diff --git a/paddle/fluid/operators/sequence_ops/sequence_conv_op.cc b/paddle/fluid/operators/sequence_ops/sequence_conv_op.cc index 7056c52cd8ba8c21115b79c7cb6c2fb0c55c3ebf..57669dbcd6a40c2393af8fcfb0a58fee1432a870 100644 --- a/paddle/fluid/operators/sequence_ops/sequence_conv_op.cc +++ b/paddle/fluid/operators/sequence_ops/sequence_conv_op.cc @@ -145,30 +145,31 @@ class SequenceConvOpMaker : public framework::OpProtoAndCheckerMaker { void Make() override { AddInput( "X", - "(LoDTensor) the input(X) is a LodTensor, which supports " + "(phi::DenseTensor) the input(X) is a LodTensor, which supports " "variable-time length input sequence. The underlying tensor in " - "this LoDTensor is a matrix with shape (T, N), where T is the " + "this phi::DenseTensor is a matrix with shape (T, N), where T is the " "total time steps in this mini-batch and N is the input_hidden_size."); - AddInput("PaddingData", - "(Tensor, optional) the input(PaddingData) is an optional " - "parameter, and it is learnable. " - "This is a tensor with shape (P, N), where P is the " - "top_pad + bottom_pad, N is the input_hidden_size. In order to " - "ensure the equal length of sequence before and after " - "convolution, it is necessary to fill the top and bottom of each " - "sequence according to context_length, context_stride and " - "context_start") + AddInput( + "PaddingData", + "(phi::DenseTensor, optional) the input(PaddingData) is an optional " + "parameter, and it is learnable. " + "This is a tensor with shape (P, N), where P is the " + "top_pad + bottom_pad, N is the input_hidden_size. In order to " + "ensure the equal length of sequence before and after " + "convolution, it is necessary to fill the top and bottom of each " + "sequence according to context_length, context_stride and " + "context_start") .AsDispensable(); AddInput( "Filter", - "(Tensor) the input(Filter) is an learnable parameter." + "(phi::DenseTensor) the input(Filter) is an learnable parameter." "This is a tensor with shape (K, M), where K is the " "context_length * input_hidden_size, M is the output feature size."); AddOutput( "Out", - "(LoDTensor) the output(Out) is a LodTensor, which support " + "(phi::DenseTensor) the output(Out) is a LodTensor, which support " "variable-time length output sequence. The underlying tensor in " - "this LoDTensor is a matrix with shape (T, M), where, T is the " + "this phi::DenseTensor is a matrix with shape (T, M), where, T is the " "total time steps in this mini-batch, M is the output feature size."); AddAttr("paddingTrainable", diff --git a/paddle/fluid/operators/sequence_ops/sequence_conv_op.h b/paddle/fluid/operators/sequence_ops/sequence_conv_op.h index 5dec776c32072c48edfaec3484a25598ee4cfd20..cf34cde478c35cef78d3f414f4b06c45272f7459 100644 --- a/paddle/fluid/operators/sequence_ops/sequence_conv_op.h +++ b/paddle/fluid/operators/sequence_ops/sequence_conv_op.h @@ -22,15 +22,12 @@ limitations under the License. */ namespace paddle { namespace operators { -using Tensor = phi::DenseTensor; -using LoDTensor = phi::DenseTensor; - template class SequenceConvKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - auto* in = context.Input("X"); - auto* out = context.Output("Out"); + auto* in = context.Input("X"); + auto* out = context.Output("Out"); auto filter = *context.Input("Filter"); out->mutable_data(context.GetPlace()); @@ -40,11 +37,11 @@ class SequenceConvKernel : public framework::OpKernel { int context_stride = context.Attr("contextStride"); bool padding_trainable = context.Attr("paddingTrainable"); - PADDLE_ENFORCE_EQ( - in->lod().empty(), - false, - platform::errors::InvalidArgument("Input(X) Tensor of SequenceConvOp " - "does not contain LoD information.")); + PADDLE_ENFORCE_EQ(in->lod().empty(), + false, + platform::errors::InvalidArgument( + "Input(X) phi::DenseTensor of SequenceConvOp " + "does not contain LoD information.")); PADDLE_ENFORCE_EQ( in->lod().size(), 1UL, @@ -64,7 +61,7 @@ class SequenceConvKernel : public framework::OpKernel { framework::DDim col_shape = {in->dims()[0], context_length * sequence_width}; - Tensor col; + phi::DenseTensor col; col.mutable_data(col_shape, context.GetPlace()); // Because if padding_trainable is false, padding data should be zeros. phi::funcs::SetConstant set_zero; @@ -92,13 +89,14 @@ template class SequenceConvGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - auto* in_g = context.Output(framework::GradVarName("X")); - auto* out_g = context.Input(framework::GradVarName("Out")); + auto* in_g = context.Output(framework::GradVarName("X")); + auto* out_g = + context.Input(framework::GradVarName("Out")); auto* filter_g = context.Output(framework::GradVarName("Filter")); auto* padding_data_g = context.Output(framework::GradVarName("PaddingData")); - auto* in = context.Input("X"); + auto* in = context.Input("X"); auto* filter = context.Input("Filter"); int context_start = context.Attr("contextStart"); @@ -125,7 +123,7 @@ class SequenceConvGradKernel : public framework::OpKernel { // use col_shape in the im2col calculation framework::DDim col_shape = {in->dims()[0], sequence_width * context_length}; - Tensor col; + phi::DenseTensor col; if (in_g || filter_g || (padding_trainable && padding_data_g)) { col.mutable_data(col_shape, context.GetPlace()); @@ -159,7 +157,7 @@ class SequenceConvGradKernel : public framework::OpKernel { padding_data_g->mutable_data(context.GetPlace()); set_zero(dev_ctx, padding_data_g, static_cast(0)); - LoDTensor* input = const_cast(in); + phi::DenseTensor* input = const_cast(in); seq_project_grad_functor(dev_ctx, *input, padding_trainable, @@ -178,8 +176,8 @@ class SequenceConvGradKernel : public framework::OpKernel { filter_g->mutable_data(context.GetPlace()); set_zero(dev_ctx, filter_g, static_cast(0)); - Tensor filter_grad = *filter_g; - LoDTensor out_grad = *out_g; + phi::DenseTensor filter_grad = *filter_g; + phi::DenseTensor out_grad = *out_g; const phi::DenseTensor* padding_data = nullptr; if (padding_trainable) { diff --git a/paddle/fluid/operators/sequence_ops/sequence_conv_op_xpu.cc b/paddle/fluid/operators/sequence_ops/sequence_conv_op_xpu.cc index f0083ec4042e65e5b9fccf66b799d89cfd1db555..f7b0b5c3b581a273bd0d0f600353ce3bb7324b3f 100644 --- a/paddle/fluid/operators/sequence_ops/sequence_conv_op_xpu.cc +++ b/paddle/fluid/operators/sequence_ops/sequence_conv_op_xpu.cc @@ -19,14 +19,13 @@ limitations under the License. */ namespace paddle { namespace operators { -using Tensor = phi::DenseTensor; template class SequenceConvXPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - auto* in = context.Input("X"); - auto* out = context.Output("Out"); + auto* in = context.Input("X"); + auto* out = context.Output("Out"); auto filter = *context.Input("Filter"); out->mutable_data(context.GetPlace()); @@ -36,11 +35,11 @@ class SequenceConvXPUKernel : public framework::OpKernel { int context_stride = context.Attr("contextStride"); bool padding_trainable = context.Attr("paddingTrainable"); - PADDLE_ENFORCE_EQ( - in->lod().empty(), - false, - platform::errors::InvalidArgument("Input(X) Tensor of SequenceConvOp " - "does not contain LoD information.")); + PADDLE_ENFORCE_EQ(in->lod().empty(), + false, + platform::errors::InvalidArgument( + "Input(X) phi::DenseTensor of SequenceConvOp " + "does not contain LoD information.")); PADDLE_ENFORCE_EQ( in->lod().size(), 1UL, @@ -159,11 +158,12 @@ template class SequenceConvGradXPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - auto* in_g = context.Output(framework::GradVarName("X")); - auto* out_g = context.Input(framework::GradVarName("Out")); + auto* in_g = context.Output(framework::GradVarName("X")); + auto* out_g = + context.Input(framework::GradVarName("Out")); auto* filter_g = context.Output(framework::GradVarName("Filter")); - auto* in = context.Input("X"); + auto* in = context.Input("X"); auto* filter = context.Input("Filter"); int context_start = context.Attr("contextStart"); @@ -171,11 +171,11 @@ class SequenceConvGradXPUKernel : public framework::OpKernel { int context_stride = context.Attr("contextStride"); bool padding_trainable = context.Attr("paddingTrainable"); - PADDLE_ENFORCE_EQ( - in->lod().empty(), - false, - platform::errors::InvalidArgument("Input(X) Tensor of SequenceConvOp " - "does not contain LoD information.")); + PADDLE_ENFORCE_EQ(in->lod().empty(), + false, + platform::errors::InvalidArgument( + "Input(X) phi::DenseTensor of SequenceConvOp " + "does not contain LoD information.")); PADDLE_ENFORCE_EQ( in->lod().size(), 1UL, diff --git a/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.cc b/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.cc index 337ea46b260e9f36cf15a277cc0515ed7bdbd650..979296eb044cc7199621cae6cb5b6c2a00ea1455 100644 --- a/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.cc +++ b/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.cc @@ -36,11 +36,11 @@ class SequenceEnumerateOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", - "(2-D LoDTensor with the 2nd dimension equal to 1) " - "Input LoDTensor of SequenceEnumerate operator."); + "(2-D phi::DenseTensor with the 2nd dimension equal to 1) " + "Input phi::DenseTensor of SequenceEnumerate operator."); AddOutput("Out", - "(2-D LoDTensor with the 2nd dimension equal to win_size) " - "Output LoDTensor of SequenceEnumerate operator."); + "(2-D phi::DenseTensor with the 2nd dimension equal to win_size) " + "Output phi::DenseTensor of SequenceEnumerate operator."); AddAttr("win_size", "(int) The enumerate sequence window size.") .AddCustomChecker([](const int& win_size) { PADDLE_ENFORCE_GE(win_size, diff --git a/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.cu b/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.cu