Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
6b28456e
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6b28456e
编写于
8月 22, 2020
作者:
W
wawltor
提交者:
GitHub
8月 22, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add the argmax, argmin for the api2.0
* add the new api and op for the argmax, argmin
上级
d26ae9ad
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
528 addition
and
193 deletion
+528
-193
paddle/fluid/operators/arg_min_max_op_base.cu.h
paddle/fluid/operators/arg_min_max_op_base.cu.h
+50
-21
paddle/fluid/operators/arg_min_max_op_base.h
paddle/fluid/operators/arg_min_max_op_base.h
+34
-12
python/paddle/fluid/tests/unittests/test_arg_min_max_op.py
python/paddle/fluid/tests/unittests/test_arg_min_max_op.py
+0
-102
python/paddle/fluid/tests/unittests/test_arg_min_max_v2_op.py
...on/paddle/fluid/tests/unittests/test_arg_min_max_v2_op.py
+313
-0
python/paddle/tensor/search.py
python/paddle/tensor/search.py
+131
-58
未找到文件。
paddle/fluid/operators/arg_min_max_op_base.cu.h
浏览文件 @
6b28456e
...
...
@@ -53,9 +53,9 @@ using Tensor = framework::Tensor;
FIXED_BLOCK_DIM_CASE_BASE
(
3
,
##
__VA_ARGS__
);
template
<
typename
T
,
typename
IndType
,
class
Reducer
,
size_t
BlockDim
>
__global__
void
ArgCUDAKernel
(
const
IndType
height
,
// n * h
const
IndType
width
,
// c
const
IndType
post_size
,
// h
__global__
void
ArgCUDAKernel
(
const
int64_t
height
,
// n * h
const
int64_t
width
,
// c
const
int64_t
post_size
,
// h
const
Reducer
reducer
,
const
T
init
,
const
T
*
in
,
IndType
*
out
)
{
typedef
cub
::
BlockReduce
<
KeyValuePair
<
int
,
T
>
,
BlockDim
>
BlockReduce
;
...
...
@@ -79,10 +79,10 @@ __global__ void ArgCUDAKernel(const IndType height, // n * h
template
<
typename
T
,
typename
IndType
,
class
Reducer
>
void
ComputeFullArg
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
Tensor
&
input
,
Tensor
*
indices
,
const
IndType
pre
,
const
IndType
post
,
const
IndType
n
)
{
Tensor
*
indices
,
const
int64_t
pre
,
const
int64_t
post
,
const
int64_t
n
)
{
auto
cu_stream
=
ctx
.
stream
();
auto
ComputeBlockSize
=
[](
IndType
col
)
{
auto
ComputeBlockSize
=
[](
int64_t
col
)
{
if
(
col
>
512
)
return
1024
;
else
if
(
col
>
256
)
...
...
@@ -101,10 +101,10 @@ void ComputeFullArg(const platform::CUDADeviceContext& ctx, const Tensor& input,
return
8
;
};
int
max_grid_dimx
=
ctx
.
GetCUDAMaxGridDimSize
().
x
;
int
height
=
pre
*
post
;
int
width
=
n
;
int
grid_size
=
height
<
max_grid_dimx
?
height
:
max_grid_dimx
;
int
64_t
max_grid_dimx
=
ctx
.
GetCUDAMaxGridDimSize
().
x
;
int
64_t
height
=
pre
*
post
;
int
64_t
width
=
n
;
int
64_t
grid_size
=
height
<
max_grid_dimx
?
height
:
max_grid_dimx
;
const
T
*
in_data
=
input
.
data
<
T
>
();
IndType
*
out_data
=
indices
->
mutable_data
<
IndType
>
(
ctx
.
GetPlace
());
...
...
@@ -129,31 +129,60 @@ void ComputeFullArg(const platform::CUDADeviceContext& ctx, const Tensor& input,
}
template
<
typename
T
,
class
Reducer
>
class
ArgMinMaxOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
struct
VisitDataCudaArgMinMaxFunctor
{
const
framework
::
ExecutionContext
&
ctx
;
explicit
VisitDataCudaArgMinMaxFunctor
(
const
framework
::
ExecutionContext
&
ctx
)
:
ctx
(
ctx
)
{}
template
<
typename
IndType
>
void
apply
()
const
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
int
axis
=
ctx
.
Attr
<
int64_t
>
(
"axis"
);
auto
in_dims
=
input
->
dims
();
axis
=
(
axis
<
0
)
?
(
in_dims
.
size
()
+
axis
)
:
axis
;
const
bool
&
flatten
=
ctx
.
