未验证 提交 6e3554e4 编写于 作者: L Li Fuchen 提交者: GitHub

OP(warpctc, add_position_encoding, scaled_dot_product_attention) error message...

OP(warpctc, add_position_encoding, scaled_dot_product_attention) error message enhancement (#24261) (#24372)

* enhance add_position_encoding error message, test=develop

* enhance warpctc & scaled_dot_product_attention error message, test=develop

* modified error message and ctest of scaled_dot_product_attention, test=develop
上级 0231f58e
......@@ -23,11 +23,9 @@ class AddPositionEncodingOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"X(Input) of add_position_encoding_op should not be null.");
PADDLE_ENFORCE(
ctx->HasOutput("Out"),
"Out(Output) of add_position_encoding_op should not be null.");
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "AddPositionEncoding");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
"AddPositionEncoding");
auto x_dims = ctx->GetInputDim("X");
ctx->SetOutputDim("Out", x_dims);
......
......@@ -39,25 +39,40 @@ class AddPositionEncodingKernel : public framework::OpKernel<T> {
int enc_size = 0;
if (x_lod.empty()) {
PADDLE_ENFORCE(
x_dim.size() == 3UL,
"The input X of Add Position Encoding should be 3-D Tensor!");
PADDLE_ENFORCE_EQ(x_dim.size(), 3,
platform::errors::InvalidArgument(
"The input(X)'s dimension of AddPositionEncodingOp "
"should be equal to "
"3, but received %d. ",
x_dim.size()));
batch_size = x_dim[0];
max_seq_len = x_dim[1];
enc_size = x_dim[2];
} else {
PADDLE_ENFORCE(
x_dim.size() == 2UL,
"The input X of Add Position Encoding should be 2-D LoDTensor!");
PADDLE_ENFORCE(
x_lod.size() == 1UL,
"The Add Position Encoding Op only supports lod_level == 1!");
PADDLE_ENFORCE_EQ(x_dim.size(), 2,
platform::errors::InvalidArgument(
"The input(X)'s dimension of AddPositionEncodingOp "
"should be equal to "
"2, but received %d. ",
x_dim.size()));
PADDLE_ENFORCE_EQ(x_lod.size(), 1,
platform::errors::InvalidArgument(
"The input(X)'s lod level of AddPositionEncodingOp "
"should be equal to "
"1, but received %d. ",
x_lod.size()));
batch_size = x_lod[0].size() - 1;
max_seq_len = -1;
enc_size = x_dim[1];
}
PADDLE_ENFORCE(enc_size % 2 == 0, "Only support even encode size!");
PADDLE_ENFORCE_EQ(enc_size % 2, 0,
platform::errors::InvalidArgument(
"The input(X)'s feature size of "
"AddPositionEncodingOp only support even, "
"but received an odd number: %d. ",
enc_size));
const int half_size = enc_size / 2;
for (int i = 0; i < batch_size; ++i) {
......
......@@ -28,14 +28,11 @@ class WarpCTCOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Logits"),
"Input(Logits) of WarpCTCOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Label"),
"Input(Label) of WarpCTCOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("WarpCTCGrad"),
"Output(WarpCTCGrad) of WarpCTCOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Loss"),
"Output(Loss) of WarpCTCOp should not be null.");
OP_INOUT_CHECK(ctx->HasInput("Logits"), "Input", "Logits", "WarpCTC");
OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "WarpCTC");
OP_INOUT_CHECK(ctx->HasOutput("WarpCTCGrad"), "Output", "WarpCTCGrad",
"WarpCTC");
OP_INOUT_CHECK(ctx->HasOutput("Loss"), "Output", "Loss", "WarpCTC");
auto logits_dims = ctx->GetInputDim("Logits");
int blank = ctx->Attrs().Get<int>("blank");
......@@ -47,9 +44,18 @@ class WarpCTCOp : public framework::OperatorWithKernel {
sequence_width =
static_cast<int>(framework::product(logits_dims) / logits_dims[0]);
}
PADDLE_ENFORCE((blank >= 0) && (blank < sequence_width),
"The value of Attr(blank) should be in interval [0, %d).",
sequence_width);
PADDLE_ENFORCE_GE(
blank, 0, platform::errors::InvalidArgument(
"The value of Attr(blank) should be in interval [0, %d), "
"but received %d",
blank));
PADDLE_ENFORCE_LT(
blank, sequence_width,
platform::errors::InvalidArgument(
"The value of Attr(blank) should be in interval [0, %d), "
"but received %d",
blank));
// TODO(liuyiqun): it is tricky to set the wrong dimension here.
