Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
6a09b8f1
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6a09b8f1
编写于
9月 03, 2020
作者:
Z
zhupengyang
提交者:
GitHub
9月 03, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
erase Raises and refine doce of random functions (#26901)
上级
559d9f2b
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
100 addition
and
141 deletion
+100
-141
python/paddle/fluid/data_feeder.py
python/paddle/fluid/data_feeder.py
+22
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+4
-4
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+2
-2
python/paddle/fluid/layers/utils.py
python/paddle/fluid/layers/utils.py
+2
-2
python/paddle/fluid/tests/unittests/test_gaussian_random_op.py
...n/paddle/fluid/tests/unittests/test_gaussian_random_op.py
+3
-3
python/paddle/fluid/tests/unittests/test_randint_op.py
python/paddle/fluid/tests/unittests/test_randint_op.py
+5
-0
python/paddle/tensor/random.py
python/paddle/tensor/random.py
+62
-130
未找到文件。
python/paddle/fluid/data_feeder.py
浏览文件 @
6a09b8f1
...
...
@@ -132,6 +132,28 @@ def check_dtype(input_dtype,
extra_message
))
def
check_shape
(
shape
,
op_name
,
expected_shape_type
=
(
list
,
tuple
,
Variable
),
expected_element_type
=
(
int
,
Variable
),
expected_tensor_dtype
=
(
'int32'
,
'int64'
)):
# See NOTE [ Why skip dynamic graph check ]
if
in_dygraph_mode
():
return
check_type
(
shape
,
'shape'
,
expected_shape_type
,
op_name
)
if
expected_element_type
is
not
None
and
not
isinstance
(
shape
,
Variable
):
for
item
in
shape
:
check_type
(
item
,
'element of shape'
,
expected_element_type
,
op_name
)
if
expected_tensor_dtype
is
not
None
and
isinstance
(
item
,
Variable
):
check_dtype
(
item
.
dtype
,
'element of shape'
,
expected_tensor_dtype
,
op_name
,
'If element of shape is Tensor, its data type should be {}'
.
format
(
', '
.
join
(
expected_tensor_dtype
)))
if
expected_tensor_dtype
is
not
None
and
isinstance
(
shape
,
Variable
):
check_dtype
(
shape
.
dtype
,
'shape'
,
expected_tensor_dtype
,
op_name
)
class
DataToLoDTensorConverter
(
object
):
def
__init__
(
self
,
place
,
lod_level
,
shape
,
dtype
):
self
.
place
=
place
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
6a09b8f1
...
...
@@ -10610,7 +10610,7 @@ def gaussian_random(shape,
dtype = convert_np_dtype_to_dtype_(dtype)
if in_dygraph_mode():
shape = utils.
_
convert_shape_to_list(shape)
shape = utils.convert_shape_to_list(shape)
return core.ops.gaussian_random('shape', shape, 'mean',
float(mean), 'std',
float(std), 'seed', seed, 'dtype',
...
...
@@ -10627,7 +10627,7 @@ def gaussian_random(shape,
'dtype': dtype,
'use_mkldnn': False
}
utils.
_
get_shape_tensor_inputs(
utils.get_shape_tensor_inputs(
inputs=inputs,
attrs=attrs,
shape=shape,
...
...
@@ -15116,7 +15116,7 @@ def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0,
dtype = convert_np_dtype_to_dtype_(dtype)
if in_dygraph_mode():
shape = utils.
_
convert_shape_to_list(shape)
shape = utils.convert_shape_to_list(shape)
return core.ops.uniform_random('shape', shape, 'min',
float(min), 'max',
float(max), 'seed', seed, 'dtype', dtype)
...
...
@@ -15126,7 +15126,7 @@ def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0,
inputs = dict()
attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
utils.
_
get_shape_tensor_inputs(
utils.get_shape_tensor_inputs(
inputs=inputs, attrs=attrs, shape=shape, op_type='uniform_random/rand')
helper = LayerHelper("uniform_random", **locals())
...
