diff --git a/doc/fluid/design/dist_train/distributed_architecture.md b/doc/fluid/design/dist_train/distributed_architecture.md
index b32b00ec25269bc909b0206ffa622b5d63711155..a405cb6aaf80b9d2e8a1a9c774ca85cc7e62bbab 100644
--- a/doc/fluid/design/dist_train/distributed_architecture.md
+++ b/doc/fluid/design/dist_train/distributed_architecture.md
@@ -155,7 +155,7 @@ Cluster environment.
`RemoteExecutor.run` sends the `ProgramDesc` and
-[TrainingJob](https://github.com/PaddlePaddle/cloud/blob/develop/doc/autoscale/README.md#training-job-resource)
+[TrainingJob](https://github.com/PaddlePaddle/cloud/blob/unreleased-tpr/doc/autoscale/README.md#training-job-resource)
to a server in the cluster which executes `RemoteExecutor.listen`. This server is responsible
to start the final Kubernetes Jobs to run the different role of `ProgramDesc` from `ConfigMap`.
diff --git a/doc/fluid/dev/api_doc_std_cn.md b/doc/fluid/dev/api_doc_std_cn.md
new file mode 100644
index 0000000000000000000000000000000000000000..5596b2653ae6ed9917f77dad08f926bcb1fb3419
--- /dev/null
+++ b/doc/fluid/dev/api_doc_std_cn.md
@@ -0,0 +1,220 @@
+# API注释撰写标准
+
+- [API注释模块](#API注释模块)
+- [格式及示例](#格式及示例)
+- [完整示例](#完整示例)
+
+
+## API注释模块
+
+API文档须包含以下几个模块(排列顺序为文档撰写顺序):
+
+- Python API Definition
+
+ API的代码定义。
+
+- Function Description
+
+ API的功能描述。描述该API的含义、作用或对输入所做的操作,及参考文献和对应链接(如果有),必要时给出公式,并解释公式中关键变量的含义。
+
+- Args Description
+
+ API参数介绍。按代码定义中的参数顺序逐个介绍,介绍内容包含数据类型、默认值(如果有)、含义等。
+
+- Returns
+
+ API返回值介绍。介绍返回值含义,必要时给出对应的形状。若返回值为包含多个参数的tuple,则按顺序逐个介绍各参数。
+
+- Raises(如果有)
+
+ 可能抛出的异常或错误及可能的产生原因,当可能抛出多种异常或错误时应分条列出。
+
+- Note(如果有)
+
+ 注意事项。当有多条注意事项时,应分条列出。
+
+- Examples
+
+ API的使用示例。
+
+
+## 格式及示例
+
+API文档须使用reStructuredText格式撰写,该格式详情请参考[链接](http://sphinx-doc-zh.readthedocs.io/en/latest/rest.html)。API文档各模块的内容格式及示例如下(以下以fc为例进行说明):
+
+- Python API Definition
+
+ - 格式:
+
+ [Python API Definition]
+
+ - 示例
+
+ ```
+ fc(input,
+ size,
+ num_flatten_dims=1,
+ param_attr=None,
+ bias_attr=None,
+ act=None,
+ name=None,
+ main_program=None,
+ startup_program=None)
+ ```
+
+- Function Description
+
+ - 格式
+
+ 本模块应包含以下内容(排列顺序为文档撰写顺序):
+
+ [Function Description]
+
+ [Formula]
+
+ [Symbols' Descriptions if necessary]
+
+ [References if necessary]
+
+ - 示例
+
+ [Function Description]
+
+ ```
+ **Fully Connected Layer**
+
+ The fully connected layer can take multiple tensors as its inputs. It
+ creates a variable called weights for each input tensor, which represents
+ a fully connected weight matrix from each input unit to each output unit.
+ The fully connected layer multiplies each input tensor with its coresponding
+ weight to produce an output Tensor. If multiple input tensors are given,
+ the results of multiple multiplications will be sumed up. If bias_attr is
+ not None, a bias variable will be created and added to the output. Finally,
+ if activation is not None, it will be applied to the output as well.
+ ```
+
+ [Formula]
+
+ ```
+ This process can be formulated as follows:
+
+ .. math::
+
+ Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
+ ```
+
+ [Symbols' Descriptions if necessary]
+
+ ```
+ In the above equation:
+
+ * :math:`N`: Number of the input.
+ * :math:`X_i`: The input tensor.
+ * :math:`W`: The weights created by this layer.
+ * :math:`b`: The bias parameter created by this layer (if needed).
+ * :math:`Act`: The activation function.
+ * :math:`Out`: The output tensor.
+ ```
+
+ [References if necessary]
+
+ 因fc没有必要列出的参考文献,故该内容省略。其他情况下需明确给出对应的参考文献和对应连接,以 layer_norm 为例:
+
+ ```
+ Refer to `Layer Normalization `_ for more details.
+ ```
+
+
+- Args Description
+
+ - 格式
+
+ \[Arg's Name\][(Data Type, Default Value)][Description]
+
+ - 示例
+
+ fc的部分参数注释如下:
+
+ ```
+ Args:
+ input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
+ the input tensor(s) is at least 2.
+ param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
+ parameters/weights of this layer.
+ name (str, default None): The name of this layer.
+ ```
+
+- Returns
+
+ - 格式
+
+ [Name][Shape]
+
+ - 示例
+
+ ```
+ Returns:
+ A tensor variable storing the transformation result.
+ ```
+
+ 当返回值为包含多个参数的tuple时,应按顺序逐个介绍各参数,以dynamic_lstm为例:
+
+ ```
+ Returns:
+ A tuple containing:
+ The hidden state of LSTM whose shape is (T X D).
+ The cell state of LSTM whose shape is (T X D).
+ ```
+
+- Raises
+
+ - 格式
+
+ [Exception Type][Condition]
+
+ - 示例
+
+ ```
+ Raises:
+ ValueError: If the rank of the input is less than 2.
+ ```
+
+- Note
+
+ - 格式
+
+ [Note]
+
+ - 示例
+
+ fc没有注意事项,故该模块省略不写。如有注意事项应明确给出,当有多条注意事项,须分条列出,以scaled\_dot\_product\_attention为例:
+
+ ```
+ Note:
+ 1. When num_heads > 1, three linear projections are learned respectively
+ to map input queries, keys and values into queries', keys' and values'.
+ queries', keys' and values' have the same shapes with queries, keys
+ and values.
+ 2. When num_heads == 1, scaled_dot_product_attention has no learnable
+ parameters.
+ ```
+
+- Examples
+
+ - 格式
+
+ \[Python Code Snipper]
+
+ - 示例
+
+ ```
+ Examples:
+ .. code-block:: python
+
+ data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
+ fc = fluid.layers.fc(input=data, size=1000, act="tanh")
+ ```
+
+## 完整示例
+
+fc 的完整注释见[示例](src/fc.py)。
diff --git a/doc/fluid/dev/src/fc.py b/doc/fluid/dev/src/fc.py
new file mode 100644
index 0000000000000000000000000000000000000000..3b074821cc2276a29b2a8639e82199fcf4d72020
--- /dev/null
+++ b/doc/fluid/dev/src/fc.py
@@ -0,0 +1,81 @@
+# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+def fc(input,
+ size,
+ num_flatten_dims=1,
+ param_attr=None,
+ bias_attr=None,
+ act=None,
+ name=None):
+ """
+ **Fully Connected Layer**
+
+ The fully connected layer can take multiple tensors as its inputs. It
+ creates a variable called weights for each input tensor, which represents
+ a fully connected weight matrix from each input unit to each output unit.
+ The fully connected layer multiplies each input tensor with its coresponding
+ weight to produce an output Tensor. If multiple input tensors are given,
+ the results of multiple multiplications will be sumed up. If bias_attr is
+ not None, a bias variable will be created and added to the output. Finally,
+ if activation is not None, it will be applied to the output as well.
+
+ This process can be formulated as follows:
+
+ .. math::
+
+ Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
+
+ In the above equation:
+
+ * :math:`N`: Number of the input.
+ * :math:`X_i`: The input tensor.
+ * :math:`W`: The weights created by this layer.
+ * :math:`b`: The bias parameter created by this layer (if needed).
+ * :math:`Act`: The activation function.
+ * :math:`Out`: The output tensor.
+
+ Args:
+ input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
+ the input tensor(s) is at least 2.
+ size(int): The number of output units in this layer.
+ num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
+ two dimensions. If this happens, the multidimensional tensor will first be flattened
+ into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
+ tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
+ dimensions will be flatten to form the first dimension of the final matrix (height of
+ the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
+ form the second dimension of the final matrix (width of the matrix). For example, suppose
+ `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
+ Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
+ param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
+ parameters/weights of this layer.
+ bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
+ of this layer. If it is set to None, no bias will be added to the output units.
+ act (str, default None): Activation to be applied to the output of this layer.
+ name (str, default None): The name of this layer.
+
+ Returns:
+ A tensor variable storing the transformation result.
+
+ Raises:
+ ValueError: If rank of the input tensor is less than 2.