ctx->SetOutputDim("Loss", {-1, 1});
......@@ -160,10 +166,10 @@ class WarpCTCGradOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("WarpCTCGrad"),
"Input(WarpCTCGrad) of WarpCTCGradOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Logits")),
"Output(Logits@GRAD) of WarpCTCGradOp should not be null.");
OP_INOUT_CHECK(ctx->HasInput("WarpCTCGrad"), "Input", "WarpCTCGrad",
"WarpCTCGrad");
OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("Logits")), "Output",
"WarpCTCGrad", "WarpCTCGrad");
ctx->SetOutputDim(framework::GradVarName("Logits"),
ctx->GetInputDim("Logits"));
ctx->ShareLoD("Logits", /*->*/ framework::GradVarName("Logits"));
......
......@@ -65,13 +65,18 @@ class WarpCTCFunctor {
ctcStatus_t status = platform::dynload::get_workspace_size(
cpu_label_lengths, cpu_input_lengths, static_cast<int>(sequence_width),
static_cast<int>(num_sequences), options_, &workspace_bytes);
PADDLE_ENFORCE_EQ(CTC_STATUS_SUCCESS, status,
"warp-ctc [version %d] Error in get_workspace_size: ",
warpctc_version_,
platform::dynload::ctcGetStatusString(status));
PADDLE_ENFORCE_GT(workspace_bytes, 0UL,
PADDLE_ENFORCE_EQ(
CTC_STATUS_SUCCESS, status,
platform::errors::PreconditionNotMet(
"warp-ctc [version %d] Error in get_workspace_size: %s",
warpctc_version_, platform::dynload::ctcGetStatusString(status)));
PADDLE_ENFORCE_GT(
workspace_bytes, 0UL,
platform::errors::InvalidArgument(
"Bytes of workspace got by warp-ctc function, "
"get_workspace_size(), should be larger than 0.");
"get_workspace_size() should be larger than 0, but received %d",
workspace_bytes));
auto& dev_ctx = ctx.template device_context<DeviceContext>();
size_t workspace_elements = workspace_bytes / sizeof(float) + 1UL;
......@@ -88,10 +93,12 @@ class WarpCTCFunctor {
input, gradient, cpu_labels, cpu_label_lengths, cpu_input_lengths,
static_cast<int>(sequence_width), static_cast<int>(num_sequences),
cpu_loss, workspace_data, options_);
PADDLE_ENFORCE_EQ(CTC_STATUS_SUCCESS, status,
"warp-ctc [version %d] Error in compute_ctc_loss: ",
warpctc_version_,
platform::dynload::ctcGetStatusString(status));
PADDLE_ENFORCE_EQ(
CTC_STATUS_SUCCESS, status,
platform::errors::PreconditionNotMet(
"warp-ctc [version %d] Error in get_workspace_size: %s",
warpctc_version_, platform::dynload::ctcGetStatusString(status)));
}
protected:
......@@ -156,23 +163,40 @@ class WarpCTCKernel : public framework::OpKernel<T> {
labels_length_cpu.data<int64_t>()[i]);
}
} else {
PADDLE_ENFORCE_GT(logits->NumLevels(), 0UL,
platform::errors::InvalidArgument(
"Input(Logits) Tensor of WarpCTC "
"does not contain LoD information."));
PADDLE_ENFORCE_GT(label->NumLevels(), 0UL,
platform::errors::InvalidArgument(
"Input(Label) Tensor of WarpCTC "
"does not contain LoD information."));
logits_lod = framework::ToAbsOffset(logits->lod())[0];
auto logits_dims = logits->dims();
PADDLE_ENFORCE_EQ(
logits_dims[0], static_cast<int64_t>(logits_lod.back()),
platform::errors::InvalidArgument(
"The first dimension of Input(Logits) should be equal to "
"the sum of all sequences' lengths.");
"the sum of all sequences' lengths = %d., but received %d. ",
static_cast<int64_t>(logits_lod.back()), logits_dims[0]));
label_lod = framework::ToAbsOffset(label->lod())[0];
auto label_dims = label->dims();
PADDLE_ENFORCE_EQ(
label_dims[0], label->numel(),
"The width of each timestep in Input(Label) should be 1.");
PADDLE_ENFORCE_EQ(label_dims[1], 1,
platform::errors::InvalidArgument(
"The last dimension of Input(Label) should be 1, "
"but received %d",
label_dims[1]));
num_sequences = logits_lod.size() - 1;
PADDLE_ENFORCE_EQ(num_sequences, label_lod.size() - 1,
PADDLE_ENFORCE_EQ(
num_sequences, label_lod.size() - 1,
platform::errors::InvalidArgument(
"The number of sequences of Input(Logits) should be "
"equal to that of Input(Label).");
"equal to that of Input(Label) = %d, but received %d",
label_lod.size() - 1, num_sequences));
sequence_width = logits->numel() / logits_dims[0];
max_sequence_length = math::MaximumSequenceLength(logits_lod);
......