...
python/paddle/fluid/layers/tensor.py
浏览文件 @
6a09b8f1
...
...
@@ -694,7 +694,7 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
attrs
[
'str_value'
]
=
str
(
float
(
value
))
if
in_dygraph_mode
():
shape
=
utils
.
_
convert_shape_to_list
(
shape
)
shape
=
utils
.
convert_shape_to_list
(
shape
)
if
out
is
None
:
out
=
_varbase_creator
(
dtype
=
dtype
)
...
...
@@ -731,7 +731,7 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
'fill_constant'
)
helper
=
LayerHelper
(
"fill_constant"
,
**
locals
())
utils
.
_
get_shape_tensor_inputs
(
utils
.
get_shape_tensor_inputs
(
inputs
=
inputs
,
attrs
=
attrs
,
shape
=
shape
,
op_type
=
'fill_constant'
)
if
out
is
None
:
...
...
python/paddle/fluid/layers/utils.py
浏览文件 @
6a09b8f1
...
...
@@ -282,7 +282,7 @@ def _contain_var(list_or_tuple):
return
False
def
_
get_shape_tensor_inputs
(
inputs
,
attrs
,
shape
,
op_type
):
def
get_shape_tensor_inputs
(
inputs
,
attrs
,
shape
,
op_type
):
from
.tensor
import
fill_constant
,
cast
def
_get_attr_shape
(
list_shape
):
...
...
@@ -347,7 +347,7 @@ def _convert_to_tensor_list(old_list, dtype="int32"):
return
new_list_tensor
def
_
convert_shape_to_list
(
shape
):
def
convert_shape_to_list
(
shape
):
"""
Convert shape(list, tuple, variable) to list in imperative mode
"""
...
...
python/paddle/fluid/tests/unittests/test_gaussian_random_op.py
浏览文件 @
6a09b8f1
...
...
@@ -241,18 +241,18 @@ class TestGaussianRandomAPI(unittest.TestCase):
def
test_default_fp_16
():
paddle
.
framework
.
set_default_dtype
(
'float16'
)
paddle
.
tensor
.
random
.
gaussian
_random
([
2
,
3
])
paddle
.
tensor
.
random
.
gaussian
([
2
,
3
])
self
.
assertRaises
(
TypeError
,
test_default_fp_16
)
def
test_default_fp_32
():
paddle
.
framework
.
set_default_dtype
(
'float32'
)
out
=
paddle
.
tensor
.
random
.
gaussian
_random
([
2
,
3
])
out
=
paddle
.
tensor
.
random
.
gaussian
([
2
,
3
])
self
.
assertEqual
(
out
.
dtype
,
fluid
.
core
.
VarDesc
.
VarType
.
FP32
)
def
test_default_fp_64
():
paddle
.
framework
.
set_default_dtype
(
'float64'
)
out
=
paddle
.
tensor
.
random
.
gaussian
_random
([
2
,
3
])
out
=
paddle
.
tensor
.
random
.
gaussian
([
2
,
3
])
self
.
assertEqual
(
out
.
dtype
,
fluid
.
core
.
VarDesc
.
VarType
.
FP64
)
test_default_fp_64
()
...
...
python/paddle/fluid/tests/unittests/test_randint_op.py
浏览文件 @
6a09b8f1
...
...
@@ -58,6 +58,11 @@ class TestRandintOpError(unittest.TestCase):
self
.
assertRaises
(
TypeError
,
paddle
.
randint
,
5
,
dtype
=
'float32'
)
self
.
assertRaises
(
ValueError
,
paddle
.
randint
,
5
,
5
)
self
.
assertRaises
(
ValueError
,
paddle
.
randint
,
-
5
)
self
.
assertRaises
(
TypeError
,
paddle
.
randint
,
5
,
shape
=
[
'2'
])
shape_tensor
=
paddle
.
static
.
data
(
'X'
,
[
1
])
self
.
assertRaises
(
TypeError
,
paddle
.
randint
,
5
,
shape
=
shape_tensor
)
self
.
assertRaises
(
TypeError
,
paddle
.
randint
,
5
,
shape
=
[
shape_tensor
])
class
TestRandintOp_attr_tensorlist
(
OpTest
):
...
