未验证 提交 6de3bdb3 编写于 作者: H HongyuJia 提交者: GitHub

[phi] change op name linear_interp_v2 to linear_interp (#45128)

* change name linear_interp_v2 to linear_interp

* fix deprecated_op_names

* deprecated_op_names add linear_interp_grad
上级 ac0553a0
......@@ -1428,16 +1428,16 @@
kernel :
func : less_than
- api : linear_interp_v2
- api : linear_interp
args : (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode)
output : Tensor(output)
infer_meta :
func : InterpolateInferMeta
optional: out_size, size_tensor, scale_tensor
kernel :
func : linear_interp_v2
func : linear_interp
data_type : x
backward : linear_interp_v2_grad
backward : linear_interp_grad
- api : linspace
args : (Tensor start, Tensor stop, Tensor number, DataType dtype)
......
......@@ -1213,8 +1213,8 @@
kernel :
func : lerp_grad
- backward_api : linear_interp_v2_grad
forward : linear_interp_v2 (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) -> Tensor(output)
- backward_api : linear_interp_grad
forward : linear_interp (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) -> Tensor(output)
args : (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, Tensor output_grad, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode)
output : Tensor(x_grad)
infer_meta :
......@@ -1222,7 +1222,7 @@
param: [x]
optional: out_size, size_tensor, scale_tensor
kernel :
func : linear_interp_v2_grad
func : linear_interp_grad
data_type : output_grad
- backward_api : log10_grad
......
......@@ -40,7 +40,8 @@ const std::unordered_set<std::string> standard_kernel_suffixs({
* after 2.0, and can no longer be occupied by the previously abandoned ops.
* They are marked here uniformly.
*/
const std::unordered_set<std::string> deprecated_op_names({"diag",
const std::unordered_set<std::string> deprecated_op_names(
{"diag",
"flatten",
"flatten_grad",
"isinf",
......@@ -70,7 +71,9 @@ const std::unordered_set<std::string> deprecated_op_names({"diag",
"expand_as_grad",
"one_hot",
"top_k",
"top_k_grad"});
"top_k_grad",
"linear_interp",
"linear_interp_grad"});
class DefaultKernelSignatureMap {
public:
......
......@@ -1063,7 +1063,7 @@ PD_REGISTER_KERNEL(trilinear_interp_v2_grad,
kernel->InputAt(2).SetBackend(phi::Backend::ALL_BACKEND);
kernel->InputAt(3).SetBackend(phi::Backend::ALL_BACKEND);
}
PD_REGISTER_KERNEL(linear_interp_v2_grad,
PD_REGISTER_KERNEL(linear_interp_grad,
CPU,
ALL_LAYOUT,
phi::LinearInterpGradKernel,
......
......@@ -1219,7 +1219,7 @@ PD_REGISTER_KERNEL(trilinear_interp_v2,
kernel->InputAt(2).SetBackend(phi::Backend::ALL_BACKEND);
kernel->InputAt(3).SetBackend(phi::Backend::ALL_BACKEND);
}
PD_REGISTER_KERNEL(linear_interp_v2,
PD_REGISTER_KERNEL(linear_interp,
CPU,
ALL_LAYOUT,
phi::LinearInterpKernel,
......
......@@ -1596,7 +1596,7 @@ PD_REGISTER_KERNEL(trilinear_interp_v2_grad,
kernel->InputAt(2).SetBackend(phi::Backend::ALL_BACKEND);
kernel->InputAt(3).SetBackend(phi::Backend::ALL_BACKEND);
}
PD_REGISTER_KERNEL(linear_interp_v2_grad,
PD_REGISTER_KERNEL(linear_interp_grad,
GPU,
ALL_LAYOUT,
phi::LinearInterpGradKernel,
......
......@@ -1471,7 +1471,7 @@ PD_REGISTER_KERNEL(trilinear_interp_v2,
kernel->InputAt(2).SetBackend(phi::Backend::ALL_BACKEND);
kernel->InputAt(3).SetBackend(phi::Backend::ALL_BACKEND);
}
PD_REGISTER_KERNEL(linear_interp_v2,
PD_REGISTER_KERNEL(linear_interp,
GPU,
ALL_LAYOUT,
phi::LinearInterpKernel,
......
......@@ -62,7 +62,7 @@ KernelSignature TrilinearInterpOpArgumentMapping(
KernelSignature LinearInterpOpArgumentMapping(
const ArgumentMappingContext& ctx) {
return KernelSignature("linear_interp_v2",
return KernelSignature("linear_interp",
{"X", "OutSize", "SizeTensor", "Scale"},