+
+ Examples:
+ .. code-block:: python
+
+ data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
+ fc = fluid.layers.fc(input=data, size=1000, act="tanh")
+ """
diff --git a/paddle/fluid/framework/operator.cc b/paddle/fluid/framework/operator.cc
index 371c2fad97b1efd06eea9ac631122f194e65d656..1dddfcdd2e10ad91dc80aefaaf54bab04f15240b 100644
--- a/paddle/fluid/framework/operator.cc
+++ b/paddle/fluid/framework/operator.cc
@@ -445,15 +445,7 @@ class RuntimeInferShapeContext : public InferShapeContext {
}
std::vector GetRepeatedDims(const std::string& name) const override {
- Variable* var = scope_.FindVar(name);
- if (var->IsType()) {
- return var->Get().shapes();
- } else {
- PADDLE_THROW(
- "Only ReaderHolder support 'GetRepeatedDims', but Variable %s's "
- "type_id is %s.",
- name, var->Type().name());
- }
+ PADDLE_THROW("Only compile time support this method");
}
void SetDim(const std::string& name, const DDim& dim) override {
@@ -470,15 +462,7 @@ class RuntimeInferShapeContext : public InferShapeContext {
void SetRepeatedDims(const std::string& name,
const std::vector& dims) override {
- Variable* var = scope_.FindVar(name);
- if (var->IsType()) {
- var->GetMutable()->set_shapes(dims);
- } else {
- PADDLE_THROW(
- "Only ReaderHolder support 'SetRepeatedDims', but Variable %s's "
- "type_id is %s.",
- name, var->Type().name());
- }
+ PADDLE_THROW("Only compile time support this method");
}
proto::VarType::Type GetVarType(const std::string& name) const override {
diff --git a/paddle/fluid/framework/reader.cc b/paddle/fluid/framework/reader.cc
index 91879d6d45868bb37ca44baafb8b0e8677cd6d1a..fa00c08e0d5791ee1187aed38b4d140564b7c97d 100644
--- a/paddle/fluid/framework/reader.cc
+++ b/paddle/fluid/framework/reader.cc
@@ -16,14 +16,22 @@
namespace paddle {
namespace framework {
+ReaderBase::~ReaderBase() {}
-DDim ReaderBase::shape(size_t idx) const {
- PADDLE_ENFORCE_LT(
- idx, shapes_.size(),
- "Cannot get the %d'th shape, 'shapes_' only has %d elements.", idx,
- shapes_.size());
- return shapes_[idx];
-}
+FileReader::FileReader(const std::vector &dims) : dims_(dims) {}
+
+void FileReader::ReadNext(std::vector *out) {
+ ReadNextImpl(out);
+ PADDLE_ENFORCE_EQ(out->size(), dims_.size());
+ for (size_t i = 0; i < dims_.size(); ++i) {
+ auto &actual = out->at(i).dims();
+ auto &expect = dims_[i];
+ PADDLE_ENFORCE_EQ(actual.size(), expect.size());
+ for (int j = 0; j < actual.size(); ++j) {
+ PADDLE_ENFORCE(actual[i] == expect[i] || expect[i] == -1);
+ }
+ }
+}
} // namespace framework
} // namespace paddle
diff --git a/paddle/fluid/framework/reader.h b/paddle/fluid/framework/reader.h
index 0e857aeb61d1b6a1d2462d3e5f7ef2cd6136e163..3573b99becf6d657c680c5fec0bda4bdde5dd7a2 100644
--- a/paddle/fluid/framework/reader.h
+++ b/paddle/fluid/framework/reader.h
@@ -16,51 +16,29 @@
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
+#include "paddle/fluid/platform/place.h"
+
+#include
+#include
+#include
namespace paddle {
namespace framework {
class ReaderBase {
public:
- explicit ReaderBase(const std::vector& shapes) : shapes_(shapes) {
- PADDLE_ENFORCE(!shapes_.empty());
- }
virtual void ReadNext(std::vector* out) = 0;
virtual void ReInit() = 0;
- DDim shape(size_t idx) const;
- std::vector shapes() const { return shapes_; }
- void set_shapes(const std::vector& shapes) { shapes_ = shapes; }
-
virtual bool HasNext() const = 0;
- virtual ~ReaderBase() {}
-
- protected:
- std::vector shapes_;
-};
-
-class FileReader : public ReaderBase {
- public:
- explicit FileReader(const std::vector& shapes) : shapes_(shapes) {}
-
- void ReadNext(std::vector* out) override final {
- ReadNextImpl(out);
- CheckShapes(out);
- }
-
- virtual void ReadNextImpl(std::vector* out) = 0;
-
- protected:
- CheckShape(const std::vector* out);
-
- std::vector shapes_;
+ virtual ~ReaderBase();
};
class DecoratedReader : public ReaderBase {
public:
- explicit DecoratedReader(ReaderBase* reader) : reader_(reader) {
+ explicit DecoratedReader(ReaderBase* reader) : ReaderBase(), reader_(reader) {
PADDLE_ENFORCE_NOT_NULL(reader_);
}
@@ -72,6 +50,19 @@ class DecoratedReader : public ReaderBase {
ReaderBase* reader_;
};
+class FileReader : public ReaderBase {
+ public:
+ explicit FileReader(const std::vector& dims);
+
+ void ReadNext(std::vector* out) override;
+
+ protected:
+ virtual void ReadNextImpl(std::vector* out) = 0;
+
+ private:
+ std::vector dims_;
+};
+
// The ReaderHolder is used as reader' unified wrapper,
// making it easier to access different type reader in Variables.
class ReaderHolder {
@@ -89,19 +80,6 @@ class ReaderHolder {
reader_->ReInit();
}
- DDim shape(size_t idx) const {
- PADDLE_ENFORCE_NOT_NULL(reader_);
- return reader_->shape(idx);
- }
- std::vector shapes() const {
- PADDLE_ENFORCE_NOT_NULL(reader_);
- return reader_->shapes();
- }
- void set_shapes(const std::vector& shapes) {
- PADDLE_ENFORCE_NOT_NULL(reader_);
- reader_->set_shapes(shapes);
- }
-
bool HasNext() const { return reader_->HasNext(); }
private:
diff --git a/paddle/fluid/operators/detail/grpc_client.cc b/paddle/fluid/operators/detail/grpc_client.cc
index 7266f3276477891d3c7b6827316a428ef7a31c6e..ddeeebec58e02f1686fd2e3d3e5ac1a4c4fd3c59 100644
--- a/paddle/fluid/operators/detail/grpc_client.cc
+++ b/paddle/fluid/operators/detail/grpc_client.cc
@@ -97,7 +97,7 @@ bool RPCClient::AsyncGetVariable(const std::string& ep,
return true;
}
-bool RPCClient::AsyncSendBatchBarrier(const std::string& ep, int64_t time_out) {
+void RPCClient::AsyncSendBatchBarrier(const std::string& ep, int64_t time_out) {
const auto ch = GetChannel(ep);
BatchBarrierProcessor* s = new BatchBarrierProcessor(ch);
@@ -108,8 +108,18 @@ bool RPCClient::AsyncSendBatchBarrier(const std::string& ep, int64_t time_out) {
auto rpc = s->stub_->AsyncSendVariable(s->context_.get(), req, &cq_);
rpc->Finish(&s->reply_, &s->status_, (void*)s);
req_count_++;
+}
- return true;
+void RPCClient::AsyncSendFetchBarrier(const std::string& ep, int64_t time_out) {
+ const auto ch = GetChannel(ep);
+ FetchBarrierProcessor* s = new FetchBarrierProcessor(ch);
+ s->Prepare(time_out);
+
+ sendrecv::VariableMessage req;
+ req.set_varname(FETCH_BARRIER_MESSAGE);
+ auto rpc = s->stub_->AsyncGetVariable(s->context_.get(), req, &cq_);
+ rpc->Finish(&s->reply_, &s->status_, (void*)s);
+ req_count_++;
}
bool RPCClient::Wait() {
@@ -154,7 +164,7 @@ bool RPCClient::Proceed() {
PADDLE_ENFORCE(tag);
// TODO(gongwb): add more retries.
- ClientBase* c = static_cast(tag);
+ BaseProcessor* c = static_cast(tag);
if (!c->status_.ok()) {
LOG(ERROR) << "proc param error:" << c->var_h_.String()
<< " grpc error:" << c->status_.error_message();
@@ -174,6 +184,8 @@ std::shared_ptr RPCClient::GetChannel(const std::string& ep) {
}
grpc::ChannelArguments args;
+ args.SetInt("grpc.testing.fixed_reconnect_backoff_ms", 5000);
+ args.SetCompressionAlgorithm(GRPC_COMPRESS_NONE);
args.SetMaxSendMessageSize(std::numeric_limits::max());
args.SetMaxReceiveMessageSize(std::numeric_limits::max());
diff --git a/paddle/fluid/operators/detail/grpc_client.h b/paddle/fluid/operators/detail/grpc_client.h
index 669838810de240358857300c1014aa622c17f808..f520367dd981288416631fdad15241fb5d811d07 100644
--- a/paddle/fluid/operators/detail/grpc_client.h
+++ b/paddle/fluid/operators/detail/grpc_client.h
@@ -52,14 +52,14 @@ struct VarHandle {
void ProcGetResponse(const VarHandle& var_h,
const sendrecv::VariableMessage& msg);
-class ClientBase {
+class BaseProcessor {
public:
- explicit ClientBase(std::shared_ptr ch) {
+ explicit BaseProcessor(std::shared_ptr ch) {
stub_ = sendrecv::SendRecvService::NewStub(ch);
context_ = NULL;
}
- virtual ~ClientBase() {}
+ virtual ~BaseProcessor() {}
virtual void Prepare(const VarHandle& var_info, int64_t time_out) {
context_.reset(new grpc::ClientContext());
@@ -91,9 +91,10 @@ class ClientBase {
typedef std::function
RequestSendCallBack;
-class SendProcessor : public ClientBase {
+class SendProcessor : public BaseProcessor {
public:
- explicit SendProcessor(std::shared_ptr ch) : ClientBase(ch) {}
+ explicit SendProcessor(std::shared_ptr ch)
+ : BaseProcessor(ch) {}
virtual ~SendProcessor() {}
@@ -110,9 +111,10 @@ class SendProcessor : public ClientBase {
typedef std::function
RequestGetCallBack;
-class GetProcessor : public ClientBase {
+class GetProcessor : public BaseProcessor {
public:
- explicit GetProcessor(std::shared_ptr ch) : ClientBase(ch) {}
+ explicit GetProcessor(std::shared_ptr ch)
+ : BaseProcessor(ch) {}
virtual ~GetProcessor() {}
@@ -126,10 +128,10 @@ class GetProcessor : public ClientBase {
RequestGetCallBack response_call_back_ = ProcGetResponse;
};
-class BatchBarrierProcessor : public ClientBase {
+class BatchBarrierProcessor : public BaseProcessor {
public:
explicit BatchBarrierProcessor(std::shared_ptr ch)
- : ClientBase(ch) {}
+ : BaseProcessor(ch) {}
virtual ~BatchBarrierProcessor() {}
@@ -137,6 +139,17 @@ class BatchBarrierProcessor : public ClientBase {
sendrecv::VoidMessage reply_;
};
+class FetchBarrierProcessor : public BaseProcessor {
+ public:
+ explicit FetchBarrierProcessor(std::shared_ptr ch)
+ : BaseProcessor(ch) {}
+
+ virtual ~FetchBarrierProcessor() {}
+
+ virtual void Process() {}
+ sendrecv::VariableMessage reply_;
+};
+
class RPCClient {
public:
bool AsyncSendVariable(const std::string& ep,
@@ -151,7 +164,10 @@ class RPCClient {
const std::string& var_name,
int64_t time_out = 600 * 1000);
- bool AsyncSendBatchBarrier(const std::string& ep,
+ void AsyncSendBatchBarrier(const std::string& ep,
+ int64_t time_out = 600 * 1000);
+
+ void AsyncSendFetchBarrier(const std::string& ep,
int64_t time_out = 600 * 1000);
bool Wait();
diff --git a/paddle/fluid/operators/detail/grpc_server.cc b/paddle/fluid/operators/detail/grpc_server.cc
index 2a567516614aac39da9d069824f598ed26c5fb0c..8fff430cc4890925e4edba2fadb8eb7fc647d181 100644
--- a/paddle/fluid/operators/detail/grpc_server.cc
+++ b/paddle/fluid/operators/detail/grpc_server.cc
@@ -84,7 +84,7 @@ class RequestGet final : public RequestBase {
explicit RequestGet(sendrecv::SendRecvService::AsyncService* service,
grpc::ServerCompletionQueue* cq, framework::Scope* scope,
const platform::DeviceContext* dev_ctx,
- SimpleBlockQueue* queue)
+ SimpleBlockQueue* queue)
: RequestBase(service, cq),
responder_(&ctx_),
scope_(scope),
@@ -101,11 +101,16 @@ class RequestGet final : public RequestBase {
// proc request.