......@@ -610,8 +610,14 @@ def warpctc(input,
print(output)
"""
helper = LayerHelper('warpctc', **locals())
check_variable_and_dtype(input, 'input', ['float32'], "warpctc")
check_variable_and_dtype(label, 'label', ['int32'], "warpctc")
this_inputs = {'Logits': [input], 'Label': [label]}
if input_length is not None and label_length is not None:
check_variable_and_dtype(input_length, 'LogitsLength', ['int64'],
"warpctc")
check_variable_and_dtype(label_length, 'LabelLength', ['int64'],
"warpctc")
this_inputs['LogitsLength'] = [input_length]
this_inputs['LabelLength'] = [label_length]
......
......@@ -13880,6 +13880,8 @@ def add_position_encoding(input, alpha, beta, name=None):
"""
helper = LayerHelper('add_position_encoding', **locals())
check_variable_and_dtype(input, 'input', ['float32', 'float64'],
"add_position_encoding")
dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype=dtype)
......
......@@ -15,6 +15,7 @@
from __future__ import print_function
import six
from . import layers
from .data_feeder import check_variable_and_dtype, convert_dtype
__all__ = [
"simple_img_conv_pool",
......@@ -410,9 +411,10 @@ def scaled_dot_product_attention(queries,
Multi-Head Attention.
Raises:
TypeError: The dtype of inputs keys, values and queries should be the same.
ValueError: Inputs queries, keys and values should all be 3-D tensors.
ValueError: The hidden size of queries and keys should be the same.
ValueError: The max sequence length in query batch and in key batch should be the same.
ValueError: The max sequence length in value batch and in key batch should be the same.
ValueError: he hidden size of keys must be divisible by the number of attention heads.
ValueError: he hidden size of values must be divisible by the number of attention heads.
......@@ -427,17 +429,38 @@ def scaled_dot_product_attention(queries,
contexts = fluid.nets.scaled_dot_product_attention(queries, keys, values)
contexts.shape # [3, 5, 10]
"""
check_variable_and_dtype(queries, 'queries', ['float32', 'float64'],
"scaled_dot_product_attention")
check_variable_and_dtype(keys, 'keys', ['float32', 'float64'],
"scaled_dot_product_attention")
check_variable_and_dtype(values, 'values', ['float32', 'float64'],
"scaled_dot_product_attention")
if not (queries.dtype == keys.dtype == values.dtype):
raise TypeError(
"The dtype of keys, values and queries should be the same."
"But received queries.dtype = %s, "
" keys.dtype = %s, values.dtype) = %s." %
(convert_dtype(queries.dtype), convert_dtype(keys.dtype),
convert_dtype(values.dtype)))
if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
raise ValueError(
"Inputs queries, keys and values should all be 3-D tensors.")
"Inputs queries, keys and values should all be 3-D tensors."
"But received len(queries.shape) = %d, "
"len(keys.shape) = %d, len(values.shape) = %d." %
(len(queries.shape), len(keys.shape), len(values.shape)))
if queries.shape[-1] != keys.shape[-1]:
raise ValueError(
"The hidden size of queries and keys should be the same.")
"The hidden size of queries and keys should be the same."
"But received queries' hidden size = %d and keys' hidden size = %d."
% (queries.shape[-1], keys.shape[-1]))
if keys.shape[-2] != values.shape[-2]:
raise ValueError(
"The max sequence length in query batch and in key batch "
"should be the same.")
"The max sequence length in value batch and in key batch "
"should be the same. But received max sequence length in value batch "
"= %d, in key batch = %d." % (values.shape[-2], keys.shape[-2]))
if keys.shape[-1] % num_heads != 0:
raise ValueError("The hidden size of keys (%d) must be divisible "
"by the number of attention heads (%d)." %
......