Attr
<
bool
>
(
"flatten"
);
framework
::
DDim
input_dims
;
if
(
flatten
)
{
input_dims
=
framework
::
make_ddim
({
input
->
numel
()});
// if flatten, the axis just as 0
axis
=
0
;
}
else
{
input_dims
=
input
->
dims
();
if
(
axis
<
0
)
axis
+=
input
->
dims
().
size
();
}
int64_t
numel
=
input
->
numel
();
int64_t
groups
=
numel
/
in_dims
[
axis
];
int64_t
groups
=
numel
/
in
put
_dims
[
axis
];
int64_t
pre
=
1
;
int64_t
post
=
1
;
int64_t
n
=
in_dims
[
axis
];
int64_t
n
=
in
put
_dims
[
axis
];
for
(
int
i
=
0
;
i
<
axis
;
i
++
)
{
pre
*=
in_dims
[
i
];
pre
*=
in
put
_dims
[
i
];
}
for
(
int
i
=
axis
+
1
;
i
<
in_dims
.
size
();
i
++
)
{
post
*=
in_dims
[
i
];
for
(
int
i
=
axis
+
1
;
i
<
in
put
_dims
.
size
();
i
++
)
{
post
*=
in
put
_dims
[
i
];
}
const
auto
&
dev_ctx
=
ctx
.
cuda_device_context
();
ComputeFullArg
<
T
,
int64_t
,
Reducer
>
(
dev_ctx
,
*
input
,
output
,
pre
,
post
,
n
);
ComputeFullArg
<
T
,
IndType
,
Reducer
>
(
dev_ctx
,
*
input
,
output
,
pre
,
post
,
n
);
}
};
template
<
typename
T
,
class
Reducer
>
class
ArgMinMaxOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
dtype
=
ctx
.
Attr
<
int
>
(
"dtype"
);
if
(
dtype
<
0
)
{
framework
::
VisitDataType
(
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
framework
::
proto
::
VarType
::
INT64
),
VisitDataCudaArgMinMaxFunctor
<
T
,
Reducer
>
(
ctx
));
return
;
}
framework
::
VisitDataType
(
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
dtype
),
VisitDataCudaArgMinMaxFunctor
<
T
,
Reducer
>
(
ctx
));
}
};
...
...
paddle/fluid/operators/arg_min_max_op_base.h
浏览文件 @
6b28456e
...
...
@@ -38,8 +38,9 @@ struct ArgMinMaxFunctor {};
struct ArgMinMaxFunctor<DeviceContext, T, Tout, Rank, \
enum_argminmax_value> { \
void operator()(const DeviceContext& ctx, const framework::LoDTensor& in, \
framework::LoDTensor* out, int64_t axis, bool keepdims) { \
auto in_eigen = framework::EigenTensor<T, Rank>::From(in); \
framework::LoDTensor* out, framework::DDim x_dims, \
int64_t axis, bool keepdims) { \
auto in_eigen = framework::EigenTensor<T, Rank>::From(in, x_dims); \
if (keepdims) { \
auto out_eigen = framework::EigenTensor<Tout, Rank>::From(*out); \
out_eigen.device(*(ctx.eigen_device())) = \
...
...
@@ -68,16 +69,26 @@ struct VisitDataArgMinMaxFunctor {
out
.
template
mutable_data
<
Tout
>(
ctx
.
GetPlace
());
auto
axis
=
ctx
.
Attr
<
int64_t
>
(
"axis"
);
auto
keepdims
=
ctx
.
Attr
<
bool
>
(
"keepdims"
);
auto
x_rank
=
x
.
dims
().
size
();
if
(
axis
<
0
)
axis
+=
x_rank
;
const
bool
&
flatten
=
ctx
.
Attr
<
bool
>
(
"flatten"
);
// if flatten, will construct the new dims for the cacluate
framework
::
DDim
x_dims
;
if
(
flatten
)
{
x_dims
=
framework
::
make_ddim
({
x
.
numel
()});
// if flatten, the axis just as 0
axis
=
0
;
}
else
{
x_dims
=
x
.
dims
();
if
(
axis
<
0
)
axis
+=
x_dims
.
size
();
}
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
#define CALL_ARG_MINMAX_FUNCTOR(rank) \
ArgMinMaxFunctor<DeviceContext, T, Tout, rank, EnumArgMinMaxValue> \
functor##rank; \
functor##rank(dev_ctx, x, &out, axis, keepdims)
functor##rank(dev_ctx, x, &out,
x_dims,
axis, keepdims)
switch
(
x
.
dims
()
.
size
())
{
switch
(
x
_dims
.
size
())
{
case
1
:
CALL_ARG_MINMAX_FUNCTOR
(
1
);
break
;
...
...
@@ -141,6 +152,7 @@ class ArgMinMaxOp : public framework::OperatorWithKernel {
const
auto
&
x_dims
=
ctx
->
GetInputDim
(
"X"
);
int64_t
axis
=
ctx
->
Attrs
().
Get
<
int64_t
>
(
"axis"
);
bool
keepdims
=
ctx
->
Attrs
().
Get
<
bool
>
(
"keepdims"
);
const
bool
&
flatten
=
ctx
->
Attrs
().
Get
<
bool
>
(
"flatten"
);
PADDLE_ENFORCE_GE
(
axis
,
-
x_dims
.
size
(),
platform
::
errors
::
InvalidArgument
(
...
...
