; + int inputWidth = imShape[2]; + int filterHeight = colShape[3]; + int filterWidth = colShape[4]; + int outputHeight = colShape[0]; + int outputWidth = colShape[1]; + + int blockDimX = 0; + int blockDimY = 0; + if (filterHeight <= 4 && filterWidth <= 4) { + blockDimX = 4; + blockDimY = 4; + } else if (filterHeight <= 8 && filterWidth <= 8) { + blockDimX = 8; + blockDimY = 8; + } else if (filterHeight <= 16 && filterWidth <= 16) { + blockDimX = 16; + blockDimY = 16; + } else { + blockDimX = 32; + blockDimY = 32; + } + + int blockDimZ = 1024 / blockDimX / blockDimY; + dim3 threads(blockDimX, blockDimY, std::min(blockDimZ, inputChannels)); + dim3 grid(outputWidth, outputHeight); + col2imOCF<<>>( + imData, colData, inputChannels, inputHeight, inputWidth, filterHeight, + filterWidth, strideHeight, strideWidth, paddingHeight, paddingWidth, + outputHeight, outputWidth); + CHECK_SYNC("Col2ImFunctor GPU failed"); + } +}; + +template class Im2ColFunctor; +template class Im2ColFunctor; +template class Col2ImFunctor; +template class Col2ImFunctor; + +} // namespace paddle diff --git a/paddle/operators/math/im2col.h b/paddle/operators/math/im2col.h new file mode 100644 index 0000000000000000000000000000000000000000..4568ca2fd11d91696cea26c22e4cabd022b9e9fc --- /dev/null +++ b/paddle/operators/math/im2col.h @@ -0,0 +1,86 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "TensorShape.h" +#include "TensorType.h" + +namespace paddle { + +/* The storage format of the coldata in the Im2ColFunctor and Col2ImFunctor. */ +enum ColFormat { kCFO = 0, kOCF = 1 }; + +/* + * \brief Converts the image data of three dimensions(CHW) into a colData of + * five dimensions in the Im2ColFunctor calculation, + * And in the Col2ImFunctor calculation, it is reversed. + * + * \param imData Image data. + * \param imShape The shape of imData, + * [inputChannels, inputHeight, inputWidth]. + * \param colData Column data. + * \param colShape The shape of colData. + * + * If the template argument Format is kCFO, the shape of colData is: + * [inputChannels, filterHeight, filterWidth, outputHeight, outputWidth] + * So, it is easy to reshape into a convolution matrix for convolution + * calculation based on matrix multiplication. + * The shape of convolution matrix is [height, width], where the height is equal + * inputChannels * filterHeight * filterWidth, and the width is equal + * outputHeight * outputWidth. + * + * Reshape: + * shape of colData shape of convolution matrix + * [inputChannels, + * filterHeight, + * filterWidth, ======> [height, width] + * outputHeight, + * outputWidth] + * + * If the template argument Format is kOCF, the shape of colData is: + * [outputHeight, outputWidth, inputChannels, filterHeight, filterWidth] + * So, it is easy to reshape into a sequence matrix for rnn calculation. + * The shape of sequence matrix is [seqLength, stepSize], where the seqLength + * is equal outputHeight * outputWidth, and the stepSize is equal + * inputChannels * filterHeight * filterWidth. + * + * Reshape: + * shape of colData shape of sequence matrix + * [outputHeight, + * outputWidth, + * inputChannels, ======> [seqLength, stepSize] + * filterHeight, + * filterWidth] + * + * \note The caller needs to ensure that imShape.inputChannels is equal to + * colShape.inputChannels. + */ +template +class Im2ColFunctor { + public: + void operator()(const T* imData, const TensorShape& imShape, T* colData, + const TensorShape& colShape, int strideHeight, + int strideWidth, int paddingHeight, int paddingWidth); +}; + +template +class Col2ImFunctor { + public: + void operator()(T* imData, const TensorShape& imShape, const T* colData, + const TensorShape& colShape, int strideHeight, + int strideWidth, int paddingHeight, int paddingWidth); +}; + +} // namespace paddle