std::string var_name = request_.varname();
auto* var = scope_->FindVar(var_name);
- SerializeToMessage(var_name, var, *dev_ctx_, &reply_);
+ if (var_name != FETCH_BARRIER_MESSAGE) {
+ SerializeToMessage(var_name, var, *dev_ctx_, &reply_);
+ }
// TODO(gongwb): check var's info.
responder_.Finish(reply_, grpc::Status::OK, this);
status_ = FINISH;
- queue_->Push('c');
+ MessageWithName msg_with_name =
+ // request name reply
+ std::make_pair(var_name, std::move(reply_));
+ queue_->Push(msg_with_name);
}
protected:
@@ -114,12 +119,16 @@ class RequestGet final : public RequestBase {
ServerAsyncResponseWriter responder_;
framework::Scope* scope_;
const platform::DeviceContext* dev_ctx_;
- SimpleBlockQueue* queue_;
+ SimpleBlockQueue* queue_;
};
void AsyncGRPCServer::WaitClientGet(int count) {
- for (int i = 0; i < count; ++i) {
- var_get_queue_.Pop();
+ int fetch_barriers = 0;
+ while (fetch_barriers < count) {
+ auto msg = var_get_queue_.Pop();
+ if (msg.first == FETCH_BARRIER_MESSAGE) {
+ fetch_barriers++;
+ }
}
}
diff --git a/paddle/fluid/operators/detail/grpc_server.h b/paddle/fluid/operators/detail/grpc_server.h
index e9402ff6aafe73684b57442c03ee4c573a902a46..b6666bcf96e484b0b17b935c0efb2930f19b19f2 100644
--- a/paddle/fluid/operators/detail/grpc_server.h
+++ b/paddle/fluid/operators/detail/grpc_server.h
@@ -77,7 +77,7 @@ class AsyncGRPCServer final : public sendrecv::SendRecvService::Service {
const platform::DeviceContext *dev_ctx_;
// received variable from RPC, operators fetch variable from this queue.
SimpleBlockQueue var_recv_queue_;
- SimpleBlockQueue var_get_queue_;
+ SimpleBlockQueue var_get_queue_;
// condition of the sub program
std::mutex barrier_mutex_;
diff --git a/paddle/fluid/operators/detail/sendrecvop_utils.h b/paddle/fluid/operators/detail/sendrecvop_utils.h
index 5208091e54b4da2bb0265f84827ce23b57e954dc..4fa6aefd3e0b1bd45ac52b1eff3b29126d79f03a 100644
--- a/paddle/fluid/operators/detail/sendrecvop_utils.h
+++ b/paddle/fluid/operators/detail/sendrecvop_utils.h
@@ -32,6 +32,7 @@ namespace detail {
#define LISTEN_TERMINATE_MESSAGE "TERMINATE@RECV"
#define BATCH_BARRIER_MESSAGE "BATCH_BARRIER@RECV"
+#define FETCH_BARRIER_MESSAGE "FETCH_BARRIER@RECV"
typedef void (*DestroyCallback)(void*);
diff --git a/paddle/fluid/operators/listen_and_serv_op.cc b/paddle/fluid/operators/listen_and_serv_op.cc
index 8e9923c87ce22ed229f78ef15430e50cab16c947..4253300788462a3704076fc79241a864f2f130a0 100644
--- a/paddle/fluid/operators/listen_and_serv_op.cc
+++ b/paddle/fluid/operators/listen_and_serv_op.cc
@@ -128,8 +128,8 @@ class ListenAndServOp : public framework::OperatorBase {
}
}
if (exit_flag) {
- rpc_service_->ShutDown();
rpc_service_->SetCond(1);
+ rpc_service_->ShutDown();
break;
}
try {
@@ -148,7 +148,7 @@ class ListenAndServOp : public framework::OperatorBase {
}
rpc_service_->SetCond(1);
// FIXME(typhoonzero): use another condition to sync wait clients get.
- rpc_service_->WaitClientGet(ins.size());
+ rpc_service_->WaitClientGet(fan_in);
sparse_vars.clear();
} // while(true)
}
diff --git a/paddle/fluid/operators/nccl_op.cc b/paddle/fluid/operators/nccl_op.cc
index 329656d26da0d32a4e30dd2aeecb9f7aa7f9a84d..5e4ed886b10bd48bf991ce84a9099611cf5d1d26 100644
--- a/paddle/fluid/operators/nccl_op.cc
+++ b/paddle/fluid/operators/nccl_op.cc
@@ -104,19 +104,38 @@ class NCCLAllReduceOp : public framework::OperatorWithKernel {
" Input(Communicator) of AllReduce op input should not be NULL");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
" Output(Out) of AllReduce op output should not be NULL");
-
- auto x_dims = ctx->GetInputsDim("X");
-
std::string reduction = ctx->Attrs().Get("reduction");
PADDLE_ENFORCE((reduction == "ncclSum" || reduction == "ncclProd" ||
reduction == "ncclMin" || reduction == "ncclMax"),
"invalid reduction.");
+ auto x_dims = ctx->GetInputsDim("X");
ctx->SetOutputsDim("Out", x_dims);
ctx->ShareLoD("X", /*->*/ "Out");
}
};
+// AllReduceOp
+class NCCLAllReduceOpMaker : public framework::OpProtoAndCheckerMaker {
+ public:
+ NCCLAllReduceOpMaker(OpProto *proto, OpAttrChecker *op_checker)
+ : OpProtoAndCheckerMaker(proto, op_checker) {
+ AddInput("X", "The input of AllReduce op");
+ AddInput("Communicator", "Communicator for communicating between gpus");
+ AddOutput("Out", "The output of AllReduce op");
+ AddAttr("reduction",
+ "(string, default 'ncclSum') "
+ "{'ncclMin', 'ncclMax', 'ncclProd', 'ncclSum'}.")
+ .SetDefault("ncclSum");
+ AddComment(R"DOC(
+NCCLAllReduce Operator.
+
+AllReduce the input tensors.
+
+)DOC");
+ }
+};
+
// ReduceOp
class NCCLReduceOp : public framework::OperatorWithKernel {
public:
@@ -143,50 +162,6 @@ class NCCLReduceOp : public framework::OperatorWithKernel {
}
};
-// BcastOp
-class NCCLBcastOp : public framework::OperatorWithKernel {
- public:
- using framework::OperatorWithKernel::OperatorWithKernel;
-
- protected:
- void InferShape(framework::InferShapeContext *ctx) const override {
- PADDLE_ENFORCE(ctx->HasInput("X"),
- " Input(X) of Bcast op input should not be NULL");
- PADDLE_ENFORCE(ctx->HasInput("Communicator"),
- " Input(Communicator) of Bcast op input should not be NULL");
- PADDLE_ENFORCE(ctx->HasOutput("Out"),
- " Output(Out) of Bcast op output should not be NULL");
-
- int root = ctx->Attrs().Get("root");
- PADDLE_ENFORCE(root != platform::kInvalidGPUId, "Bcast root must be set.");
-
- auto x_dims = ctx->GetInputsDim("X");
- ctx->SetOutputsDim("Out", x_dims);
- ctx->ShareLoD("X", /*->*/ "Out");
- }
-};
-
-// AllreduceOp
-class NCCLAllReduceOpMaker : public framework::OpProtoAndCheckerMaker {
- public:
- NCCLAllReduceOpMaker(OpProto *proto, OpAttrChecker *op_checker)
- : OpProtoAndCheckerMaker(proto, op_checker) {
- AddInput("X", "The input of AllReduce op");
- AddInput("Communicator", "Communicator for communicating between gpus");
- AddOutput("Out", "The output of AllReduce op");
- AddAttr("reduction",
- "(string, default 'ncclSum') "
- "{'ncclMin', 'ncclMax', 'ncclProd', 'ncclSum'}.")
- .SetDefault("ncclSum");
- AddComment(R"DOC(
-NCCLAllReduce Operator.