{"data_layout",
"out_d",
......@@ -136,7 +136,7 @@ KernelSignature TrilinearInterpGradOpArgumentMapping(
KernelSignature LinearInterpGradOpArgumentMapping(
const ArgumentMappingContext& ctx) {
return KernelSignature("linear_interp_v2_grad",
return KernelSignature("linear_interp_grad",
{"X", "OutSize", "SizeTensor", "Scale", "Out@GRAD"},
{"data_layout",
"out_d",
......@@ -166,6 +166,9 @@ KernelSignature BicubicInterpGradOpArgumentMapping(
} // namespace phi
PD_REGISTER_BASE_KERNEL_NAME(linear_interp_v2, linear_interp);
PD_REGISTER_BASE_KERNEL_NAME(linear_interp_v2_grad, linear_interp_grad);
PD_REGISTER_ARG_MAPPING_FN(bilinear_interp_v2,
phi::BilinearInterpOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(nearest_interp_v2,
......
......@@ -22,10 +22,10 @@ import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
from paddle.nn.functional import interpolate
from paddle._C_ops import final_state_linear_interp_v2
from paddle._C_ops import final_state_linear_interp
def linear_interp_v2_test(x,
def linear_interp_test(x,
OutSize=None,
SizeTensor=None,
Scale=None,
......@@ -33,7 +33,7 @@ def linear_interp_v2_test(x,
out_d=-1,
out_h=-1,
out_w=-1,
scale=0.0,
scale=[],
interp_method='linear',
align_corners=False,
align_mode=1):
......@@ -45,11 +45,12 @@ def linear_interp_v2_test(x,
elif isinstance(scale, list) or isinstance(scale, tuple):
scale = list(map(float, scale))
if SizeTensor is not None:
if not isinstance(SizeTensor, list) and not isinstance(
SizeTensor, tuple):
SizeTensor = [SizeTensor]
return final_state_linear_interp_v2(x, OutSize, SizeTensor, Scale,
data_layout, out_d, out_h, out_w, scale,
interp_method, align_corners,
align_mode)
return final_state_linear_interp(x, OutSize, SizeTensor, Scale, data_layout,
out_d, out_h, out_w, scale, interp_method,
align_corners, align_mode)
def linear_interp_np(input,
......@@ -107,7 +108,7 @@ def linear_interp_np(input,
class TestLinearInterpOp(OpTest):
def setUp(self):
self.python_api = linear_interp_v2_test
self.python_api = linear_interp_test
self.out_size = None
self.actual_shape = None
self.data_layout = 'NCHW'
......@@ -219,7 +220,7 @@ class TestLinearInterpOpScale(TestLinearInterpOp):
class TestLinearInterpOpSizeTensor(TestLinearInterpOp):
def setUp(self):
self.python_api = linear_interp_v2_test
self.python_api = linear_interp_test
self.out_size = None
self.actual_shape = None
self.data_layout = 'NCHW'
......
......@@ -590,22 +590,16 @@ def interpolate(x,
attr_list.append(v)
dy_attr = tuple(attr_list)
eager_args = [x]
eager_args.append(inputs['OutSize'] if 'OutSize' in inputs else None)
eager_args.append(inputs['SizeTensor'] if 'SizeTensor' in
inputs else None)
eager_args.append(inputs['Scale'] if 'Scale' in inputs else None)
eager_args.extend([
attrs['data_layout'], attrs['out_d'], attrs['out_h'], attrs['out_w']
])
eager_args.append(attrs['scale'] if 'scale' in attrs else [])
eager_args.extend([
attrs['interp_method'], attrs['align_corners'], attrs['align_mode']
])
if resample_type == "linear":
if in_dygraph_mode():
out = _C_ops.final_state_linear_interp_v2(*eager_args)
out = _C_ops.final_state_linear_interp(
x, inputs['OutSize'] if 'OutSize' in inputs else None,
inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
inputs['Scale'] if 'Scale' in inputs else None,
attrs['data_layout'], attrs['out_d'], attrs['out_h'],
attrs['out_w'], attrs['scale'] if 'scale' in attrs else [],
attrs['interp_method'], attrs['align_corners'],
attrs['align_mode'])
else:
out = _C_ops.linear_interp_v2(x, *dy_attr)
elif resample_type == "bilinear":
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册