...
python/paddle/tensor/random.py
浏览文件 @
6a09b8f1
...
...
@@ -14,17 +14,12 @@
# TODO: define random functions
import
numpy
as
np
from
..fluid
import
core
from
..fluid.framework
import
device_guard
,
in_dygraph_mode
,
_varbase_creator
,
Variable
,
convert_np_dtype_to_dtype_
from
..fluid.layers.layer_function_generator
import
templatedoc
from
..fluid.framework
import
in_dygraph_mode
,
Variable
,
convert_np_dtype_to_dtype_
from
..fluid.layer_helper
import
LayerHelper
from
..fluid.data_feeder
import
c
onvert_dtype
,
check_variable_and_dtype
,
check_type
,
check_dty
pe
from
..fluid.data_feeder
import
c
heck_variable_and_dtype
,
check_type
,
check_dtype
,
check_sha
pe
from
..fluid.layers
import
utils
from
..fluid.layers.tensor
import
fill_constant
import
paddle
import
warnings
from
..fluid.io
import
shuffle
#DEFINE_ALIAS
...
...
@@ -94,26 +89,26 @@ def bernoulli(x, name=None):
return
out
def
gaussian
_random
(
shape
,
mean
=
0.0
,
std
=
1.0
,
dtype
=
None
,
name
=
None
):
def
gaussian
(
shape
,
mean
=
0.0
,
std
=
1.0
,
dtype
=
None
,
name
=
None
):
"""
This OP returns a Tensor filled with random values sampled from a Gaussian
distribution, with ``shape`` and ``dtype``.
Args:
shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
shape
(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
is a list or tuple, the elements of it should be integers or Tensors
(with the shape [1], and the data type int32 or int64). If ``shape``
is a Tensor, it should be a 1-D Tensor(with the data type int32 or
int64).
mean(float|int, optional): Mean of the output tensor, default is 0.0.
std(float|int, optional): Standard deviation of the output tensor, default
mean
(float|int, optional): Mean of the output tensor, default is 0.0.
std
(float|int, optional): Standard deviation of the output tensor, default
is 1.0.
seed
(int, optional): ${seed_comment}
dtype(str|np.dtype, optional): The data type of the output Tensor.
seed
(int, optional): Random seed of generator.
dtype
(str|np.dtype, optional): The data type of the output Tensor.
Supported data types: float32, float64.
Default is None, use global default dtype (see ``get_default_dtype``
for details).
name(str, optional): The default value is None. Normally there is no
name
(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
...
...
@@ -121,26 +116,26 @@ def gaussian_random(shape, mean=0.0, std=1.0, dtype=None, name=None):
Tensor: A Tensor filled with random values sampled from a Gaussian
distribution, with ``shape`` and ``dtype``.
"""
op_type_for_check
=
'gaussian/standard_normal/randn/normal'
seed
=
0
if
dtype
is
None
:
dtype
=
paddle
.
framework
.
get_default_dtype
()
if
dtype
not
in
[
'float32'
,
'float64'
]:
raise
TypeError
(
"gaussian_random only supports [float32, float64], but the default dtype is %s"
%
dtype
)
"{} only supports [float32, float64], but the default dtype is {}"
.
format
(
op_type_for_check
,
dtype
))
if
not
isinstance
(
dtype
,
core
.
VarDesc
.
VarType
):
dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
seed
=
0
op_type_for_check
=
'gaussian_random/standard_normal/randn/normal'
if
in_dygraph_mode
():
shape
=
utils
.