-
-AllReduce the input tensors.
-
-)DOC");
- }
-};
-
// ReduceOp
class NCCLReduceOpMaker : public framework::OpProtoAndCheckerMaker {
public:
@@ -213,6 +188,29 @@ Reduce the tensors.
}
};
+// BcastOp
+class NCCLBcastOp : public framework::OperatorWithKernel {
+ public:
+ using framework::OperatorWithKernel::OperatorWithKernel;
+
+ protected:
+ void InferShape(framework::InferShapeContext *ctx) const override {
+ PADDLE_ENFORCE(ctx->HasInput("X"),
+ " Input(X) of Bcast op input should not be NULL");
+ PADDLE_ENFORCE(ctx->HasInput("Communicator"),
+ " Input(Communicator) of Bcast op input should not be NULL");
+ PADDLE_ENFORCE(ctx->HasOutput("Out"),
+ " Output(Out) of Bcast op output should not be NULL");
+
+ int root = ctx->Attrs().Get("root");
+ PADDLE_ENFORCE(root != platform::kInvalidGPUId, "Bcast root must be set.");
+
+ auto x_dims = ctx->GetInputsDim("X");
+ ctx->SetOutputsDim("Out", x_dims);
+ ctx->ShareLoD("X", /*->*/ "Out");
+ }
+};
+
// BcastOp
class NCCLBcastOpMaker : public framework::OpProtoAndCheckerMaker {
public:
diff --git a/paddle/fluid/operators/nccl_op.cu.cc b/paddle/fluid/operators/nccl_op.cu.cc
index 683a520e99fe72875d52393a18463324a8b6c3f2..4d83a70e7334a84bb98bd52f0172f6b7ecedb58d 100644
--- a/paddle/fluid/operators/nccl_op.cu.cc
+++ b/paddle/fluid/operators/nccl_op.cu.cc
@@ -43,13 +43,12 @@ class NCCLAllReduceKernel : public framework::OpKernel {
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"This kernel only runs on GPU device.");
-
- auto ins = ctx.MultiInput("X");
- auto outs = ctx.MultiOutput("Out");
-
+ auto* x = ctx.Input("X");
+ auto* out = ctx.Output("Out");
+ auto* comm = ctx.Input("Communicator");
std::string reduction = ctx.Attr("reduction");
- ncclRedOp_t reduction_op_ = ncclSum;
+ ncclRedOp_t reduction_op_ = ncclSum;
if (reduction == "ncclMin") {
reduction_op_ = ncclMin;
} else if (reduction == "ncclMax") {
@@ -61,30 +60,19 @@ class NCCLAllReduceKernel : public framework::OpKernel {
} else {
PADDLE_THROW("Invalid reduction. default ncclSum.");
}
-
- auto* comm = ctx.Input("Communicator");
-
- auto stream = ctx.cuda_device_context().stream();
-
// device id
int gpu_id = boost::get(ctx.GetPlace()).GetDeviceId();
int idx = comm->GetCommId(gpu_id);
-
- for (size_t i = 0; i < ins.size(); ++i) {
- VLOG(1) << "gpu : "
- << " invoke allreduce. send " << ins[i]->numel() << " recv "
- << outs[i]->numel();
-
- PADDLE_ENFORCE(platform::dynload::ncclAllReduce(
- ins[i]->data(), outs[i]->mutable_data(ctx.GetPlace()),
- outs[i]->numel(), NCCLTypeWrapper::type, reduction_op_,
- comm->comms().at(idx), stream));
- PADDLE_ENFORCE(cudaStreamSynchronize(stream));
-
- VLOG(1) << "gpu : "
- << " finished allreduce. send " << ins[i]->numel() << " recv "
- << outs[i]->numel();
- }
+ VLOG(3) << "gpu : "
+ << " invoke allreduce. send " << x->numel() << " recv "
+ << out->numel();
+ PADDLE_ENFORCE(platform::dynload::ncclAllReduce(
+ x->data(), out->mutable_data(ctx.GetPlace()), out->numel(),
+ NCCLTypeWrapper::type, reduction_op_, comm->comms().at(idx),
+ ctx.cuda_device_context().stream()));
+ VLOG(3) << "gpu : "
+ << " finished allreduce. send " << x->numel() << " recv "
+ << out->numel();
}
};
@@ -94,13 +82,13 @@ class NCCLReduceKernel : public framework::OpKernel {
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"This kernel only runs on GPU device.");
-
- auto ins = ctx.MultiInput("X"); // x0, x1, x2
- auto outs = ctx.MultiOutput("Out");
-
+ auto x = ctx.Input("X"); // x0, x1, x2
+ auto out = ctx.Output("Out");
+ auto* comm = ctx.Input("Communicator");
+ int root = ctx.Attr("root");
std::string reduction = ctx.Attr("reduction");
- ncclRedOp_t reduction_op_ = ncclSum;
+ ncclRedOp_t reduction_op_ = ncclSum;
if (reduction == "ncclMin") {
reduction_op_ = ncclMin;
} else if (reduction == "ncclMax") {
@@ -112,40 +100,21 @@ class NCCLReduceKernel : public framework::OpKernel {
} else {
PADDLE_THROW("Invalid reduction. default ncclSum.");
}
-
- int root = ctx.Attr("root");
- auto* comm = ctx.Input("Communicator");
-
- auto stream = reinterpret_cast(
- ctx.device_context())
- .stream();
// device id
int gpu_id = boost::get(ctx.GetPlace()).GetDeviceId();
int idx = comm->GetCommId(gpu_id);
-
- auto ins_names = ctx.Inputs("X");
- std::hash hasher;
- for (size_t i = 0; i < ins.size(); ++i) {
- if (root == platform::kInvalidGPUId) {
- root = hasher(ins_names[i]) % comm->comms().size();
- }
- T* recvbuffer = nullptr;
- if (root == gpu_id) {
- recvbuffer = outs[i]->mutable_data(ctx.GetPlace());
- }
-
- VLOG(1) << "gpu : " << gpu_id << " invoke reduce. send "
- << ins[i]->numel() << " recv " << outs[i]->numel();
-
- PADDLE_ENFORCE(platform::dynload::ncclReduce(
- ins[i]->data(), recvbuffer, ins[i]->numel(),
- NCCLTypeWrapper::type, reduction_op_, root, comm->comms().at(idx),
- stream));
- PADDLE_ENFORCE(cudaStreamSynchronize(stream));
-
- VLOG(1) << "gpu : " << gpu_id << " finished reduce. send "
- << ins[i]->numel() << " recv " << outs[i]->numel();
+ T* recvbuffer = nullptr;
+ if (root == gpu_id) {
+ recvbuffer = out->mutable_data(ctx.GetPlace());
}
+ VLOG(3) << "gpu : " << gpu_id << " invoke reduce. send " << x->numel()
+ << " recv " << out->numel();
+ PADDLE_ENFORCE(platform::dynload::ncclReduce(
+ x->data(), recvbuffer, x->numel(), NCCLTypeWrapper::type,
+ reduction_op_, root, comm->comms().at(idx),
+ ctx.cuda_device_context().stream()));
+ VLOG(3) << "gpu : " << gpu_id << " finished reduce. send " << x->numel()
+ << " recv " << out->numel();
}
};
@@ -155,47 +124,27 @@ class NCCLBcastKernel : public framework::OpKernel {
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"This kernel only runs on GPU device.");
-
int root = ctx.Attr("root");
-
auto* comm = ctx.Input("Communicator");
-
- auto stream = reinterpret_cast(
- ctx.device_context())
- .stream();
// device id
int gpu_id = boost::get(ctx.GetPlace()).GetDeviceId();
int idx = comm->GetCommId(gpu_id);
-
if (idx == root) {
- auto ins = ctx.MultiInput("X");
- for (size_t i = 0; i < ins.size(); ++i) {
- VLOG(1) << "gpu : " << gpu_id << " invoke Bcast. send "
- << ins[i]->numel();
-
- VLOG(1) << " before ncclBcast";
- PADDLE_ENFORCE(platform::dynload::ncclBcast(
- (void*)ins[i]->data(), ins[i]->numel(), NCCLTypeWrapper::type,
- root, comm->comms().at(idx), stream));
- VLOG(1) << " after ncclBcast";
- PADDLE_ENFORCE(cudaStreamSynchronize(stream));
-
- VLOG(1) << "gpu : " << gpu_id << " finished Bcast.";
- }
+ auto* x = ctx.Input("X");
+ VLOG(3) << "gpu : " << gpu_id << " invoke Bcast. send " << x->numel();
+ PADDLE_ENFORCE(platform::dynload::ncclBcast(
+ (void*)x->data(), x->numel(), NCCLTypeWrapper::type, root,
+ comm->comms().at(idx), ctx.cuda_device_context().stream()));
+ VLOG(3) << "gpu : " << gpu_id << " finished Bcast.";
} else {
- auto outs = ctx.MultiOutput("Out");
- for (size_t i = 0; i < outs.size(); ++i) {
- VLOG(1) << "gpu : " << gpu_id << " invoke Bcast. recv buffer "
- << framework::product(outs[i]->dims());
-
- PADDLE_ENFORCE(platform::dynload::ncclBcast(
- outs[i]->mutable_data(ctx.GetPlace()), outs[i]->numel(),
- NCCLTypeWrapper::type, root, comm->comms().at(idx), stream));
- PADDLE_ENFORCE(cudaStreamSynchronize(stream));
-
- VLOG(1) << "gpu : " << gpu_id << " finished Bcast. recv "
- << outs[i]->numel();
- }
+ auto* out = ctx.Output("Out");
+ VLOG(3) << "gpu : " << gpu_id << " invoke Bcast. recv buffer "
+ << framework::product(out->dims());
+ PADDLE_ENFORCE(platform::dynload::ncclBcast(
+ out->mutable_data(ctx.GetPlace()), out->numel(),
+ NCCLTypeWrapper::type, root, comm->comms().at(idx),
+ ctx.cuda_device_context().stream()));
+ VLOG(3) << "gpu : " << gpu_id << " finished Bcast. recv " << out->numel();
}
}
};
diff --git a/paddle/fluid/operators/reader/create_double_buffer_reader_op.cc b/paddle/fluid/operators/reader/create_double_buffer_reader_op.cc
index ba08ea12e2486aaba8c57a9fe23592bd1738592d..d0de092947eb04a1b7d06dedea919f6b1094dd06 100644
--- a/paddle/fluid/operators/reader/create_double_buffer_reader_op.cc
+++ b/paddle/fluid/operators/reader/create_double_buffer_reader_op.cc