index 0f53f292ef8ae4694db7a642b38edded16ed6eb6..ee69333f924fee9e81fee1c07fe4b3803feab04a 100644 --- a/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.cu +++ b/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.cu @@ -21,7 +21,6 @@ namespace paddle { namespace operators { using phi::PADDLE_CUDA_NUM_THREADS; -using LoDTensor = phi::DenseTensor; template __global__ void CalcOutPut(const T* in_data, @@ -52,8 +51,8 @@ template class SequenceEnumerateOpCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - auto* in = context.Input("X"); - auto* out = context.Output("Out"); + auto* in = context.Input("X"); + auto* out = context.Output("Out"); int win_size = context.Attr("win_size"); int pad_value = context.Attr("pad_value"); diff --git a/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.h b/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.h index 90cb9300626215eedc7d4e0f61b16878dcc6d50c..048f28d85917b914233ccc89ab9c9d08bbc14ebc 100644 --- a/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.h +++ b/paddle/fluid/operators/sequence_ops/sequence_enumerate_op.h @@ -18,14 +18,13 @@ namespace paddle { namespace operators { -using LoDTensor = phi::DenseTensor; template class SequenceEnumerateKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - auto* in = context.Input("X"); - auto* out = context.Output("Out"); + auto* in = context.Input("X"); + auto* out = context.Output("Out"); int win_size = context.Attr("win_size"); auto pad_value = static_cast(context.Attr("pad_value")); @@ -33,7 +32,7 @@ class SequenceEnumerateKernel : public framework::OpKernel { in->lod().empty(), false, platform::errors::InvalidArgument( - "Input(X) Tensor of SequenceEnumerateOp does not contain " + "Input(X) phi::DenseTensor of SequenceEnumerateOp does not contain " "LoD information.")); auto in_dims = in->dims(); diff --git a/paddle/fluid/operators/sequence_ops/sequence_erase_op.cc b/paddle/fluid/operators/sequence_ops/sequence_erase_op.cc index 2943b8895978f6e6899aafb3f62468b72627ef17..fe50d8502c0eb2991f7e625d8b85c3a9a69df3e8 100644 --- a/paddle/fluid/operators/sequence_ops/sequence_erase_op.cc +++ b/paddle/fluid/operators/sequence_ops/sequence_erase_op.cc @@ -27,20 +27,21 @@ class SequenceEraseOp : public framework::OperatorWithKernel { OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "SequenceErase"); OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "SequenceErase"); auto x_dims = ctx->GetInputDim("X"); - PADDLE_ENFORCE(x_dims.size() == 2 && x_dims[1] == 1, - platform::errors::InvalidArgument( - "Input(X) of SequenceEraseOp should be a 2-D LoDTensor " - "with the 2nd dimension equal to 1," - "but received size %d with the 2nd dimension %d.", - x_dims.size(), - x_dims[1])); + PADDLE_ENFORCE( + x_dims.size() == 2 && x_dims[1] == 1, + platform::errors::InvalidArgument( + "Input(X) of SequenceEraseOp should be a 2-D phi::DenseTensor " + "with the 2nd dimension equal to 1," + "but received size %d with the 2nd dimension %d.", + x_dims.size(), + x_dims[1])); ctx->SetOutputDim("Out", x_dims); - // The output LoDTensor's lod_level should be input X's lod_level. + // The output phi::DenseTensor's lod_level should be input X's lod_level. // For compile-time, we call SetLoDLevel to set output's lod_level. - // For runtime, output LoDTensor's lod is determined by input X's lod and - // the level specified by input RandTable. - // We cannot get X's detail lod and RankTable's level in this function, so - // leave this work to the detail kernel implementation. + // For runtime, output phi::DenseTensor's lod is determined by input X's lod + // and the level specified by input RandTable. We cannot get X's detail lod + // and RankTable's level in this function, so leave this work to the detail + // kernel implementation. if (!ctx->IsRuntime()) { ctx->SetLoDLevel("Out", ctx->GetLoDLevel("X")); } @@ -51,11 +52,11 @@ class SequenceEraseOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", - "(2-D LoDTensor with the 2nd dim. equal to 1) " - "Input LoDTensor of SequenceEraseOp."); + "(2-D phi::DenseTensor with the 2nd dim. equal to 1) " + "Input phi::DenseTensor of SequenceEraseOp."); AddOutput("Out", - "(2-D LoDTensor with the 2nd dim. equal to 1) " - "Output LoDTensor of SequenceEraseOp."); + "(2-D phi::DenseTensor with the 2nd dim. equal to 1) " + "Output phi::DenseTensor of SequenceEraseOp."); AddAttr>("tokens", "(vector) Tokens need to be erased from " "input sequences."); @@ -64,7 +65,7 @@ Sequence Erase Operator. Sequence erase operator erases tokens specified by Attr(tokens) from the input sequences Input(X), and outputs the remaining data and modifies the LoD -information at the same time. For example, given a 2-D LoDTensor +information at the same time. For example, given a 2-D phi::DenseTensor X = [[2, 2, 6, 1, 3, 9, 6, 1, 0, 1]]^T @@ -77,7 +78,7 @@ operation, the