_
convert_shape_to_list
(
shape
)
shape
=
utils
.
convert_shape_to_list
(
shape
)
return
core
.
ops
.
gaussian_random
(
'shape'
,
shape
,
'mean'
,
float
(
mean
),
'std'
,
float
(
std
),
'seed'
,
seed
,
'dtype'
,
dtype
)
check_
type
(
shape
,
'shape'
,
(
list
,
tuple
,
Variable
)
,
op_type_for_check
)
check_
shape
(
shape
,
op_type_for_check
)
check_dtype
(
dtype
,
'dtype'
,
[
'float32'
,
'float64'
],
op_type_for_check
)
inputs
=
{}
...
...
@@ -151,10 +146,10 @@ def gaussian_random(shape, mean=0.0, std=1.0, dtype=None, name=None):
'dtype'
:
dtype
,
'use_mkldnn'
:
False
}
utils
.
_
get_shape_tensor_inputs
(
utils
.
get_shape_tensor_inputs
(
inputs
=
inputs
,
attrs
=
attrs
,
shape
=
shape
,
op_type
=
op_type_for_check
)
helper
=
LayerHelper
(
'gaussian
_random
'
,
**
locals
())
helper
=
LayerHelper
(
'gaussian'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
'gaussian_random'
,
...
...
@@ -172,12 +167,12 @@ def standard_normal(shape, dtype=None, name=None):
and ``dtype``.
Args:
shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
shape
(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
is a list or tuple, the elements of it should be integers or Tensors
(with the shape [1], and the data type int32 or int64). If ``shape``
is a Tensor, it should be a 1-D Tensor(with the data type int32 or
int64).
dtype(str|np.dtype, optional): The data type of the output Tensor.
dtype
(str|np.dtype, optional): The data type of the output Tensor.
Supported data types: float32, float64.
Default is None, use global default dtype (see ``get_default_dtype``
for details).
...
...
@@ -189,10 +184,6 @@ def standard_normal(shape, dtype=None, name=None):
normal distribution with mean 0 and standard deviation 1, with
``shape`` and ``dtype``.
Raises:
TypeError: If ``shape`` is not list, tuple, Tensor.
TypeError: If ``dtype`` is not float32, float64.
Examples:
.. code-block:: python
...
...
@@ -202,14 +193,14 @@ def standard_normal(shape, dtype=None, name=None):
paddle.disable_static()
# example 1: attr shape is a list which doesn't contain Tensor.
result_
1 = paddle.standard_normal(shape=[2, 3])
out
1 = paddle.standard_normal(shape=[2, 3])
# [[-2.923464 , 0.11934398, -0.51249987], # random
# [ 0.39632758, 0.08177969, 0.2692008 ]] # random
# example 2: attr shape is a list which contains Tensor.
dim
_1 = paddle.fill_constant([1], "int64", 2
)
dim
_2 = paddle.fill_constant([1], "int32", 3
)
result_2 = paddle.standard_normal(shape=[dim_1, dim_
2, 2])
dim
1 = paddle.full([1], 2, "int64"
)
dim
2 = paddle.full([1], 3, "int32"
)
out2 = paddle.standard_normal(shape=[dim1, dim
2, 2])
# [[[-2.8852394 , -0.25898588], # random
# [-0.47420555, 0.17683524], # random
# [-0.7989969 , 0.00754541]], # random
...
...
@@ -218,21 +209,13 @@ def standard_normal(shape, dtype=None, name=None):
# [ 0.8086993 , 0.6868893 ]]] # random
# example 3: attr shape is a Tensor, the data type must be int64 or int32.
var_shape
= paddle.to_tensor(np.array([2, 3]))
result_3 = paddle.standard_normal(var_shape
)
shape_tensor
= paddle.to_tensor(np.array([2, 3]))
out3 = paddle.standard_normal(shape_tensor
)
# [[-2.878077 , 0.17099959, 0.05111201] # random
# [-0.3761474, -1.044801 , 1.1870178 ]] # random
"""
if
dtype
is
None
:
dtype
=
paddle
.
framework
.
get_default_dtype
()
if
dtype
not
in
[
'float32'
,
'float64'
]:
raise
TypeError
(
"standard_normal only supports [float32, float64], but the default dtype is %s"
%
dtype
)
return
gaussian_random
(
shape
=
shape
,
mean
=
0.0
,
std
=
1.0
,
dtype
=
dtype
,
name
=
name
)
return
gaussian
(
shape
=
shape
,
mean
=
0.0
,
std
=
1.0
,
dtype
=
dtype
,
name
=
name
)
randn
=
standard_normal
...