@@ -24,11 +24,31 @@ static constexpr size_t kDoubleBufferSize = 2;
class DoubleBufferReader : public framework::DecoratedReader {
public:
- explicit DoubleBufferReader(ReaderBase* reader)
- : DecoratedReader(reader),
- buffer_(framework::MakeChannel>(
- kDoubleBufferSize)) {
- std::thread prefetch(&DoubleBufferReader::PrefetchThreadFunc, this);
+ struct Item {
+ Item() : ctx_(nullptr) {}
+
+ std::vector payloads_;
+ platform::DeviceContext* ctx_;
+ };
+
+ explicit DoubleBufferReader(
+ ReaderBase* reader, platform::Place target_place = platform::CPUPlace())
+ : DecoratedReader(reader), place_(target_place) {
+ for (size_t i = 0; i < kDoubleBufferSize; ++i) {
+ if (platform::is_gpu_place(place_)) {
+#ifdef PADDLE_WITH_CUDA
+ ctxs_.emplace_back(new platform::CUDADeviceContext(
+ boost::get(place_)));
+#endif
+ }
+ }
+
+ start_thread();
+ }
+
+ void start_thread() {
+ buffer_ = framework::MakeChannel- (kDoubleBufferSize);
+ std::thread prefetch([this] { PrefetchThreadFunc(); });
prefetch.detach();
}
@@ -42,7 +62,10 @@ class DoubleBufferReader : public framework::DecoratedReader {
private:
void PrefetchThreadFunc();
- framework::Channel>* buffer_;
+ framework::Channel
- * buffer_;
+ platform::Place place_;
+ std::vector> ctxs_;
+ mutable Item local_buffer_;
};
class CreateDoubleBufferReaderOp : public framework::OperatorBase {
@@ -56,7 +79,20 @@ class CreateDoubleBufferReaderOp : public framework::OperatorBase {
->Get();
auto* out = scope.FindVar(Output("Out"))
->template GetMutable();
- out->Reset(new DoubleBufferReader(underlying_reader.Get()));
+
+ auto place_str = Attr("place");
+ platform::Place place;
+ if (place_str == "CPU") {
+ place = platform::CPUPlace();
+ } else {
+ std::istringstream sin(place_str);
+ sin.seekg(std::string("CUDA:").size(), std::ios::beg);
+ size_t num;
+ sin >> num;
+ place = platform::CUDAPlace(static_cast(num));
+ }
+
+ out->Reset(new DoubleBufferReader(underlying_reader.Get(), place));
}
};
@@ -71,44 +107,73 @@ class CreateDoubleBufferReaderOpMaker : public DecoratedReaderMakerBase {
It launches another thread to execute the 'underlying reader' asynchronously,
which prevents reading process from blocking subsequent training.
)DOC");
+ std::unordered_set enum_range;
+ constexpr size_t kMaxCUDADevs = 128;
+ for (size_t i = 0; i < kMaxCUDADevs; ++i) {
+ enum_range.insert(string::Sprintf("CUDA:%d", i));
+ }
+ enum_range.insert("CPU");
+ AddAttr("place", "The double buffer place, default is CPU")
+ .SetDefault("CPU")
+ .InEnum({enum_range});
}
};
void DoubleBufferReader::ReadNext(std::vector* out) {
- out->clear();
- buffer_->Receive(out);
+ if (local_buffer_.payloads_.empty()) {
+ buffer_->Receive(&local_buffer_);
+ }
+
+ *out = local_buffer_.payloads_;
+ local_buffer_.payloads_.clear();
+ if (local_buffer_.ctx_) {
+ local_buffer_.ctx_->Wait();
+ }
}
void DoubleBufferReader::ReInit() {
reader_->ReInit();
buffer_->Close();
- // The existing prefetch thread will terminate for the buffer_ is closed.
- buffer_ = framework::MakeChannel>(
- kDoubleBufferSize);
- std::thread prefetch(&DoubleBufferReader::PrefetchThreadFunc, this);
- prefetch.detach();
+ start_thread();
}
void DoubleBufferReader::PrefetchThreadFunc() {
VLOG(5) << "A new prefetch thread starts.";
- while (true) {
- std::vector batch;
- reader_->ReadNext(&batch);
- if (batch.empty()) {
- // EOF
- buffer_->Close();
- VLOG(5) << "Reached the end of the file. The prefetch thread terminates.";
- break;
+ size_t gpu_ctx_offset = 0;
+ while (reader_->HasNext()) {
+ Item batch;
+ reader_->ReadNext(&batch.payloads_);
+ if (platform::is_gpu_place(place_)) {
+ std::vector gpu_batch;
+ auto& gpu_ctx = this->ctxs_[gpu_ctx_offset++];
+ gpu_ctx_offset %= this->ctxs_.size();
+ gpu_batch.resize(batch.payloads_.size());
+ for (size_t i = 0; i < batch.payloads_.size(); ++i) {
+ framework::TensorCopy(batch.payloads_[i], place_, *gpu_ctx,
+ &gpu_batch[i]);
+ gpu_batch[i].set_lod(batch.payloads_[i].lod());
+ }
+ batch.ctx_ = gpu_ctx.get();
+ std::swap(gpu_batch, batch.payloads_);
}
+
if (!buffer_->Send(&batch)) {
VLOG(5) << "WARNING: The double buffer channel has been closed. The "
"prefetch thread terminates.";
break;
}
}
+ buffer_->Close();
}
-bool DoubleBufferReader::HasNext() const { PADDLE_THROW("Not Implemented"); }
+bool DoubleBufferReader::HasNext() const {
+ if (local_buffer_.payloads_.empty()) {
+ bool ok = buffer_->Receive(&local_buffer_);
+ return ok;
+ } else {
+ return true;
+ }
+}
} // namespace reader
} // namespace operators
diff --git a/paddle/fluid/operators/reader/create_random_data_generator_op.cc b/paddle/fluid/operators/reader/create_random_data_generator_op.cc
index e62f952d0e89561c3eed56112dc9d1d78801b59e..95d8674c08b63e872926ff8708d0c734da33684c 100644
--- a/paddle/fluid/operators/reader/create_random_data_generator_op.cc
+++ b/paddle/fluid/operators/reader/create_random_data_generator_op.cc
@@ -19,11 +19,11 @@ namespace operators {
namespace reader {
template
-class RandomDataGenerator : public framework::FileReader {
+class RandomDataGenerator : public framework::ReaderBase {
public:
RandomDataGenerator(const std::vector& shapes, float min,
float max)
- : FileReader(shapes), min_(min), max_(max) {
+ : framework::ReaderBase(), min_(min), max_(max), shapes_(shapes) {
PADDLE_ENFORCE_LE(
min, max, "'min' shouldn't be greater than 'max'.(%f vs %f)", min, max);
unsigned int seed = std::random_device()();
@@ -59,6 +59,7 @@ class RandomDataGenerator : public framework::FileReader {
float max_;
std::minstd_rand engine_;
std::uniform_real_distribution dist_;
+ std::vector shapes_;
};
template
diff --git a/paddle/fluid/operators/reader/create_recordio_file_reader_op.cc b/paddle/fluid/operators/reader/create_recordio_file_reader_op.cc
index c3eb247bbe2041ae5a673c4fd3c1284c71276f91..c4aa29c7206dbd3fe6a99b2a6c5ac6f083621944 100644
--- a/paddle/fluid/operators/reader/create_recordio_file_reader_op.cc
+++ b/paddle/fluid/operators/reader/create_recordio_file_reader_op.cc
@@ -20,21 +20,22 @@ namespace operators {
namespace reader {
class RecordIOFileReader : public framework::FileReader {
public:
- RecordIOFileReader(const std::string& filename,
- const std::vector& shapes)
- : FileReader(shapes),
+ explicit RecordIOFileReader(const std::string& filename,
+ const std::vector& dims)
+ : FileReader(dims),
scanner_(filename),
dev_ctx_(*platform::DeviceContextPool::Instance().Get(
platform::CPUPlace())) {}
- void ReadNext(std::vector* out) override {
- *out = framework::ReadFromRecordIO(scanner_, dev_ctx_);
- }
-
bool HasNext() const override { return scanner_.HasNext(); }
void ReInit() override { scanner_.Reset(); }
+ protected:
+ void ReadNextImpl(std::vector* out) override {
+ *out = framework::ReadFromRecordIO(scanner_, dev_ctx_);
+ }
+
private:
recordio::Scanner scanner_;
const platform::DeviceContext& dev_ctx_;
@@ -54,12 +55,12 @@ class CreateRecordIOReaderOp : public framework::OperatorBase {
int(shape_concat.size()),
"The accumulate of all ranks should be equal to the "
"shape concat's length.");
- std::vector shapes = RestoreShapes(shape_concat, ranks);
std::string filename = Attr("filename");
auto* out = scope.FindVar(Output("Out"))
->template GetMutable();
- out->Reset(new RecordIOFileReader(filename, shapes));
+ out->Reset(
+ new RecordIOFileReader(filename, RestoreShapes(shape_concat, ranks)));
}
};
@@ -85,3 +86,5 @@ namespace reader = paddle::operators::reader;
REGISTER_FILE_READER_OPERATOR(create_recordio_file_reader,
reader::CreateRecordIOReaderOp,
reader::CreateRecordIOReaderOpMaker);
+
+REGISTER_FILE_READER(recordio, reader::RecordIOFileReader);
diff --git a/paddle/fluid/operators/reader/create_shuffle_reader_op.cc b/paddle/fluid/operators/reader/create_shuffle_reader_op.cc
index 4dac3831109beeed660d32f08fb27c7adf62ac2b..70e2f587dc414a850ddc341b98f26ae54636755c 100644
--- a/paddle/fluid/operators/reader/create_shuffle_reader_op.cc
+++ b/paddle/fluid/operators/reader/create_shuffle_reader_op.cc
@@ -12,6 +12,9 @@
// See the License for the specific language governing permissions and
// limitations under the License.