@@ -152,14 +164,21 @@ class ArgMinMaxOp : public framework::OperatorWithKernel {
platform
::
errors
::
InvalidArgument
(
"'axis'(%d) must be less than Rank(X)(%d)."
,
axis
,
x_dims
.
size
()));
std
::
vector
<
int64_t
>
vec
;
if
(
flatten
)
{
// if is flatten, will return the only on element
if
(
keepdims
)
{
vec
.
emplace_back
(
static_cast
<
int64_t
>
(
1
));
}
}
else
{
auto
x_rank
=
x_dims
.
size
();
if
(
axis
<
0
)
axis
+=
x_rank
;
std
::
vector
<
int64_t
>
vec
;
for
(
int64_t
i
=
0
;
i
<
axis
;
i
++
)
vec
.
push_back
(
x_dims
[
i
]);
for
(
int64_t
i
=
0
;
i
<
axis
;
i
++
)
vec
.
emplace_back
(
x_dims
[
i
]);
if
(
keepdims
)
{
vec
.
push_back
(
static_cast
<
int64_t
>
(
1
));
vec
.
emplace_back
(
static_cast
<
int64_t
>
(
1
));
}
for
(
int64_t
i
=
axis
+
1
;
i
<
x_rank
;
i
++
)
vec
.
emplace_back
(
x_dims
[
i
]);
}
for
(
int64_t
i
=
axis
+
1
;
i
<
x_rank
;
i
++
)
vec
.
push_back
(
x_dims
[
i
]);
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
vec
));
}
};
...
...
@@ -176,6 +195,9 @@ class BaseArgMinMaxOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
int64_t
>
(
"axis"
,
"The axis in which to compute the arg indics."
);
AddAttr
<
bool
>
(
"keepdims"
,
"Keep the dim that to reduce."
).
SetDefault
(
false
);
AddAttr
<
int
>
(
"dtype"
,
"Keep the dim that to reduce."
).
SetDefault
(
-
1
);
AddAttr
<
bool
>
(
"flatten"
,
"Flatten the input value, and search the min or max indices"
)
.
SetDefault
(
false
);
AddComment
(
string
::
Sprintf
(
R"DOC(
%s Operator.
...
...
python/paddle/fluid/tests/unittests/test_arg_min_max_op.py
浏览文件 @
6b28456e
...
...
@@ -201,107 +201,5 @@ class BaseTestComplex2_2(OpTest):
}
class
APT_ArgMaxTest
(
unittest
.
TestCase
):
def
test_output_result
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
data1
=
fluid
.
data
(
name
=
"X"
,
shape
=
[
3
,
4
],
dtype
=
"float32"
)
data2
=
fluid
.
data
(
name
=
"Y"
,
shape
=
[
3
],
dtype
=
"int64"
)
out
=
paddle
.
argmax
(
input
=
data1
,
out
=
data2
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
result
=
exe
.
run
(
feed
=
{
"X"
:
np
.
random
.
rand
(
3
,
4
).
astype
(
"float32"
)},
fetch_list
=
[
data2
,
out
])
self
.
assertEqual
((
result
[
0
]
==
result
[
1
]).
all
(),
True
)
def
test_basic
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
data
=
fluid
.
data
(
name
=
"X"
,
shape
=
[
3
,
4
],
dtype
=
"float32"
)
out
=
paddle
.
argmax
(
input
=
data
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
np_input
=
np
.
random
.
rand
(
3
,
4
).
astype
(
"float32"
)
expected_result
=
np
.
argmax
(
np_input
,
axis
=
1
)
result
,
=
exe
.
run
(
feed
=
{
"X"
:
np_input
},
fetch_list
=
[
out
])
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
with
fluid
.
program_guard
(
fluid
.
Program
()):
data
=
fluid
.
data
(
name
=
"X"
,
shape
=
[
3
,
4
],
dtype
=
"float32"
)
out
=
paddle
.
argmax
(
input
=
data
,
axis
=
0
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
np_input
=
np
.
random
.
rand
(
3
,
4
).
astype
(
"float32"
)
expected_result
=
np
.
argmax
(
np_input
,
axis
=
0
)
result
=
exe
.
run
(
feed
=
{
"X"
:
np_input
},
fetch_list
=
[
out
])
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
with
fluid
.
program_guard
(
fluid
.
Program
()):
data
=
fluid
.
data
(
name
=
"X"
,
shape
=
[
3
,
4
],
dtype
=
"float32"
)
out
=
paddle
.
argmax
(
input
=
data
,
dtype
=
"int32"
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
np_input
=
np
.
random
.
rand
(
3
,
4
).
astype
(
"float32"
)
expected_result
=
np
.
argmax
(
np_input
,
axis
=
1
).
astype
(
np
.
int32
)
result
=
exe
.
run
(
feed
=
{
"X"
:
np_input
},
fetch_list
=
[
out
])
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
with
fluid
.
program_guard
(
fluid
.