...
@@ -306,16 +289,7 @@ def normal(mean=0.0, std=1.0, shape=None, name=None):
"If std is Tensor, it's data type only support float32, float64."
)
if
shape
is
not
None
:
if
isinstance
(
shape
,
(
list
,
tuple
)):
for
item
in
shape
:
check_type
(
item
,
'shape'
,
(
int
),
'normal'
,
'Elements of shape should be int.'
)
elif
isinstance
(
shape
,
Variable
):
check_dtype
(
shape
.
dtype
,
'shape'
,
[
'int32'
,
'int64'
],
'normal'
)
else
:
assert
TypeError
(
'If mean and std are all not Tensor, shape should be list, tuple, Tensor.'
)
check_shape
(
shape
,
'normal'
)
if
isinstance
(
mean
,
Variable
):
if
isinstance
(
std
,
Variable
):
...
...
@@ -330,7 +304,7 @@ def normal(mean=0.0, std=1.0, shape=None, name=None):
mean
=
float
(
mean
)
out
=
standard_normal
(
paddle
.
shape
(
std
),
std
.
dtype
,
name
)
else
:
return
gaussian
_random
(
shape
=
shape
,
mean
=
mean
,
std
=
std
,
name
=
name
)
return
gaussian
(
shape
=
shape
,
mean
=
mean
,
std
=
std
,
name
=
name
)
out
=
out
*
std
+
mean
if
not
in_dygraph_mode
():
...
...
@@ -426,7 +400,7 @@ def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
if
in_dygraph_mode
():
shape
=
utils
.
_
convert_shape_to_list
(
shape
)
shape
=
utils
.
convert_shape_to_list
(
shape
)
return
core
.
ops
.
uniform_random
(
'shape'
,
shape
,
'min'
,
float
(
min
),
'max'
,
float
(
max
),
'seed'
,
seed
,
'dtype'
,
dtype
)
...
...
@@ -436,7 +410,7 @@ def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
inputs
=
dict
()
attrs
=
{
'seed'
:
seed
,
'min'
:
min
,
'max'
:
max
,
'dtype'
:
dtype
}
utils
.
_
get_shape_tensor_inputs
(
utils
.
get_shape_tensor_inputs
(
inputs
=
inputs
,
attrs
=
attrs
,
shape
=
shape
,
op_type
=
'uniform_random/rand'
)
helper
=
LayerHelper
(
"uniform_random"
,
**
locals
())
...
...
@@ -449,29 +423,26 @@ def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
def
randint
(
low
=
0
,
high
=
None
,
shape
=
[
1
],
dtype
=
None
,
name
=
None
):
"""
:alias_main: paddle.randint
:alias: paddle.tensor.randint, paddle.tensor.random.randint
This OP returns a Tensor filled with random integers from a discrete uniform
distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
If ``high`` is None (the default), the range is [0, ``low``).
Args:
low(int): The lower bound on the range of random values to generate.
low
(int): The lower bound on the range of random values to generate.
The ``low`` is included in the range. If ``high`` is None, the
range is [0, ``low``). Default is 0.
high(int, optional): The upper bound on the range of random values to
high
(int, optional): The upper bound on the range of random values to
generate, the ``high`` is excluded in the range. Default is None
(see above for behavior if high = None). Default is None.
shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
shape
(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
is a list or tuple, the elements of it should be integers or Tensors
(with the shape [1], and the data type int32 or int64). If ``shape``
is a Tensor, it should be a 1-D Tensor(with the data type int32 or
int64). Default is [1].
dtype(str|np.dtype, optional): The data type of the
dtype
(str|np.dtype, optional): The data type of the
output tensor. Supported data types: int32, int64. If ``dytpe``
is None, the data type is int64. Default is None.
name(str, optional): The default value is None. Normally there is no
name
(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
...