+#include
+#include "glog/logging.h"
+#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/reader/reader_op_registry.h"
namespace paddle {
@@ -20,43 +23,53 @@ namespace reader {
class ShuffleReader : public framework::DecoratedReader {
public:
- ShuffleReader(ReaderBase* reader, int buffer_size)
- : DecoratedReader(reader), buffer_size_(buffer_size), iteration_pos_(0) {
- buffer_.reserve(buffer_size);
+ ShuffleReader(ReaderBase* reader, size_t buffer_size, size_t seed = 0)
+ : DecoratedReader(reader), buffer_size_(buffer_size), seed_(seed) {
+ VLOG(10) << "Create shuffle reader of " << reader_;
+ if (seed_ == 0) {
+ std::random_device device;
+ seed_ = device();
+ }
+ ReadIntoBuffers();
}
- void ReadNext(std::vector* out) override;
+ void ReadNext(std::vector* out) override {
+ if (iteration_pos_ >= buffer_.size()) {
+ VLOG(10) << "Resetting shuffle buffer";
+ ReadIntoBuffers();
+ }
+ *out = buffer_[iteration_pos_++];
+ }
- private:
- int buffer_size_;
- std::vector> buffer_;
- size_t iteration_pos_;
-};
+ bool HasNext() const override {
+ return iteration_pos_ < buffer_.size() || reader_->HasNext();
+ }
-void ShuffleReader::ReadNext(std::vector* out) {
- if (iteration_pos_ >= buffer_.size()) {
- // Reload buffer with new data
+ private:
+ void ReadIntoBuffers() {
buffer_.clear();
buffer_.reserve(buffer_size_);
- for (int i = 0; i < buffer_size_; ++i) {
- buffer_.push_back(std::vector());
- reader_->ReadNext(&buffer_.back());
- if (buffer_.back().empty()) {
- buffer_.pop_back();
+ iteration_pos_ = 0;
+ PADDLE_ENFORCE(reader_->HasNext());
+ for (size_t i = 0; i < buffer_size_; ++i) {
+ if (!reader_->HasNext()) {
break;
}
+ buffer_.emplace_back();
+ reader_->ReadNext(&buffer_.back());
}
- // TODO(fengjiayi): 'std::random_shuffle' can be very slow. It needs to be
- // optimize.
- std::random_shuffle(buffer_.begin(), buffer_.end());
- iteration_pos_ = 0;
+ std::mt19937 g(seed_);
+ std::shuffle(buffer_.begin(), buffer_.end(), g);
+ seed_ = g(); // update seed_;
+ VLOG(10) << "random buffer size = " << buffer_.size();
}
- out->clear();
- if (!buffer_.empty()) {
- std::swap(*out, buffer_[iteration_pos_++]);
- }
- // if buffer_ is empty, the 'out' will return as an empty vector.
-}
+
+ size_t buffer_size_;
+ std::vector> buffer_;
+
+ size_t iteration_pos_;
+ size_t seed_;
+};
class CreateShuffleReaderOp : public framework::OperatorBase {
public:
@@ -67,10 +80,10 @@ class CreateShuffleReaderOp : public framework::OperatorBase {
const platform::Place& dev_place) const override {
const auto& underlying_reader = scope.FindVar(Input("UnderlyingReader"))
->Get();
- auto* out = scope.FindVar(Output("Out"))
- ->template GetMutable();
- out->Reset(
- new ShuffleReader(underlying_reader.Get(), Attr("buffer_size")));
+ auto& var = detail::Ref(scope.FindVar(Output("Out")));
+ var.GetMutable()->Reset(
+ new ShuffleReader(underlying_reader.Get(),
+ static_cast(Attr("buffer_size"))));
}
};
diff --git a/paddle/fluid/operators/reader/reader_op_registry.cc b/paddle/fluid/operators/reader/reader_op_registry.cc
index 33d4ff4099a509daeaab83032c5d382718904dc7..0ba4f3854431742eb354f8c90eb395f5d7b32b2e 100644
--- a/paddle/fluid/operators/reader/reader_op_registry.cc
+++ b/paddle/fluid/operators/reader/reader_op_registry.cc
@@ -31,6 +31,11 @@ std::vector RestoreShapes(const std::vector& shape_concat,
return res;
}
+std::unordered_map& FileReaderRegistry() {
+ static std::unordered_map regs;
+ return regs;
+}
+
FileReaderMakerBase::FileReaderMakerBase(
framework::OpProtoAndCheckerMaker::OpProto* op_proto,
framework::OpAttrChecker* op_checker)
diff --git a/paddle/fluid/operators/reader/reader_op_registry.h b/paddle/fluid/operators/reader/reader_op_registry.h
index d1f0498f4692247cda72fbcbdd5070ddfaa11553..58f9b4ba35546571fd3b1d0c3ce128f18e248f01 100644
--- a/paddle/fluid/operators/reader/reader_op_registry.h
+++ b/paddle/fluid/operators/reader/reader_op_registry.h
@@ -21,6 +21,20 @@ namespace paddle {
namespace operators {
namespace reader {
+using FileReaderCreator = std::function&)>;
+
+std::unordered_map& FileReaderRegistry();
+
+template
+int RegisterFileReader(const std::string& filetype) {
+ FileReaderRegistry()[filetype] = [](
+ const std::string& fn, const std::vector& dim) {
+ return new Reader(fn, dim);
+ };
+ return 0;
+}
+
extern std::vector RestoreShapes(
const std::vector& shape_concat, const std::vector& ranks);
@@ -73,3 +87,15 @@ class DecoratedReaderMakerBase : public framework::OpProtoAndCheckerMaker {
paddle::operators::reader::DecoratedReaderInferShape, \
paddle::framework::EmptyGradOpMaker, \
paddle::operators::reader::DecoratedReaderInferVarType)
+
+#define REGISTER_FILE_READER(_filetype, _reader) \
+ STATIC_ASSERT_GLOBAL_NAMESPACE( \
+ _reg_file_reader_##_filetype, \
+ "Must use REGISTER_FILE_READER in global namespace"); \
+ int TouchFileReader##_filetype() { return 0; } \
+ int _reg_file_reader_entry_##filetype = \
+ paddle::operators::reader::RegisterFileReader<_reader>(#_filetype)
+
+#define USE_FILE_READER(filetype) \
+ extern int TouchFileReader##filetype(); \
+ static int _use_##filetype = TouchFileReader##filetype()
diff --git a/paddle/fluid/operators/reduce_op.cc b/paddle/fluid/operators/reduce_op.cc
index 69e8f8081e93cb74177eac1a57e0eaf284951e3f..7879367830216cdd875f9f95f95e2a88f282ac64 100644
--- a/paddle/fluid/operators/reduce_op.cc
+++ b/paddle/fluid/operators/reduce_op.cc
@@ -173,6 +173,15 @@ class ReduceMinOpMaker : public ReduceOpMaker {
}
};
+class ReduceProdOpMaker : public ReduceOpMaker {
+ public:
+ ReduceProdOpMaker(OpProto *proto, OpAttrChecker *op_checker)
+ : ReduceOpMaker(proto, op_checker) {
+ SetComment("ReduceProd", "production");
+ AddComment(comment_);
+ }
+};
+
} // namespace operators
} // namespace paddle
@@ -190,6 +199,9 @@ REGISTER_OP(reduce_max, ops::ReduceOp, ops::ReduceMaxOpMaker, reduce_max_grad,
REGISTER_OP(reduce_min, ops::ReduceOp, ops::ReduceMinOpMaker, reduce_min_grad,
ops::ReduceGradOp);
+REGISTER_OP(reduce_prod, ops::ReduceOp, ops::ReduceProdOpMaker,
+ reduce_prod_grad, ops::ReduceGradOp);
+
#define REGISTER_REDUCE_CPU_KERNEL(reduce_type, functor, grad_functor) \
REGISTER_OP_CPU_KERNEL(reduce_type, \
ops::ReduceKernel
+ void operator()(const DeviceContext& place, X& x, Y& y, const Dim& dim) {
+ y.device(place) = x.prod(dim);
+ }
+};
+
+struct ProdGradFunctor {
+ template
+ void operator()(const DeviceContext& place, X& x, Y& y, DX& dx, DY& dy,
+ const Dim& dim, int size) {
+ dx.device(place) = dy.broadcast(dim) * y.broadcast(dim) * x.inverse();
+ }
+};
+
template
class ReduceKernel : public framework::OpKernel {
public:
@@ -254,4 +270,5 @@ class ReduceGradKernel : public framework::OpKernel {
__macro(reduce_sum, SumFunctor, SumGradFunctor); \
__macro(reduce_mean, MeanFunctor, MeanGradFunctor); \
__macro(reduce_max, MaxFunctor, MaxOrMinGradFunctor); \
- __macro(reduce_min, MinFunctor, MaxOrMinGradFunctor);
+ __macro(reduce_min, MinFunctor, MaxOrMinGradFunctor); \
+ __macro(reduce_prod, ProdFunctor, ProdGradFunctor);
diff --git a/paddle/fluid/operators/send_op.cc b/paddle/fluid/operators/send_op.cc
index 8fdd08eae6b22cd57506d6e75182c1a7e2022562..443f40e803ea31c3961ed77842bd0775e0f74f35 100644
--- a/paddle/fluid/operators/send_op.cc
+++ b/paddle/fluid/operators/send_op.cc
@@ -88,6 +88,12 @@ class SendOp : public framework::OperatorBase {
rpc_client->AsyncGetVariable(epmap[i], ctx, scope, outs[i]);
}
PADDLE_ENFORCE(rpc_client->Wait());
+ // tell pservers that current trainer have called fetch
+ for (auto& ep : endpoints) {
+ VLOG(3) << "send fetch barrier, ep: " << ep;
+ rpc_client->AsyncSendFetchBarrier(ep);
+ }
+ PADDLE_ENFORCE(rpc_client->Wait());
}
}
};
diff --git a/python/paddle/fluid/distribute_transpiler.py b/python/paddle/fluid/distribute_transpiler.py
index bb2ce4d45d5da6b2fbd097a94479f3696271e5ec..3d3a6c116eeb39fb7236d0e9707415cdd6b828bd 100644
--- a/python/paddle/fluid/distribute_transpiler.py
+++ b/python/paddle/fluid/distribute_transpiler.py
@@ -250,6 +250,8 @@ class DistributeTranspiler:
def get_trainer_program(self):
# remove optimize ops and add a send op to main_program
self.program.global_block().delete_ops(self.optimize_ops)
+ # FIXME(typhoonzero): serialize once will fix error occurs when clone.