Program
()):
data1
=
fluid
.
data
(
name
=
"X"
,
shape
=
[
3
,
4
],
dtype
=
"float32"
)
data2
=
fluid
.
data
(
name
=
"Y"
,
shape
=
[
3
],
dtype
=
"int64"
)
out
=
paddle
.
argmax
(
input
=
data
,
out
=
data2
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
result
=
exe
.
run
(
feed
=
{
"X"
:
np
.
random
.
rand
(
3
,
4
).
astype
(
"float32"
)},
fetch_list
=
[
data2
,
out
])
self
.
assertEqual
((
result
[
0
]
==
result
[
1
]).
all
(),
True
)
def
test_name
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
x
=
fluid
.
data
(
name
=
"x"
,
shape
=
[
100
],
dtype
=
"float32"
)
y_1
=
paddle
.
argmax
(
x
,
name
=
'arg_max_res'
)
self
.
assertEqual
((
'arg_max_res'
in
y_1
.
name
),
True
)
def
test_errors
(
self
):
def
test_dtype1
():
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
data
=
fluid
.
data
(
name
=
"data"
,
shape
=
[
10
],
dtype
=
"float32"
)
paddle
.
argmax
(
data
,
dtype
=
"float32"
)
self
.
assertRaises
(
TypeError
,
test_dtype1
)
def
test_dtype2
():
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
data
=
fluid
.
data
(
name
=
"data"
,
shape
=
[
10
],
dtype
=
"float64"
)
paddle
.
argmax
(
data
,
dtype
=
"float32"
)
self
.
assertRaises
(
TypeError
,
test_dtype2
)
class
TestArgMinMaxOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
def
test_argmax_x_type
():
x1
=
[
1
,
2
,
3
]
output
=
fluid
.
layers
.
argmax
(
x
=
x1
)
self
.
assertRaises
(
TypeError
,
test_argmax_x_type
)
def
test_argmin_x_type
():
x2
=
[
1
,
2
,
3
]
output
=
fluid
.
layers
.
argmin
(
x
=
x2
)
self
.
assertRaises
(
TypeError
,
test_argmin_x_type
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_arg_min_max_v2_op.py
0 → 100644
浏览文件 @
6b28456e
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid
import
Program
,
program_guard
def
create_kernel_case
(
op_type
,
numpy_op_type
):
class
ArgMinMaxKernelBaseCase
(
OpTest
):
def
initTestCase
(
self
):
self
.
op_type
=
op_type
self
.
numpy_op_type
=
numpy_op_type
self
.
axis
=
0
def
setUp
(
self
):
np
.
random
.
seed
(
123
)
self
.
initTestCase
()
self
.
dims
=
(
4
,
5
,
6
)
self
.
dtype
=
"float64"
self
.
x
=
(
1000
*
np
.
random
.
random
(
self
.
dims
).
astype
(
self
.
dtype
))
self
.
inputs
=
{
'X'
:
self
.
x
}
self
.
attrs
=
{
"axis"
:
self
.
axis
}
self
.
numpy_op
=
eval
(
"np.%s"
%
(
numpy_op_type
))
self
.
outputs
=
{
'Out'
:
self
.
numpy_op
(
self
.
x
,
axis
=
self
.
axis
)}
def
test_check_output
(
self
):
paddle
.
enable_static
()
self
.
check_output
()
class
ArgMinMaxKernelCase0
(
ArgMinMaxKernelBaseCase
):
def
initTestCase
(
self
):
self
.
op_type
=
op_type
self
.
numpy_op_type
=
numpy_op_type
self
.
axis
=
1
class
ArgMinMaxKernelCase1
(
ArgMinMaxKernelBaseCase
):
def
initTestCase
(
self
):
self
.
op_type
=
op_type
self
.
numpy_op_type
=
numpy_op_type
self
.
axis
=
2
class
ArgMinMaxKernelCase2
(
ArgMinMaxKernelBaseCase
):
def
initTestCase
(
self
):
self
.
op_type
=
op_type
self
.
numpy_op_type
=
numpy_op_type
self
.
axis
=
-
1
class
ArgMinMaxKernelCase3
(
ArgMinMaxKernelBaseCase
):
def
initTestCase
(
self
):
self
.
op_type
=
op_type
self
.
numpy_op_type
=
numpy_op_type
self
.
axis
=
-
2
class
ArgMinMaxKernelCase4
(
ArgMinMaxKernelBaseCase
):
def
setUp
(
self
):
self
.
initTestCase
()
self
.
dims
=
(
4
,
5
,
6
)
self
.
dtype
=
"float64"
self
.
x
=
(
1000
*
np
.
random
.
random
(
self
.
dims
).
astype
(
self
.
dtype
))
self
.
inputs
=
{
'X'
:
self
.
x
}
self
.
attrs
=
{
"axis"
:
self
.
axis
,
"keepdims"
:
True
}
self
.
numpy_op
=
eval
(
"np.%s"
%
(
numpy_op_type
))
self
.
outputs
=
{
'Out'
:
self
.
numpy_op
(
self
.
x
,
axis
=
self
.