three sequences become X1' = [[6]]^T, X2' = [[1, 9]]^T and X3' = [[6, 1, 0, 1]]^T. -Hence the LoDTensor Output(Out) should be +Hence the phi::DenseTensor Output(Out) should be Out = [[6, 1, 9, 6, 1, 0, 1]]^T, diff --git a/paddle/fluid/operators/sequence_ops/sequence_erase_op.cu b/paddle/fluid/operators/sequence_ops/sequence_erase_op.cu index d8b0afbc85dc591de4570bd73a1dbb46a483fdfc..b573df956df1c1280dfce56b6b70981400715d76 100644 --- a/paddle/fluid/operators/sequence_ops/sequence_erase_op.cu +++ b/paddle/fluid/operators/sequence_ops/sequence_erase_op.cu @@ -21,7 +21,6 @@ limitations under the License. */ namespace paddle { namespace operators { using phi::PADDLE_CUDA_NUM_THREADS; -using LoDTensor = phi::DenseTensor; template __global__ void LabelErasedIdx(const T* in_dat, @@ -67,8 +66,8 @@ template class SequenceEraseOpCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - auto* in = ctx.Input("X"); - auto* out = ctx.Output("Out"); + auto* in = ctx.Input("X"); + auto* out = ctx.Output("Out"); auto lod = in->lod(); PADDLE_ENFORCE_EQ( diff --git a/paddle/fluid/operators/sequence_ops/sequence_expand_as_op.cc b/paddle/fluid/operators/sequence_ops/sequence_expand_as_op.cc index aa27516a3356e23c873076e7fe9e6a31a055b344..b1223618eea0d528b5a55e7dc16a0ad8640b2f0f 100644 --- a/paddle/fluid/operators/sequence_ops/sequence_expand_as_op.cc +++ b/paddle/fluid/operators/sequence_ops/sequence_expand_as_op.cc @@ -20,8 +20,6 @@ limitations under the License. */ namespace paddle { namespace operators { -using LoDTensor = phi::DenseTensor; - class SequenceExpandAsOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; @@ -49,8 +47,8 @@ class SequenceExpandAsOp : public framework::OperatorWithKernel { framework::Variable* y_var = PADDLE_GET(framework::Variable*, ctx->GetInputVarPtrs("Y")[0]); - auto& x_dim = x_var->Get().dims(); - auto& y_lod = y_var->Get().lod(); + auto& x_dim = x_var->Get().dims(); + auto& y_lod = y_var->Get().lod(); PADDLE_ENFORCE_EQ(y_lod.size(), 1, @@ -96,13 +94,16 @@ class SequenceExpandAsOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", - "(LoDTensor, default LoDTensor) A 2-D LoDTensor whose lod " + "(phi::DenseTensor, default phi::DenseTensor) A 2-D " + "phi::DenseTensor whose lod " "level is at most 1."); AddInput("Y", - "(LoDTensor, default LoDTensor) Referred LoDTensor whose " + "(phi::DenseTensor, default phi::DenseTensor) Referred " + "phi::DenseTensor whose " "lod (specified level) is referred by Input(X)."); AddOutput("Out", - "(LodTensor, default LoDTensor) Output LoDTensor which is " + "(phi::DenseTensor, default phi::DenseTensor) Output " + "phi::DenseTensor which is " "generated from Input(X) by referring lod of Input(Y)."); AddComment(R"DOC( Sequence Expand As Operator. @@ -116,26 +117,26 @@ Following are cases to better explain how this works: Case 1: -Given a 1-level LoDTensor input(X) +Given a 1-level phi::DenseTensor input(X) X.data = [[a], [b], [c], [d]] X.dims = [4, 1] and input(Y) Y.lod = [[0, 3, 6, 7, 8]] ref_level: 0 -then we get 1-level LoDTensor +then we get 1-level phi::DenseTensor Out.lod = [[0, 3, 6, 7, 8]] Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]] Out.dims = [8, 1] Case 2: -Given a common Tensor input(X) +Given a common phi::DenseTensor input(X) X.data = [[a, b], [c, d], [e, f]] X.dims = [3, 2] and input(Y) Y.lod = [[0, 2, 3, 6]] ref_level: 0 -then we get a common LoDTensor +then we get a common phi::DenseTensor Out.lod = [[0, 2, 3, 6]] Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]] Out.dims = [6, 2] diff --git a/paddle/fluid/operators/sequence_ops/sequence_expand_as_op.cu b/paddle/fluid/operators/sequence_ops/sequence_expand_as_op.cu index f565e0d438a0e664fa786a87bd9a696f8c0585b3..d5fecace6d7678432c46c69043263c84a9791438 100644 --- a/paddle/fluid/operators/sequence_ops/sequence_expand_as_op.cu +++ b/paddle/fluid/operators/sequence_ops/sequence_expand_as_op.cu @@ -20,8 +20,6 @@ limitations under the License. */ namespace paddle { namespace operators { -using LoDTensor = phi::DenseTensor; - template static __global__ void sequence_expand_as_kernel(const T *in_data, const size_t *expand_offset, @@ -69,9 +67,9 @@ template struct SequenceExpandAsFunctor { void operator()( const phi::GPUContext &context, - const LoDTensor &x, + const phi::DenseTensor &x, const framework::Vector &ref_lod, /*expand referenced lod*/ - LoDTensor *out) { + phi::DenseTensor *out) { int height = x.dims()[0]; int width = phi::product(x.dims()) / height; @@ -99,9 +97,9 @@ struct SequenceExpandAsFunctor { template struct SequenceExpandAsGradFunctor { void operator()(const phi::GPUContext &context, - const LoDTensor &dout, + const phi::DenseTensor &dout, const framework::Vector &ref_lod, /*expand based lod*/ - LoDTensor *dx) { + phi::DenseTensor *dx) { int height = dx->dims()[0]; int width = phi::product(dx->dims()) / height; diff --git