......@@ -16,6 +16,8 @@ import numpy as np
import math
import paddle.fluid.core as core
from op_test import OpTest
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
class TestAddPositionEncodingTensorOp(OpTest):
......@@ -130,5 +132,18 @@ class TestAddPositionEncodingLoDTensorOp(OpTest):
start += max_length
class TestAddPositionEncodingOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
input_data = np.random.random((4, 16, 8)).astype("float32")
def test_Variable():
# the input type must be Variable
fluid.layers.add_position_encoding(
input=input_data, alpha=1.0, beta=1.0)
self.assertRaises(TypeError, test_Variable)
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
class TestScaledDotProductAttentionError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
queries = fluid.data(
name="queries", shape=[3, 5, 9], dtype="float32")
keys = fluid.data(name="keys", shape=[3, 6, 9], dtype="float32")
values = fluid.data(
name="values", shape=[3, 6, 10], dtype="float32")
def test_queries_Variable():
queries_data = np.random.rand(3, 5, 9).astype("float32")
fluid.nets.scaled_dot_product_attention(queries_data, keys,
values)
self.assertRaises(TypeError, test_queries_Variable)
def test_keys_Variable():
keys_data = np.random.rand(3, 6, 9).astype("float32")
fluid.nets.scaled_dot_product_attention(queries, keys_data,
values)
self.assertRaises(TypeError, test_keys_Variable)
def test_values_Variable():
values_data = np.random.rand(3, 6, 10).astype("float32")
fluid.nets.scaled_dot_product_attention(queries, keys,
values_data)
self.assertRaises(TypeError, test_values_Variable)
def test_diff_dtype():
keys_error = fluid.data(
name="keys_error", shape=[3, 6, 9], dtype="float64")
values_error = fluid.data(
name="values_error", shape=[3, 6, 10], dtype="float64")
fluid.nets.scaled_dot_product_attention(queries, keys_error,
values_error)
self.assertRaises(TypeError, test_diff_dtype)
def test_diff_dim():
keys_error_dim = fluid.data(
name="keys_error_dim", shape=[3, 6], dtype="float32")
values_error_dim = fluid.data(
name="values_error_dim", shape=[3], dtype="float32")
fluid.nets.scaled_dot_product_attention(queries, keys_error_dim,
values_error_dim)
self.assertRaises(ValueError, test_diff_dim)
def test_diff_hidden_size():
queries_error_hs = fluid.data(
name="queries_error_hs", shape=[3, 5, 9], dtype="float32")
keys_error_hs = fluid.data(
name="keys_error_hs", shape=[3, 6, 10], dtype="float32")
fluid.nets.scaled_dot_product_attention(queries_error_hs,
keys_error_hs, values)
self.assertRaises(ValueError, test_diff_hidden_size)
def test_diff_max_len():
keys_error_len = fluid.data(
name="keys_error_len", shape=[3, 7, 9], dtype="float32")
values_error_len = fluid.data(
name="values_error_len", shape=[3, 6, 10], dtype="float32")
fluid.nets.scaled_dot_product_attention(queries, keys_error_len,
values_error_len)
self.assertRaises(ValueError, test_diff_max_len)
if __name__ == "__main__":
unittest.main()
......@@ -19,6 +19,8 @@ import unittest
import numpy as np
from op_test import OpTest
from test_softmax_op import stable_softmax
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
CUDA_BLOCK_SIZE = 512
......@@ -335,5 +337,57 @@ class TestWarpCTCOpWithPaddingCase1(TestWarpCTCOpWithPadding):
self.norm_by_times = False
class TestWarpCTCOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
logits = fluid.data(
name='logits', shape=[5, 16, 6], dtype='float32')
logits_length = fluid.data(
name='logits_length', shape=[None], dtype='int64')
label = fluid.data(name='label', shape=[16, 3], dtype='int32')
label_length = fluid.data(
name='labels_length', shape=[None], dtype='int64')
def test_logits_Variable():
logits_data = np.random.rand(5, 16, 6).astype("float32")
fluid.layers.warpctc(
input=logits_data,
label=label,
input_length=logits_length,
label_length=label_length)
self.assertRaises(TypeError, test_logits_Variable)
def test_label_Variable():
label_data = np.random.randint(0, 5, [5, 1]).astype("int32")
fluid.layers.warpctc(
input=logits,
label=label_data,
input_length=logits_length,
label_length=label_length)
self.assertRaises(TypeError, test_label_Variable)
def test_logits_len_Variable():
logits_length_data = np.array([5] * 16).astype("int64")
fluid.layers.warpctc(
input=logits,
label=label,
input_length=logits_length_data,
label_length=label_length)
self.assertRaises(TypeError, test_logits_len_Variable)
def test_label_len_Variable():
label_length_data = np.array([3] * 16).astype("int64")
fluid.layers.warpctc(
input=logits,
label=label,
input_length=logits_length,
label_length=label_length_data)
self.assertRaises(TypeError, test_label_len_Variable)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册