axis
).
reshape
((
1
,
5
,
6
))
}
class
ArgMinMaxKernelCase5
(
ArgMinMaxKernelBaseCase
):
def
setUp
(
self
):
self
.
initTestCase
()
self
.
dims
=
(
4
)
self
.
dtype
=
"float64"
self
.
x
=
(
1000
*
np
.
random
.
random
(
self
.
dims
).
astype
(
self
.
dtype
))
self
.
inputs
=
{
'X'
:
self
.
x
}
self
.
attrs
=
{
"axis"
:
self
.
axis
,
"flatten"
:
True
}
self
.
numpy_op
=
eval
(
"np.%s"
%
(
numpy_op_type
))
self
.
outputs
=
{
'Out'
:
self
.
numpy_op
(
self
.
x
.
flatten
(),
axis
=
self
.
axis
)
}
class
ArgMinMaxKernelCase6
(
ArgMinMaxKernelBaseCase
):
def
setUp
(
self
):
self
.
initTestCase
()
self
.
dims
=
(
4
)
self
.
dtype
=
"float64"
self
.
x
=
(
1000
*
np
.
random
.
random
(
self
.
dims
).
astype
(
self
.
dtype
))
self
.
inputs
=
{
'X'
:
self
.
x
}
self
.
attrs
=
{
"axis"
:
self
.
axis
,
"flatten"
:
True
,
"keepdims"
:
True
}
self
.
numpy_op
=
eval
(
"np.%s"
%
(
numpy_op_type
))
self
.
outputs
=
{
'Out'
:
np
.
array
(
self
.
numpy_op
(
self
.
x
.
flatten
(),
axis
=
self
.
axis
))
}
cls_name
=
"ArgMinMaxKernelBaseCase_%s"
%
(
op_type
)
ArgMinMaxKernelBaseCase
.
__name__
=
cls_name
globals
()[
cls_name
]
=
ArgMinMaxKernelBaseCase
cls_name
=
"ArgMinMaxKernelCase0_%s"
%
(
op_type
)
ArgMinMaxKernelCase0
.
__name__
=
cls_name
globals
()[
cls_name
]
=
ArgMinMaxKernelCase0
cls_name
=
"ArgMinMaxKernelCase1_%s"
%
(
op_type
)
ArgMinMaxKernelCase1
.
__name__
=
cls_name
globals
()[
cls_name
]
=
ArgMinMaxKernelCase1
cls_name
=
"ArgMinMaxKernelCase2_%s"
%
(
op_type
)
ArgMinMaxKernelCase2
.
__name__
=
cls_name
globals
()[
cls_name
]
=
ArgMinMaxKernelCase2
cls_name
=
"ArgMinMaxKernelCase3_%s"
%
(
op_type
)
ArgMinMaxKernelCase3
.
__name__
=
cls_name
globals
()[
cls_name
]
=
ArgMinMaxKernelCase3
cls_name
=
"ArgMinMaxKernelCase4_%s"
%
(
op_type
)
ArgMinMaxKernelCase4
.
__name__
=
cls_name
globals
()[
cls_name
]
=
ArgMinMaxKernelCase4
cls_name
=
"ArgMinMaxKernelCase5_%s"
%
(
op_type
)
ArgMinMaxKernelCase5
.
__name__
=
cls_name
globals
()[
cls_name
]
=
ArgMinMaxKernelCase5
cls_name
=
"ArgMinMaxKernelCase6_%s"
%
(
op_type
)
ArgMinMaxKernelCase6
.
__name__
=
cls_name
globals
()[
cls_name
]
=
ArgMinMaxKernelCase6
for
op_type
,
numpy_op_type
in
zip
([
'arg_max'
,
'arg_min'
],
[
'argmax'
,
'argmin'
]):
create_kernel_case
(
op_type
,
numpy_op_type
)
def
create_test_case
(
op_type
):
class
ArgMaxMinTestCase
(
unittest
.
TestCase
):
def
setUp
(
self
):
np
.
random
.
seed
(
123
)
self
.
input_data
=
np
.
random
.
rand
(
10
,
10
).
astype
(
"float32"
)
self
.
places
=
[]
self
.
places
.
append
(
fluid
.
CPUPlace
())
if
core
.
is_compiled_with_cuda
():
self
.
places
.
append
(
paddle
.
CUDAPlace
(
0
))
self
.
op
=
eval
(
"paddle.%s"
%
(
op_type
))
self
.
numpy_op
=
eval
(
"np.%s"
%
(
op_type
))
def
run_static
(
self
,
place
):
paddle
.
enable_static
()
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
data_var
=
paddle
.
static
.
data
(
name
=
"data"
,
shape
=
[
10
,
10
],
dtype
=
"float32"
)
op
=
eval
(
"paddle.%s"
%
(
op_type
))
result
=
op
(
data_var
)
exe
=
paddle
.
static
.