+ self.program.__str__()
return self.program
def get_pserver_program(self, endpoint):
@@ -309,7 +311,8 @@ class DistributeTranspiler:
for _, opt_op in enumerate(opt_op_on_pserver):
if ufind.is_connected(op, opt_op):
if self._is_opt_op(op):
- self._append_pserver_ops(optimize_block, op, endpoint)
+ self._append_pserver_ops(optimize_block, op, endpoint,
+ default_main_program())
else:
self._append_pserver_non_opt_ops(optimize_block, op)
break
@@ -520,7 +523,8 @@ class DistributeTranspiler:
orig_var_name = varname[:suff_idx]
return orig_var_name
- def _append_pserver_ops(self, optimize_block, opt_op, endpoint):
+ def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
+ origin_program):
program = optimize_block.program
pserver_block = program.global_block()
new_inputs = dict()
@@ -576,7 +580,17 @@ class DistributeTranspiler:
elif key == "LearningRate":
# leraning rate variable has already be created by non-optimize op,
# don't create it once again.
- new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
+ lr_varname = opt_op.input(key)[0]
+ if pserver_block.vars.has_key(lr_varname):
+ new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
+ else:
+ origin_var = origin_program.global_block().vars[lr_varname]
+ tmpvar = pserver_block.create_var(
+ name=origin_var.name,
+ persistable=origin_var.persistable,
+ dtype=origin_var.dtype,
+ shape=origin_var.shape)
+ new_inputs[key] = tmpvar
for key in opt_op.input_names:
new_shape = None
diff --git a/python/paddle/fluid/layers/io.py b/python/paddle/fluid/layers/io.py
index f1b2af70205ab40f08c11061a683b567f5bcbb7b..9c91f395e7c9d7ca76c1a5cc310bc3bbc06daec9 100644
--- a/python/paddle/fluid/layers/io.py
+++ b/python/paddle/fluid/layers/io.py
@@ -21,7 +21,7 @@ from ..executor import global_scope
__all__ = [
'data', 'BlockGuardServ', 'ListenAndServ', 'Send', 'open_recordio_file',
- 'read_file'
+ 'read_file', 'create_shuffle_reader', 'create_double_buffer_reader'
]
@@ -245,6 +245,8 @@ def monkey_patch_reader_methods(reader):
reader.eof = eof
reader.reset = reset
+ reader.stop_gradient = True
+ reader.persistable = True
return reader
@@ -285,6 +287,33 @@ def open_recordio_file(filename, shapes, lod_levels, dtypes):
startup_var)
+def __create_decorated_reader__(op_type, reader, attrs):
+ var_name = unique_name(op_type)
+ startup_blk = default_startup_program().current_block()
+ startup_var = startup_blk.create_var(name=var_name)
+ startup_blk.append_op(
+ type=op_type,
+ inputs={'UnderlyingReader': reader},
+ outputs={'Out': [startup_var]},
+ attrs=attrs)
+ startup_var.persistable = True
+ return _copy_reader_var_(default_main_program().current_block(),
+ startup_var)
+
+
+def create_shuffle_reader(reader, buffer_size):
+ return __create_decorated_reader__('create_shuffle_reader', reader,
+ {'buffer_size': int(buffer_size)})
+
+
+def create_double_buffer_reader(reader, place=None):
+ attrs = dict()
+ if place is not None:
+ attrs['place'] = str(place).upper()
+ return __create_decorated_reader__('create_double_buffer_reader', reader,
+ attrs)
+
+
def read_file(file_obj):
helper = LayerHelper('read_file')
out = [
diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py
index 10b0405f47097fa3d83690e519ea878e082f68b9..f107261f3df78dfc7197d9719d0258b6ab09d487 100644
--- a/python/paddle/fluid/layers/nn.py
+++ b/python/paddle/fluid/layers/nn.py
@@ -49,6 +49,7 @@ __all__ = [
'reduce_mean',
'reduce_max',
'reduce_min',
+ 'reduce_prod',
'sequence_first_step',
'sequence_last_step',
'dropout',
@@ -84,13 +85,12 @@ def fc(input,
**Fully Connected Layer**
The fully connected layer can take multiple tensors as its inputs. It
- creates a variable (one for each input tensor) called weights for each
- input tensor, which represents a fully connected weight matrix from
- each input unit to each output unit. The fully connected layer
- multiplies each input tensor with its coresponding weight to produce
- an output Tensor. If multiple input tensors are given, the results of
- multiple multiplications will be sumed up. If bias_attr is not None,
- a biases variable will be created and added to the output. Finally,
+ creates a variable called weights for each input tensor, which represents
+ a fully connected weight matrix from each input unit to each output unit.
+ The fully connected layer multiplies each input tensor with its coresponding
+ weight to produce an output Tensor. If multiple input tensors are given,
+ the results of multiple multiplications will be sumed up. If bias_attr is
+ not None, a bias variable will be created and added to the output. Finally,
if activation is not None, it will be applied to the output as well.
This process can be formulated as follows:
@@ -109,44 +109,27 @@ def fc(input,
* :math:`Out`: The output tensor.
Args:
- input(Variable|list): The input tensor(s) to the fully connected layer.
- size(int): The number of output units in the fully connected layer.
- num_flatten_dims(int): The fc layer can accept an input tensor with more
- than two dimensions. If this happens, the
- multidimensional tensor will first be flattened
- into a 2-dimensional matrix. The parameter
- `num_flatten_dims` determines how the input tensor
- is flattened: the first `num_flatten_dims`
- (inclusive, index starts from 1) dimensions will
- be flatten to form the first dimension of the
- final matrix (height of the matrix), and the rest
- `rank(X) - num_flatten_dims` dimensions are
- flattened to form the second dimension of the
- final matrix (width of the matrix). For example,
- suppose `X` is a 6-dimensional tensor with a shape
- [2, 3, 4, 5, 6], and `num_flatten_dims` = 3. Then,
- the flattened matrix will have a shape
- [2 x 3 x 4, 5 x 6] = [24, 30]. By default,
- `num_flatten_dims` is set to 1.
- param_attr(ParamAttr|list): The parameter attribute for learnable
- parameters/weights of the fully connected
- layer.
- param_initializer(ParamAttr|list): The initializer used for the
- weight/parameter. If set None,
- XavierInitializer() will be used.
- bias_attr(ParamAttr|list): The parameter attribute for the bias parameter
- for this layer. If set None, no bias will be
- added to the output units.
- bias_initializer(ParamAttr|list): The initializer used for the bias.
- If set None, then ConstantInitializer()
- will be used.
- act(str): Activation to be applied to the output of the fully connected
- layer.
- name(str): Name/alias of the fully connected layer.
-
+ input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
+ the input tensor(s) is at least 2.
+ size(int): The number of output units in this layer.
+ num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
+ two dimensions. If this happens, the multidimensional tensor will first be flattened
+ into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
+ tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
+ dimensions will be flatten to form the first dimension of the final matrix (height of
+ the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
+ form the second dimension of the final matrix (width of the matrix). For example, suppose
+ `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
+ Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
+ param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
+ parameters/weights of this layer.
+ bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
+ of this layer. If it is set to None, no bias will be added to the output units.
+ act (str, default None): Activation to be applied to the output of this layer.
+ name (str, default None): The name of this layer.
Returns:
- Variable: The output tensor variable.
+ A tensor variable storing the transformation result.
Raises:
ValueError: If rank of the input tensor is less than 2.
@@ -2202,6 +2185,53 @@ def reduce_min(input, dim=None, keep_dim=False, name=None):
return out
+def reduce_prod(input, dim=None, keep_dim=False, name=None):
+ """
+ Computes the product of tensor elements over the given dimension.
+
+ Args:
+ input (Variable): The input variable which is a Tensor or LoDTensor.
+ dim (int|None): The dimension along which the product is performed. If
+ :attr:`None`, multipy all elements of :attr:`input` and return a
+ Tensor variable with a single element, otherwise must be in the
+ range :math:`[-rank(input), rank(input))`. If :math:`dim < 0`,
+ the dimension to reduce is :math:`rank + dim`.
+ keep_dim (bool|False): Whether to reserve the reduced dimension in the
+ output Tensor. The result tensor will have one fewer dimension
+ than the :attr:`input` unless :attr:`keep_dim` is true.
+ name(str|None): A name for this layer(optional). If set None, the
+ layer will be named automatically.
+
+ Returns:
+ Variable: The reduced Tensor variable.
+
+ Examples:
+ .. code-block:: python
+
+ # x is a Tensor variable with following elements:
+ # [[0.2, 0.3, 0.5, 0.9]
+ # [0.1, 0.2, 0.6, 0.7]]
+ # Each example is followed by the correspending output tensor.