a/paddle/fluid/operators/sequence_ops/sequence_expand_op.h b/paddle/fluid/operators/sequence_ops/sequence_expand_op.h index af43aec7931e7ebbfb35cf4804ddac897c3d8358..1366fe87ab30813b0b56fc4a3631af96729e2a39 100644 --- a/paddle/fluid/operators/sequence_ops/sequence_expand_op.h +++ b/paddle/fluid/operators/sequence_ops/sequence_expand_op.h @@ -22,7 +22,6 @@ limitations under the License. */ namespace paddle { namespace operators { -using LoDTensor = phi::DenseTensor; template @@ -32,30 +31,30 @@ template struct SequenceExpandFunctor { void operator()( const DeviceContext& ctx, - const LoDTensor& x, + const phi::DenseTensor& x, const framework::Vector& x_lod, /*expand source lod*/ const framework::Vector& ref_lod, /*expand referenced lod*/ - LoDTensor* out); + phi::DenseTensor* out); }; template struct SequenceExpandGradFunctor { void operator()( const DeviceContext& ctx, - const LoDTensor& dout, + const phi::DenseTensor& dout, const framework::Vector& x_lod, /*expand source lod*/ const framework::Vector& ref_lod, /*expand referenced lod*/ - LoDTensor* dx); + phi::DenseTensor* dx); }; template struct SequenceExpandFunctor { void operator()( const phi::CPUContext& context, - const LoDTensor& x, + const phi::DenseTensor& x, const framework::Vector& x_lod, /*expand source lod*/ const framework::Vector& ref_lod, /*expand referenced lod*/ - LoDTensor* out) { + phi::DenseTensor* out) { int out_offset = 0; int x_item_length = x.numel() / x.dims()[0]; auto out_data = out->data(); @@ -88,9 +87,9 @@ template class SequenceExpandKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - auto* x = context.Input("X"); - auto* y = context.Input("Y"); - auto* out = context.Output("Out"); + auto* x = context.Input("X"); + auto* y = context.Input("Y"); + auto* out = context.Output("Out"); int ref_level = context.Attr("ref_level"); auto& x_lod = x->lod(); @@ -100,7 +99,7 @@ class SequenceExpandKernel : public framework::OpKernel { y_lod.empty(), false, platform::errors::InvalidArgument( - "Input(Y) Tensor of SequenceExpandOp does not contain " + "Input(Y) phi::DenseTensor of SequenceExpandOp does not contain " "LoD information.")); if (ref_level == -1) ref_level = y_lod.size() - 1; @@ -164,10 +163,10 @@ template struct SequenceExpandGradFunctor { void operator()( const phi::CPUContext& context, - const LoDTensor& dout, + const phi::DenseTensor& dout, const framework::Vector& x_lod, /*expand source lod*/ const framework::Vector& ref_lod, /*expand referenced lod*/ - LoDTensor* dx) { + phi::DenseTensor* dx) { int dout_offset = 0; for (size_t i = 1; i < ref_lod.size(); ++i) { int repeat_num = ref_lod[i] - ref_lod[i - 1]; @@ -193,10 +192,11 @@ template class SequenceExpandGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - auto* g_out = context.Input(framework::GradVarName("Out")); - auto* x = context.Input("X"); - auto* y = context.Input("Y"); - auto* g_x = context.Output(framework::GradVarName("X")); + auto* g_out = + context.Input(framework::GradVarName("Out")); + auto* x = context.Input("X"); + auto* y = context.Input("Y"); + auto* g_x = context.Output(framework::GradVarName("X")); int ref_level = context.Attr("ref_level"); g_x->mutable_data(context.GetPlace()); diff --git a/paddle/fluid/operators/sequence_ops/sequence_mask_op.cc b/paddle/fluid/operators/sequence_ops/sequence_mask_op.cc index 6c14fa997fe5e6da4def475a5a4125c8192640f1..c38077986109942c24c568bd3bf3772186e093da 100644 --- a/paddle/fluid/operators/sequence_ops/sequence_mask_op.cc +++ b/paddle/fluid/operators/sequence_ops/sequence_mask_op.cc @@ -82,7 +82,7 @@ class SequenceMaskOpMaker : public framework::OpProtoAndCheckerMaker { SequenceMask Operator This operator outputs a Mask according to Input(X) and Attr(maxlen). -Supposing Input(X) is a Tensor with shape [d_1, d_2, ..., d_n], the +Supposing Input(X) is a phi::DenseTensor with shape [d_1, d_2, ..., d_n], the Output(Y) is a mask with shape [d_1, d_2, ..., d_n, maxlen], where: Y(i_1, i_2, ..., i_n, j) = (j < X(i_1, i_2, ..., i_n)) diff --git a/paddle/fluid/operators/sequence_ops/sequence_mask_op.h b/paddle/fluid/operators/sequence_ops/sequence_mask_op.h index 87b52174aa8e1c990c767a5b2b360299a30a1727..d541f712a5d670c289179c4807b5c6c8965503ef 100644 --- a/paddle/fluid/operators/sequence_ops/sequence_mask_op.h +++ b/paddle/fluid/operators/sequence_ops/sequence_mask_op.h @@ -28,9 +28,6 @@ namespace paddle { namespace operators { -using LoDTensor = phi::DenseTensor; -using Tensor = phi::DenseTensor; - template struct SequenceMaskForRangeFunctor { HOSTDEVICE SequenceMaskForRangeFunctor(const Tx *x, Ty *y, int maxlen) @@ -50,8 +47,11 @@ struct SequenceMaskForRangeFunctor { template struct SequenceMaskFunctor { - SequenceMaskFunctor( - const DeviceContext &ctx, const Tx *x, Tensor *y, int limits, int maxlen) + SequenceMaskFunctor(const DeviceContext &ctx, + const Tx *x, + phi::DenseTensor *y, + int limits, + int maxlen) : ctx_(ctx), x_(x), y_(y), limits_(limits), maxlen_(maxlen) {} template @@ -64,15 +64,13 @@ struct SequenceMaskFunctor { private: const DeviceContext &ctx_; const Tx *x_; - Tensor *y_; + phi::DenseTensor *y_; int limits_; int maxlen_; }; template class SequenceMaskKernel : public framework::OpKernel { - using Tensor = phi::DenseTensor; - public: void Compute(const framework::ExecutionContext &ctx) const override { auto *x = ctx.Input("X"); diff --git a/paddle/fluid/operators/sequence_ops/sequence_mask_op_npu.cc b/paddle/fluid/operators/sequence_ops/sequence_mask_op_npu.cc index 1290e79bc076d2995eda6e370de9ff816d9aa011..f3b18676abe56440b67afb124172cafb7f40e74c 100644 --- a/paddle/fluid/operators/sequence_ops/sequence_mask_op_npu.cc +++ b/paddle/fluid/operators/sequence_ops/sequence_mask_op_npu.cc @@ -18,8 +18,6 @@ limitations under the License. */ namespace paddle { namespace operators { -using Tensor = phi::DenseTensor; - template class SequenceMaskNPUKernel : public framework::OpKernel { public: @@ -58,7 +56,7 @@ class SequenceMaskNPUKernel : public framework::OpKernel { auto y_dim = phi::vectorize(x->dims()); y_dim.push_back(maxlen); - Tensor cast_x; + phi::DenseTensor cast_x; cast_x.mutable_data(x->dims(), ctx.GetPlace()); const auto& cast1_runner = NpuOpRunner( "Cast", @@ -68,7 +66,7 @@ class SequenceMaskNPUKernel : public framework::OpKernel { ConvertToNpuDtype(framework::TransToProtoVarType(cast_x.dtype()))}}); cast1_runner.Run(dev_ctx.stream()); - Tensor tmp; + phi::DenseTensor tmp; tmp.mutable_data(phi::make_ddim({maxlen}), ctx.GetPlace()); NpuOpRunner range_runner; range_runner.SetType("Range"); @@ -78,7 +76,7 @@ class SequenceMaskNPUKernel : public framework::OpKernel { range_runner.AddOutput(tmp); range_runner.Run(dev_ctx.stream()); - Tensor expand_tmp; + phi::DenseTensor expand_tmp; expand_tmp.mutable_data(phi::make_ddim(y_dim), ctx.GetPlace()); const auto& expand_runner = NpuOpRunner("ExpandD", {tmp}, {expand_tmp}, {{"shape", y_dim}}); @@ -87,7 +85,7 @@ class SequenceMaskNPUKernel : public framework::OpKernel { auto x_dims = phi::vectorize(x->dims()); x_dims.push_back(1); cast_x.Resize(phi::make_ddim({x_dims})); - Tensor x_tmp; + phi::DenseTensor x_tmp; x_tmp.mutable_data(phi::make_ddim(y_dim), ctx.GetPlace()); const auto& tile_runner = NpuOpRunner("TileWithAxis", @@ -96,7 +94,7 @@ class SequenceMaskNPUKernel : public framework::OpKernel { {{"axis", x->dims().size()}, {"tiles", maxlen}}); tile_runner.Run(dev_ctx.stream()); - Tensor y_tmp; + phi::DenseTensor y_tmp; y_tmp.mutable_data(phi::make_ddim(y_dim), ctx.GetPlace()); const auto& less_runner = NpuOpRunner("Less", {expand_tmp, x_tmp}, {y_tmp}, {}); diff --git a/paddle/fluid/operators/sequence_ops/sequence_pad_op.cc b/paddle/fluid/operators/sequence_ops/sequence_pad_op.cc index d427e339fb9c37648dad67f1b5120bb944d2d5c0..6957920131ceac06bd22680dab636eff08e32778 100644 --- a/paddle/fluid/operators/sequence_ops/sequence_pad_op.cc +++ b/paddle/fluid/operators/sequence_ops/sequence_pad_op.cc @@ -69,7 +69,7 @@ class SequencePadOp : public framework::OperatorWithKernel { // run time framework::Variable* x_var = PADDLE_GET(framework::Variable*, ctx->GetInputVarPtrs("X")[0]); - const auto& x_lod = x_var->Get().lod(); + const auto& x_lod = x_var->Get().lod(); PADDLE_ENFORCE_EQ(x_lod.empty(), false, platform::errors::NotFound( @@ -145,20 +145,22 @@ class SequencePadOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", - "(LoDTensor, default LoDTensor) Input variable which " + "(phi::DenseTensor, default phi::DenseTensor) Input " + "variable which " "should contain lod information."); AddInput("PadValue", - "(LoDTensor), this Tensor holds values that will be fill into " + "(phi::DenseTensor), this phi::DenseTensor holds values that will " + "be fill into " "padded steps. It can be a scalar or a tensor whose shape equals " "to time steps in sequences. If it's a scalar, it will be " "automatically broadcasted to the shape of time step."); - AddOutput( - "Out", - "(LoDTensor) The output vairable, which contains padded sequences."); - AddOutput( - "Length", - "(LoDTensor) The output vairable, which contains the actual length of " - "sequences before padding."); + AddOutput("Out", + "(phi::DenseTensor) The output vairable, which contains padded " + "sequences."); + AddOutput("Length", + "(phi::DenseTensor) The output vairable, which contains the " + "actual length of " + "sequences before padding."); AddAttr( "padded_length", "The length of padded sequences. It can be set to -1 or " @@ -179,41 +181,41 @@ class SequencePadOpMaker : public framework::OpProtoAndCheckerMaker { Case 1: - Given a 1-level LoDTensor input(X): + Given a 1-level phi::DenseTensor input(X): X.lod = [[0, 2, 5]] X.data = [a, b, c, d, e] and Input(PadValue): PadValue.data = [0] and attribite 'padded_length' = 4, - then we get LoDTensor: + then we get phi::DenseTensor: Out.data = [[a, b, 0, 0], [c, d, e, 0]] Length.data = [2, 3] Case 2: - Given a 1-level LoDTensor input(X): + Given a 1-level phi::DenseTensor input(X): X.lod = [[0, 2, 5]] X.