Executor
(
place
)
result_data
=
exe
.
run
(
feed
=
{
"data"
:
self
.
input_data
},
fetch_list
=
[
result
])
expected_data
=
self
.
numpy_op
(
self
.
input_data
)
self
.
assertTrue
((
result_data
==
np
.
array
(
expected_data
)).
all
(),
True
)
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
data_var
=
paddle
.
static
.
data
(
name
=
"data"
,
shape
=
[
10
,
10
],
dtype
=
"float32"
)
op
=
eval
(
"paddle.%s"
%
(
op_type
))
result
=
op
(
data_var
,
axis
=
1
)
exe
=
paddle
.
static
.
Executor
(
place
)
result_data
=
exe
.
run
(
feed
=
{
"data"
:
self
.
input_data
},
fetch_list
=
[
result
])
expected_data
=
self
.
numpy_op
(
self
.
input_data
,
axis
=
1
)
self
.
assertTrue
((
result_data
==
expected_data
).
all
(),
True
)
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
data_var
=
paddle
.
static
.
data
(
name
=
"data"
,
shape
=
[
10
,
10
],
dtype
=
"float32"
)
op
=
eval
(
"paddle.%s"
%
(
op_type
))
result
=
op
(
data_var
,
axis
=-
1
)
exe
=
paddle
.
static
.
Executor
(
place
)
result_data
=
exe
.
run
(
feed
=
{
"data"
:
self
.
input_data
},
fetch_list
=
[
result
])
expected_data
=
self
.
numpy_op
(
self
.
input_data
,
axis
=-
1
)
self
.
assertTrue
((
result_data
==
expected_data
).
all
(),
True
)
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
data_var
=
paddle
.
static
.
data
(
name
=
"data"
,
shape
=
[
10
,
10
],
dtype
=
"float32"
)
op
=
eval
(
"paddle.%s"
%
(
op_type
))
result
=
op
(
data_var
,
axis
=-
1
,
keepdim
=
True
)
exe
=
paddle
.
static
.
Executor
(
place
)
result_data
=
exe
.
run
(
feed
=
{
"data"
:
self
.
input_data
},
fetch_list
=
[
result
])
expected_data
=
self
.
numpy_op
(
self
.
input_data
,
axis
=-
1
).
reshape
((
10
,
1
))
self
.
assertTrue
((
result_data
==
expected_data
).
all
(),
True
)
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
op
=
eval
(
"paddle.%s"
%
(
op_type
))
data_var
=
paddle
.
static
.
data
(
name
=
"data"
,
shape
=
[
10
,
10
],
dtype
=
"float32"
)
result
=
op
(
data_var
,
axis
=-
1
,
name
=
"test_arg_api"
)
self
.
assertTrue
(
"test_arg_api"
in
result
.
name
)
def
run_dygraph
(
self
,
place
):
paddle
.
disable_static
()
op
=
eval
(
"paddle.%s"
%
(
op_type
))
data_tensor
=
paddle
.
to_tensor
(
self
.
input_data
)
#case 1
result_data
=
op
(
data_tensor
)
excepted_data
=
self
.
numpy_op
(
self
.
input_data
)
self
.
assertTrue
((
result_data
.
numpy
()
==
excepted_data
).
all
(),
True
)
#case 2
result_data
=
op
(
data_tensor
,
axis
=
1
)
excepted_data
=
self
.
numpy_op
(
self
.
input_data
,
axis
=
1
)
self
.
assertTrue
((
result_data
.
numpy
()
==
excepted_data
).
all
(),
True
)
#case 3
result_data
=
op
(
data_tensor
,
axis
=-
1
)
excepted_data
=
self
.
numpy_op
(
self
.
input_data
,
axis
=-
1
)
self
.
assertTrue
((
result_data
.
numpy
()
==
excepted_data
).
all
(),
True
)
#case 4
result_data
=
op
(
data_tensor
,
axis
=-
1
,
keepdim
=
True
)
excepted_data
=
self
.
numpy_op
(
self
.
input_data
,
axis
=-
1
)
excepted_data
=
excepted_data
.
reshape
((
10
))
self
.
assertTrue
((
result_data
.
numpy
()
==
excepted_data
).
all
(),
True
)
#case 5
result_data
=
op
(
data_tensor
,
axis
=-
1
,
keepdim
=
True
,
dtype
=
"int32"
)
self
.
assertTrue
(
result_data
.
numpy
().
dtype
==
np
.
int32
)
# case for dim 4, 5, 6, for test case coverage
input_data
=
np
.
random
.
rand
(
5
,
5
,
5
,
5
)
excepted_data
=
self
.
numpy_op
(
input_data
,
axis
=
0
)
result_data
=
op
(
paddle
.
to_tensor
(
input_data
),
axis
=
0
)
self
.
assertTrue
((
result_data
.
numpy
()
==
excepted_data
).
all
(),
True
)
input_data
=
np
.
random
.
rand
(
4
,
4
,
4
,
4
,
4
)
excepted_data
=
self
.
numpy_op
(
input_data
,
axis
=
0
)
result_data
=
op
(
paddle
.