...
@@ -479,12 +450,6 @@ def randint(low=0, high=None, shape=[1], dtype=None, name=None):
Tensor: A Tensor filled with random integers from a discrete uniform
distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
Raises:
TypeError: If ``shape`` is not list, tuple, Tensor.
TypeError: If ``dtype`` is not int32, int64.
ValueError: If ``high`` is not greater then ``low``; If ``high`` is
None, and ``low`` is not greater than 0.
Examples:
.. code-block:: python
...
...
@@ -495,32 +460,32 @@ def randint(low=0, high=None, shape=[1], dtype=None, name=None):
# example 1:
# attr shape is a list which doesn't contain Tensor.
result_
1 = paddle.randint(low=-5, high=5, shape=[3])
out
1 = paddle.randint(low=-5, high=5, shape=[3])
# [0, -3, 2] # random
# example 2:
# attr shape is a list which contains Tensor.
dim
_1 = paddle.fill_constant([1], "int64", 2
)
dim
_2 = paddle.fill_constant([1], "int32", 3
)
result_2 = paddle.randint(low=-5, high=5, shape=[dim_1, dim_
2], dtype="int32")
dim
1 = paddle.full([1], 2, "int64"
)
dim
2 = paddle.full([1], 3, "int32"
)
out2 = paddle.randint(low=-5, high=5, shape=[dim1, dim
2], dtype="int32")
# [[0, -1, -3], # random
# [4, -2, 0]] # random
# example 3:
# attr shape is a Tensor
var_shape = paddle.to_variable
(np.array([3]))
result_3 = paddle.randint(low=-5, high=5, shape=var_shape
)
shape_tensor = paddle.to_tensor
(np.array([3]))
out3 = paddle.randint(low=-5, high=5, shape=shape_tensor
)
# [-2, 2, 3] # random
# example 4:
# data type is int32
result_
4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
out
4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
# [-5, 4, -4] # random
# example 5:
# Input only one parameter
# low=0, high=10, shape=[1], dtype='int64'
result_
5 = paddle.randint(10)
out
5 = paddle.randint(10)
# [7] # random
"""
...
...
@@ -537,11 +502,11 @@ def randint(low=0, high=None, shape=[1], dtype=None, name=None):
dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
if
in_dygraph_mode
():
shape
=
utils
.
_
convert_shape_to_list
(
shape
)
shape
=
utils
.
convert_shape_to_list
(
shape
)
return
core
.
ops
.
randint
(
'shape'
,
shape
,
'low'
,
low
,
'high'
,
high
,
'seed'
,
0
,
'dtype'
,
dtype
)
check_
type
(
shape
,
'shape'
,
(
list
,
tuple
,
Variable
)
,
'randint'
)
check_
shape
(
shape
,
'randint'
)
check_dtype
(
dtype
,
'dtype'
,
[
'int32'
,
'int64'
],
'randint'
)
if
low
>=
high
:
raise
ValueError
(
...
...
@@ -550,7 +515,7 @@ def randint(low=0, high=None, shape=[1], dtype=None, name=None):
inputs
=
dict
()
attrs
=
{
'low'
:
low
,
'high'
:
high
,
'seed'
:
0
,
'dtype'
:
dtype
}
utils
.
_
get_shape_tensor_inputs
(
utils
.
get_shape_tensor_inputs
(
inputs
=
inputs
,
attrs
=
attrs
,
shape
=
shape
,
op_type
=
'randint'
)
helper
=
LayerHelper
(
"randint"
,
**
locals
())
...
...
@@ -560,21 +525,17 @@ def randint(low=0, high=None, shape=[1], dtype=None, name=None):
return
out
@
templatedoc
()
def
randperm
(
n
,
dtype
=
"int64"
,
name
=
None
):
"""
:alias_main: paddle.randperm
:alias: paddle.tensor.randperm, paddle.tensor.random.randperm
This OP returns a 1-D Tensor filled with random permutation values from 0
to n-1, with ``dtype``.