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]] and Input(PadValue): PadValue.data = [0] and attribite 'padded_length' = -1, which mean using the length of longest input sequence(3 in this case), - then we get LoDTensor: + then we get phi::DenseTensor: Out.data = [[[a1, a2], [b1, b2], [0, 0]], [[c1, c2], [d1, d2], [e1, e2]]] Length.data = [2, 3] Case 3: - Given a 1-level LoDTensor input(X): + Given a 1-level phi::DenseTensor input(X): X.lod = [[0, 2, 5]] X.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]] and Input(PadValue): PadValue.data = [p1, p2] and attribite 'padded_length' = -1, which mean using the length of longest input sequence(3 in this case), - then we get LoDTensor: + then we get phi::DenseTensor: Out.data = [[[a1, a2], [b1, b2], [p1, p2]], [[c1, c2], [d1, d2], [e1, e2]]] Length.data = [2, 3] diff --git a/paddle/fluid/operators/sequence_ops/sequence_pad_op.h b/paddle/fluid/operators/sequence_ops/sequence_pad_op.h index 6f9026095756aac9e18132c05400eae454b22a0d..0615e0c943e25170d71c1022b008c3822b57bfbf 100644 --- a/paddle/fluid/operators/sequence_ops/sequence_pad_op.h +++ b/paddle/fluid/operators/sequence_ops/sequence_pad_op.h @@ -24,25 +24,24 @@ limitations under the License. */ namespace paddle { namespace operators { -using LoDTensor = phi::DenseTensor; using LoD = framework::LoD; template class SequencePadOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - const auto* x = ctx.Input("X"); - auto* out = ctx.Output("Out"); - auto* len_t = ctx.Output("Length"); + const auto* x = ctx.Input("X"); + auto* out = ctx.Output("Out"); + auto* len_t = ctx.Output("Length"); out->mutable_data(ctx.GetPlace()); - PADDLE_ENFORCE_EQ( - x->lod().empty(), - false, - platform::errors::NotFound("Input(X) Tensor of SequencePadOp does not " - "contain LoD information.")); + PADDLE_ENFORCE_EQ(x->lod().empty(), + false, + platform::errors::NotFound( + "Input(X) phi::DenseTensor of SequencePadOp does not " + "contain LoD information.")); - const auto* pad_value = ctx.Input("PadValue"); + const auto* pad_value = ctx.Input("PadValue"); int padded_length = ctx.Attr("padded_length"); @@ -56,7 +55,7 @@ class SequencePadOpKernel : public framework::OpKernel { false, math::kBatchLengthWidth); - LoDTensor seq_len; + phi::DenseTensor seq_len; seq_len.Resize(len_t->dims()); int64_t* len_data = seq_len.mutable_data(platform::CPUPlace()); for (size_t i = 1; i < x->lod()[0].size(); ++i) { @@ -73,9 +72,10 @@ template class SequencePadGradOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - auto* d_x = ctx.Output(framework::GradVarName("X")); + auto* d_x = ctx.Output(framework::GradVarName("X")); if (d_x) { - const auto* d_out = ctx.Input(framework::GradVarName("Out")); + const auto* d_out = + ctx.Input(framework::GradVarName("Out")); d_x->mutable_data(ctx.GetPlace()); int padded_length = ctx.Attr("padded_length"); diff --git a/paddle/fluid/operators/sequence_ops/sequence_pool_op.cc b/paddle/fluid/operators/sequence_ops/sequence_pool_op.cc index 9b8697b976633a718285f4ccd54b30765cef84f5..778b2f885494538a78a9a5273babd8340c6d881c 100644 --- a/paddle/fluid/operators/sequence_ops/sequence_pool_op.cc +++ b/paddle/fluid/operators/sequence_ops/sequence_pool_op.cc @@ -53,12 +53,15 @@ class SequencePoolOp : public framework::OperatorWithKernel { class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { - AddInput("X", "(LoDTensor) The variable-length input of SequencePoolOp"); - AddOutput("Out", - "(Tensor) The output of SequencePoolOp does not contain LoD " - "information."); + AddInput("X", + "(phi::DenseTensor) The variable-length input of SequencePoolOp"); + AddOutput( + "Out", + "(phi::DenseTensor) The output of SequencePoolOp does not contain LoD " + "information."); AddOutput("MaxIndex", - "(Tensor) This tensor is used for the sequence max-pooling " + "(phi::DenseTensor) This tensor is used for the sequence " + "max-pooling " "to record the max indexes.") .AsIntermediate(); AddAttr("is_test", @@ -92,11 +95,11 @@ The following example explains how this works: For a mini-batch of 3 variable-length sentences, containing 2, 3, and 2 time-steps: -Assume X is a [7,M,N] LoDTensor, and X->lod()[0] = [0, 2, 5, 7], 7=2+3+2. +Assume X is a [7,M,N] phi::DenseTensor, and X->lod()[0] = [0, 2, 5, 7], 7=2+3+2. Besides, for the sake of simplicity, we assume M=1 and N=1, and the value of X = [[1, 3], [2, 4, 6], [5, 1]]. -Thus, Out is a [3,1,1] Tensor without LoD information. +Thus, Out is a [3,1,1] phi::DenseTensor without LoD information. And for different pooltype, the value of Out is as follows: - AVERAGE: [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2 