to_tensor
(
input_data
),
axis
=
0
)
self
.
assertTrue
((
result_data
.
numpy
()
==
excepted_data
).
all
(),
True
)
input_data
=
np
.
random
.
rand
(
3
,
3
,
3
,
3
,
3
,
3
)
excepted_data
=
self
.
numpy_op
(
input_data
,
axis
=
0
)
result_data
=
op
(
paddle
.
to_tensor
(
input_data
),
axis
=
0
)
self
.
assertTrue
((
result_data
.
numpy
()
==
excepted_data
).
all
(),
True
)
def
test_case
(
self
):
for
place
in
self
.
places
:
self
.
run_static
(
place
)
self
.
run_dygraph
(
place
)
cls_name
=
"ArgMaxMinTestCase_{}"
.
format
(
op_type
)
ArgMaxMinTestCase
.
__name__
=
cls_name
globals
()[
cls_name
]
=
ArgMaxMinTestCase
for
op_type
in
[
'argmin'
,
'argmax'
]:
create_test_case
(
op_type
)
class
TestArgMinMaxOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
paddle
.
enable_static
()
with
program_guard
(
Program
(),
Program
()):
def
test_argmax_x_type
():
x1
=
[
1
,
2
,
3
]
output
=
paddle
.
argmax
(
x
=
x1
)
self
.
assertRaises
(
TypeError
,
test_argmax_x_type
)
def
test_argmin_x_type
():
x2
=
[
1
,
2
,
3
]
output
=
paddle
.
argmin
(
x
=
x2
)
self
.
assertRaises
(
TypeError
,
test_argmin_x_type
)
def
test_argmax_attr_type
():
data
=
paddle
.
static
.
data
(
name
=
"test_argmax"
,
shape
=
[
10
],
dtype
=
"float32"
)
output
=
paddle
.
argmax
(
x
=
data
,
dtype
=
"float32"
)
self
.
assertRaises
(
ValueError
,
test_argmax_attr_type
)
def
test_argmin_attr_type
():
data
=
paddle
.
static
.
data
(
name
=
"test_argmax"
,
shape
=
[
10
],
dtype
=
"float32"
)
output
=
paddle
.
argmin
(
x
=
data
,
dtype
=
"float32"
)
self
.
assertRaises
(
ValueError
,
test_argmin_attr_type
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/tensor/search.py
浏览文件 @
6b28456e
...
...
@@ -125,95 +125,168 @@ def argsort(x, axis=-1, descending=False, name=None):
return
ids
def
argmax
(
input
,
axis
=
None
,
dtype
=
None
,
out
=
None
,
keepdims
=
False
,
name
=
None
):
def
argmax
(
x
,
axis
=
None
,
dtype
=
None
,
keepdim
=
False
,
name
=
None
):
"""
:alias_main: paddle.argmax
:alias: paddle.argmax,paddle.tensor.argmax,paddle.tensor.search.argmax
This OP computes the indices of the max elements of the input tensor's
element along the provided axis.
Args:
input(Variable
): An input N-D Tensor with type float32, float64, int16,
x(Tensor
): An input N-D Tensor with type float32, float64, int16,
int32, int64, uint8.
axis(int, optional): Axis to compute indices along. The effective range
is [-R, R), where R is
Rank(input). when axis<
0, it works the same way
as axis
+R. Default is None, it will use the last dim to select indices of max value
.
dtype(
np.dtype|core.VarDesc.VarType|
str): Data type of the output tensor which can
is [-R, R), where R is
x.ndim. when axis <
0, it works the same way
as axis
+ R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index
.
dtype(str): Data type of the output tensor which can
be int32, int64. The default value is None, and it will
return the int64 indices.
out(Variable, optional): Optional output which can be any created
Variable that meets the requirements to store the result of operation.
if out is None, a new Varibale will be create to store the result. Defalut is None.
keepdims(bool, optional): Keep the axis that do the select max.
keepdim(bool, optional): Keep the axis that selecting max. The defalut value is False.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
Variable: A Tensor with data type int64.
Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
import numpy as np
import paddle
in1 = np.array([[[5,8,9,5],
paddle.disable_static()
data = np.array([[5,8,9,5],
[0,0,1,7],
[6,9,2,4]],
[[5,2,4,2],
[4,7,7,9],
[1,7,0,6]]])
with fluid.dygraph.guard():
x = fluid.dygraph.to_variable(in1)
out1 = paddle.argmax(input=x, axis=-1)
out2 = paddle.argmax(input=x, axis=0)
out3 = paddle.argmax(input=x, axis=1)
out4 = paddle.argmax(input=x, axis=2)
out5 = paddle.argmax(input=x, axis=2, keepdims=True)
print(out1.numpy())
# [[2 3 1]
# [0 3 1]]
[6,9,2,4]])
x = paddle.to_variable(data)
out1 = paddle.argmax(x)
print(out1.numpy()) # 2
out2 = paddle.argmax(x, axis=1)
print(out2.numpy())
# [[0 0 0 0]
# [1 1 1 1]
# [0 0 0 1]]
# [2 3 1]
out3 = paddle.argmax(x, axis=-1)
print(out3.numpy())
# [[2 2 0 1]
# [0 1 1 1]]
print(out4.numpy())
# [[2 3 1]
# [0 3 1]]
print(out5.numpy())
#array([[[2],
# [3],
# [1]],
# [[0],
# [3],
# [1]]])
# [2 3 1]
"""
helper
=
LayerHelper
(
"arg_max"
,
**
locals
())
flatten
=
False
if
axis
is
None
:
flatten
=
True
axis
=
0
if
in_dygraph_mode
():
if
dtype
!=
None
:
var_dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
out
=
core
.