+ fluid.layers.reduce_prod(x) # [0.0002268]
+ fluid.layers.reduce_prod(x, dim=0) # [0.02, 0.06, 0.3, 0.63]
+ fluid.layers.reduce_prod(x, dim=-1) # [0.027, 0.0084]
+ fluid.layers.reduce_prod(x, dim=1,
+ keep_dim=True) # [[0.027], [0.0084]]
+ """
+ helper = LayerHelper('reduce_prod', **locals())
+ out = helper.create_tmp_variable(dtype=helper.input_dtype())
+ helper.append_op(
+ type='reduce_prod',
+ inputs={'X': input},
+ outputs={'Out': out},
+ attrs={
+ 'dim': dim if dim != None else 0,
+ 'keep_dim': keep_dim,
+ 'reduce_all': True if dim == None else False
+ })
+ return out
+
+
def split(input, num_or_sections, dim=-1, name=None):
"""
Split the input tensor into multiple sub-tensors.
diff --git a/python/paddle/fluid/recordio_writer.py b/python/paddle/fluid/recordio_writer.py
index 9735df8c06113230af9695f76a7589ea9f50e527..5accaacd5361165d30b92c71ae4fd62e23e44e07 100644
--- a/python/paddle/fluid/recordio_writer.py
+++ b/python/paddle/fluid/recordio_writer.py
@@ -36,6 +36,7 @@ def convert_reader_to_recordio_file(
feed_order=None):
if feed_order is None:
feed_order = feeder.feed_names
+ counter = 0
with create_recordio_writer(filename, compressor,
max_num_records) as writer:
for batch in reader_creator():
@@ -43,3 +44,5 @@ def convert_reader_to_recordio_file(
for each in feed_order:
writer.append_tensor(res[each])
writer.complete_append_tensor()
+ counter += 1
+ return counter
diff --git a/python/paddle/fluid/regularizer.py b/python/paddle/fluid/regularizer.py
index a29f9a208ebefc75b531030c9f0de9487f2b136c..029db7d2dd4b7def8cea374e3f2ed31226f2bc18 100644
--- a/python/paddle/fluid/regularizer.py
+++ b/python/paddle/fluid/regularizer.py
@@ -13,6 +13,7 @@
# limitations under the License.
import framework
+from . import core
__all__ = [
'append_regularization_ops',
@@ -46,9 +47,9 @@ def append_regularization_ops(parameters_and_grads, regularization=None):
regularization_term = None
if param.regularizer is not None:
# Add variable for regularization term in grad block
- regularization_term = param.regularizer(param, grad.block)
+ regularization_term = param.regularizer(param, grad, grad.block)
elif regularization is not None:
- regularization_term = regularization(param, grad.block)
+ regularization_term = regularization(param, grad, grad.block)
# If no gradient or no regularization specified,
# then we don't need to do anything
@@ -82,7 +83,7 @@ class WeightDecayRegularizer(object):
def __init__(self):
pass
- def __call__(self, param, block):
+ def __call__(self, param, grad, block):
"""Add corresponding weight decay operations to the network
"""
raise NotImplementedError()
@@ -102,7 +103,7 @@ class L2DecayRegularizer(WeightDecayRegularizer):
super(L2DecayRegularizer, self).__init__()
self._regularization_coeff = regularization_coeff
- def __call__(self, param, block):
+ def __call__(self, param, grad, block):
"""Add L2 weight decay ops to network
Adds L2 weight decay ops.
@@ -117,8 +118,23 @@ class L2DecayRegularizer(WeightDecayRegularizer):
"""
assert isinstance(param, framework.Parameter)
assert isinstance(block, framework.Block)
+
decay = block.create_var(
dtype="float32", shape=param.shape, lod_level=param.lod_level)
+
+ if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
+ decay = block.create_var(
+ dtype="float32",
+ shape=param.shape,
+ type=core.VarDesc.VarType.SELECTED_ROWS)
+ block.append_op(
+ type='lookup_table',
+ inputs={'W': param,
+ 'Ids': grad},
+ outputs={'Out': decay},
+ attrs={'is_sparse': True})
+ param = decay
+
# Append Op to calculate decay
block.append_op(
type='scale',
@@ -141,7 +157,7 @@ class L1DecayRegularizer(WeightDecayRegularizer):
super(L1DecayRegularizer, self).__init__()
self._regularization_coeff = regularization_coeff
- def __call__(self, param, block):
+ def __call__(self, param, grad, block):
"""Add L1 weight decay ops to network
Adds L1 weight decay ops.
@@ -158,6 +174,19 @@ class L1DecayRegularizer(WeightDecayRegularizer):
assert isinstance(block, framework.Block)
decay = block.create_var(
dtype="float32", shape=param.shape, lod_level=param.lod_level)
+
+ if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
+ decay = block.create_var(
+ dtype="float32",
+ shape=param.shape,
+ type=core.VarDesc.VarType.SELECTED_ROWS)
+ block.append_op(
+ type='lookup_table',
+ inputs={'W': param,
+ 'Ids': grad},
+ outputs={'Out': decay},
+ attrs={'is_sparse': True})
+
# Append sign op
block.append_op(
type='sign', inputs={"X": param}, outputs={"Out": decay})
diff --git a/python/paddle/fluid/tests/book/test_machine_translation.py b/python/paddle/fluid/tests/book/test_machine_translation.py
index caa9596a100de4f9364467690db1e80ee227c3c1..fa38bd3762423497b82c3b421b3a1db4cd87525b 100644
--- a/python/paddle/fluid/tests/book/test_machine_translation.py
+++ b/python/paddle/fluid/tests/book/test_machine_translation.py
@@ -181,7 +181,10 @@ def train_main(use_cuda, is_sparse, is_local=True):
cost = pd.cross_entropy(input=rnn_out, label=label)
avg_cost = pd.mean(cost)
- optimizer = fluid.optimizer.Adagrad(learning_rate=1e-4)
+ optimizer = fluid.optimizer.Adagrad(
+ learning_rate=1e-4,
+ regularization=fluid.regularizer.L2DecayRegularizer(
+ regularization_coeff=0.1))
optimize_ops, params_grads = optimizer.minimize(avg_cost)
train_data = paddle.batch(
diff --git a/python/paddle/fluid/tests/unittests/test_recordio_reader.py b/python/paddle/fluid/tests/unittests/test_recordio_reader.py
index d249742bd30ec41749f16beaa7076f7c6e8f063c..24a0074d9b9621d902d12eb8cb29d9b65be22ed3 100644
--- a/python/paddle/fluid/tests/unittests/test_recordio_reader.py
+++ b/python/paddle/fluid/tests/unittests/test_recordio_reader.py
@@ -13,9 +13,10 @@
# limitations under the License.
import unittest
+
import paddle.fluid as fluid
-import paddle.v2.dataset.mnist as mnist
import paddle.v2 as paddle
+import paddle.v2.dataset.mnist as mnist
class TestRecordIO(unittest.TestCase):
@@ -31,10 +32,10 @@ class TestRecordIO(unittest.TestCase):
name='label', shape=[1], dtype='int64'),
],
place=fluid.CPUPlace())
- fluid.recordio_writer.convert_reader_to_recordio_file(
+ self.num_batches = fluid.recordio_writer.convert_reader_to_recordio_file(
'./mnist.recordio', reader, feeder)
- def test_main(self):
+ def test_main(self, decorator_callback=None):
# use new program
with fluid.program_guard(fluid.Program(), fluid.Program()):
data_file = fluid.layers.open_recordio_file(
@@ -42,6 +43,8 @@ class TestRecordIO(unittest.TestCase):
shapes=[[-1, 784], [-1, 1]],
lod_levels=[0, 0],
dtypes=['float32', 'int64'])
+ if decorator_callback is not None:
+ data_file = decorator_callback(data_file)
img, label = fluid.layers.read_file(data_file)
hidden = fluid.layers.fc(input=img, size=100, act='tanh')
@@ -51,14 +54,28 @@ class TestRecordIO(unittest.TestCase):
fluid.optimizer.Adam(learning_rate=1e-3).minimize(avg_loss)
- exe = fluid.Executor(fluid.CPUPlace())
+ if fluid.core.is_compiled_with_cuda():
+ place = fluid.CUDAPlace(0)
+ else:
+ place = fluid.CPUPlace()
+
+ exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
avg_loss_np = []
# train a pass
+ batch_id = 0
while not data_file.eof():
tmp, = exe.run(fetch_list=[avg_loss])
avg_loss_np.append(tmp)
+ batch_id += 1
data_file.reset()
-
+ self.assertEqual(batch_id, self.num_batches)
self.assertLess(avg_loss_np[-1], avg_loss_np[0])
+
+ def test_shuffle_reader(self):
+ self.test_main(decorator_callback=lambda reader: fluid.layers.create_shuffle_reader(reader, buffer_size=200))
+
+ def test_double_buffer_reader(self):
+ self.test_main(decorator_callback=lambda reader: fluid.layers.create_double_buffer_reader(reader,
+ place='cuda:0' if fluid.core.is_compiled_with_cuda() else 'cpu'))
diff --git a/python/paddle/fluid/tests/unittests/test_reduce_op.py b/python/paddle/fluid/tests/unittests/test_reduce_op.py
index 5e656bddb7927b6e7935255c120e5e858505125a..9b0cc3534dc551e7fdf7ef8111cad1c172f8bfa4 100644
--- a/python/paddle/fluid/tests/unittests/test_reduce_op.py
+++ b/python/paddle/fluid/tests/unittests/test_reduce_op.py
@@ -70,6 +70,19 @@ class TestMinOp(OpTest):
self.check_output()
+class TestProdOp(OpTest):
+ def setUp(self):
+ self.op_type = "reduce_prod"
+ self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
+ self.outputs = {'Out': self.inputs['X'].prod(axis=0)}
+
+ def test_check_output(self):
+ self.check_output()
+
+ def test_check_grad(self):
+ self.check_grad(['X'], 'Out')
+
+
class TestKeepDimReduce(OpTest):
def setUp(self):
self.op_type = "reduce_sum"