diff --git a/paddle/fluid/operators/sequence_ops/sequence_pool_op.h b/paddle/fluid/operators/sequence_ops/sequence_pool_op.h index 199187a1544c72ad9a10ad08f24249eaaad4ceaa..78acb4eef28a7a313bb4bb53c2ea704f60da286e 100644 --- a/paddle/fluid/operators/sequence_ops/sequence_pool_op.h +++ b/paddle/fluid/operators/sequence_ops/sequence_pool_op.h @@ -23,15 +23,12 @@ limitations under the License. */ namespace paddle { namespace operators { -using Tensor = phi::DenseTensor; -using LoDTensor = phi::DenseTensor; - template class SequencePoolKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - auto* in = context.Input("X"); - auto* out = context.Output("Out"); + auto* in = context.Input("X"); + auto* out = context.Output("Out"); std::string pooltype = context.Attr("pooltype"); T pad_value = static_cast(context.Attr("pad_value")); @@ -39,11 +36,11 @@ class SequencePoolKernel : public framework::OpKernel { auto lod = in->lod(); auto lod_level = lod.size(); // InferShape by lod - PADDLE_ENFORCE_GT( - lod_level, - 0, - platform::errors::InvalidArgument("Input(X) Tensor of SequencePoolOp " - "does not contain LoD information.")); + PADDLE_ENFORCE_GT(lod_level, + 0, + platform::errors::InvalidArgument( + "Input(X) phi::DenseTensor of SequencePoolOp " + "does not contain LoD information.")); PADDLE_ENFORCE_LE(lod_level, 2UL, platform::errors::InvalidArgument( @@ -100,8 +97,9 @@ template class SequencePoolGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - auto* out_g = context.Input(framework::GradVarName("Out")); - auto* in_g = context.Output(framework::GradVarName("X")); + auto* out_g = + context.Input(framework::GradVarName("Out")); + auto* in_g = context.Output(framework::GradVarName("X")); std::string pooltype = context.Attr("pooltype"); const phi::DenseTensor* index = nullptr; if (pooltype == "MAX") { diff --git a/paddle/fluid/operators/sequence_ops/sequence_softmax_op.h b/paddle/fluid/operators/sequence_ops/sequence_softmax_op.h index aeae0a0e1fdd5ebdb68db6560f68cf56871fda64..03036a0babf3b6d33d68a3ce614047bef983e42a 100644 --- a/paddle/fluid/operators/sequence_ops/sequence_softmax_op.h +++ b/paddle/fluid/operators/sequence_ops/sequence_softmax_op.h @@ -19,33 +19,30 @@ limitations under the License. */ namespace paddle { namespace operators { -using Tensor = phi::DenseTensor; -using LoDTensor = phi::DenseTensor; - template struct SequenceSoftmaxFunctor { void operator()( const DeviceContext &ctx, - const LoDTensor &x, + const phi::DenseTensor &x, const framework::Vector &ref_lod, /*expand referenced lod*/ - LoDTensor *out); + phi::DenseTensor *out); }; template struct SequenceSoftmaxGradFunctor { void operator()(const DeviceContext &ctx, - const LoDTensor &dout, - const LoDTensor &out, + const phi::DenseTensor &dout, + const phi::DenseTensor &out, const framework::Vector &ref_lod, /*referenced lod*/ - LoDTensor *dx); + phi::DenseTensor *dx); }; template struct SequenceSoftmaxFunctor { void operator()(const phi::CPUContext &ctx, - const LoDTensor &x, + const phi::DenseTensor &x, const framework::Vector &ref_lod, /*referenced lod*/ - LoDTensor *out) { + phi::DenseTensor *out) { size_t height = ref_lod.size() - 1; const T *in_data = x.data(); T *out_data = out->mutable_data(ctx.GetPlace()); @@ -65,10 +62,10 @@ struct SequenceSoftmaxFunctor { template struct SequenceSoftmaxGradFunctor { void operator()(const phi::CPUContext &ctx, - const LoDTensor &dout, - const LoDTensor &out, + const phi::DenseTensor &dout, + const phi::DenseTensor &out, const framework::Vector &ref_lod, /*referenced lod*/ - LoDTensor *dx) { + phi::DenseTensor *dx) { size_t height = ref_lod.size() - 1; const T *softmax_grad_data = dout.data(); @@ -94,17 +91,17 @@ template class SequenceSoftmaxKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { - auto *x = ctx.Input("X"); - auto *out = ctx.Output("Out"); + auto *x = ctx.Input("X"); + auto *out = ctx.Output("Out"); auto lod = x->lod(); auto dims = x->dims(); - PADDLE_ENFORCE_EQ( - lod.empty(), - false, - platform::errors::InvalidArgument( - "Input(X) Tensor of SequenceSoftmax operator does not contain " - "LoD information.")); + PADDLE_ENFORCE_EQ(lod.empty(), + false, + platform::errors::InvalidArgument( + "Input(X) phi::DenseTensor of SequenceSoftmax " + "operator does not contain " + "LoD information.")); const size_t level = lod.size() - 1; PADDLE_ENFORCE_EQ( @@ -138,10 +135,10 @@ template class SequenceSoftmaxGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { - auto *out = ctx.Input("Out"); - auto *out_grad = ctx.Input(framework::GradVarName("Out")); - auto *x = ctx.Input("X"); - auto *x_grad = ctx.Output(framework::GradVarName("X")); + auto *out = ctx.Input("Out"); + auto *out_grad = ctx.Input(framework::GradVarName("Out")); + auto *x = ctx.Input("X"); + auto *x_grad = ctx.Output(framework::GradVarName("X")); if (!x_grad) { return; }