ops
.
arg_max
(
x
,
'axis'
,
axis
,
'dtype'
,
var_dtype
,
'keepdim'
,
keepdim
,
'flatten'
,
flatten
)
else
:
out
=
core
.
ops
.
arg_max
(
x
,
'axis'
,
axis
,
'keepdim'
,
keepdim
,
'flatten'
,
flatten
)
return
out
helper
=
LayerHelper
(
"argmax"
,
**
locals
())
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
,
'int16'
,
'int32'
,
'int64'
,
'uint8'
],
'paddle.argmax'
)
var_dtype
=
None
attrs
=
{}
if
dtype
is
not
None
:
check_dtype
(
dtype
,
'create data type'
,
[
'int32'
,
'int64'
],
'arg_max'
)
if
dtype
not
in
[
'int32'
,
'int64'
]:
raise
ValueError
(
"The value of 'dtype' in argmax op must be int32, int64, but received of {}"
.
format
(
dtype
))
var_dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
attrs
[
"dtype"
]
=
var_dtype
else
:
var_dtype
=
VarDesc
.
VarType
.
INT64
if
out
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
var_dtype
)
attrs
[
'keepdims'
]
=
keepdim
attrs
[
'axis'
]
=
axis
attrs
[
'flatten'
]
=
flatten
helper
.
append_op
(
type
=
'arg_max'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
[
out
]},
attrs
=
attrs
)
out
.
stop_gradient
=
True
return
out
def
argmin
(
x
,
axis
=
None
,
dtype
=
None
,
keepdim
=
False
,
name
=
None
):
"""
This OP computes the indices of the min elements of the input tensor's
element along the provided axis.
Args:
x(Tensor): An input N-D Tensor with type float32, float64, int16,
int32, int64, uint8.
axis(int, optional): Axis to compute indices along. The effective range
is [-R, R), where R is x.ndim. when axis < 0, it works the same way
as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
dtype(str): Data type of the output tensor which can
be int32, int64. The default value is None, and it will
return the int64 indices.
keepdim(bool, optional): Keep the axis that selecting min. The defalut value is False.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
data = np.array([[5,8,9,5],
[0,0,1,7],
[6,9,2,4]])
x = paddle.to_variable(data)
out1 = paddle.argmin(x)
print(out1.numpy()) # 4
out2 = paddle.argmin(x, axis=1)
print(out2.numpy())
# [0 0 2]
out3 = paddle.argmin(x, axis=-1)
print(out3.numpy())
# [0 0 2]
"""
flatten
=
False
if
axis
is
None
:
axis
=
-
1
attrs
[
'keepdims'
]
=
keepdims
flatten
=
True
axis
=
0
if
in_dygraph_mode
():
if
dtype
!=
None
:
var_dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
out
=
core
.
ops
.
arg_min
(
x
,
'axis'
,
axis
,
'dtype'
,
var_dtype
,
'keepdim'
,
keepdim
,
'flatten'
,
flatten
)
else
:
out
=
core
.
ops
.
arg_min
(
x
,
'axis'
,
axis
,
'keepdim'
,
keepdim
,
'flatten'
,
flatten
)
return
out
helper
=
LayerHelper
(
"argmin"
,
**
locals
())
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
,
'int16'
,
'int32'
,
'int64'
,
'uint8'
],
'paddle.argmin'
)
var_dtype
=
None
attrs
=
{}
if
dtype
is
not
None
:
if
dtype
not
in
[
'int32'
,
'int64'
]:
raise
ValueError
(
"The value of 'dtype' in argmin op must be int32, int64, but received of {}"
.
format
(
dtype
))
var_dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
attrs
[
"dtype"
]
=
var_dtype
else
:
var_dtype
=
VarDesc
.
VarType
.
INT64
out
=
helper
.
create_variable_for_type_inference
(
var_dtype
)
attrs
[
'keepdims'
]
=
keepdim
attrs
[
'axis'
]
=
axis
attrs
[
'flatten'
]
=
flatten
helper
.
append_op
(
type
=
'arg_max'
,
inputs
=
{
'X'
:
input
},
outputs
=
{
'Out'
:
[
out
]},
attrs
=
attrs
)
type
=
'arg_min'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
[
out
]},
attrs
=
attrs
)
out
.
stop_gradient
=
True
return
out
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录