Args:
n(int): The upper bound (exclusive), and it should be greater than 0.
dtype(str|np.dtype, optional): The data type of
n
(int): The upper bound (exclusive), and it should be greater than 0.
dtype
(str|np.dtype, optional): The data type of
the output Tensor. Supported data types: int32, int64, float32,
float64. Default is int64.
name(str, optional): The default value is None. Normally there is no
name
(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
...
...
@@ -582,10 +543,6 @@ def randperm(n, dtype="int64", name=None):
Tensor: A 1-D Tensor filled with random permutation values from 0
to n-1, with ``dtype``.
Raises:
ValueError: If ``n`` is not greater than 0.
TypeError: If ``dtype`` is not int32, int64, float32, float64.
Examples:
.. code-block:: python
...
...
@@ -593,10 +550,10 @@ def randperm(n, dtype="int64", name=None):
paddle.disable_static()
result_
1 = paddle.randperm(5)
out
1 = paddle.randperm(5)
# [4, 1, 2, 3, 0] # random
result_
2 = paddle.randperm(7, 'int32')
out
2 = paddle.randperm(7, 'int32')
# [1, 6, 2, 0, 4, 3, 5] # random
"""
...
...
@@ -622,32 +579,20 @@ def randperm(n, dtype="int64", name=None):
def
rand
(
shape
,
dtype
=
None
,
name
=
None
):
"""
:alias_main: paddle.rand
:alias: paddle.tensor.rand, paddle.tensor.random.rand
This OP returns a Tensor filled with random values sampled from a uniform
distribution in the range [0, 1), with ``shape`` and ``dtype``.
Examples:
::
Input:
shape = [1, 2]
Output:
result=[[0.8505902, 0.8397286]]
Args:
shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
shape
(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
is a list or tuple, the elements of it should be integers or Tensors
(with the shape [1], and the data type int32 or int64). If ``shape``
is a Tensor, it should be a 1-D Tensor(with the data type int32 or
int64).
dtype(str|np.dtype, optional): The data type of the output Tensor.
dtype
(str|np.dtype, optional): The data type of the output Tensor.
Supported data types: float32, float64.
Default is None, use global default dtype (see ``get_default_dtype``
for details).
name(str, optional): The default value is None. Normally there is no
name
(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
...
...
@@ -655,10 +600,6 @@ def rand(shape, dtype=None, name=None):
Tensor: A Tensor filled with random values sampled from a uniform
distribution in the range [0, 1), with ``shape`` and ``dtype``.
Raises:
TypeError: If ``shape`` is not list, tuple, Tensor.
ValueError: If ``dtype`` is not float32, float64.
Examples:
.. code-block:: python
...
...
@@ -667,14 +608,14 @@ def rand(shape, dtype=None, name=None):
paddle.disable_static()
# example 1: attr shape is a list which doesn't contain Tensor.
result_
1 = paddle.rand(shape=[2, 3])
out
1 = paddle.rand(shape=[2, 3])
# [[0.451152 , 0.55825245, 0.403311 ], # random
# [0.22550228, 0.22106001, 0.7877319 ]] # random
# example 2: attr shape is a list which contains Tensor.
dim
_1 = paddle.fill_constant([1], "int64", 2
)
dim
_2 = paddle.fill_constant([1], "int32", 3
)
result_2 = paddle.rand(shape=[dim_1, dim_
2, 2])
dim
1 = paddle.full([1], 2, "int64"
)
dim
2 = paddle.full([1], 3, "int32"
)
out2 = paddle.rand(shape=[dim1, dim
2, 2])
# [[[0.8879919 , 0.25788337], # random
# [0.28826773, 0.9712097 ], # random
# [0.26438272, 0.01796806]], # random
...
...
@@ -683,19 +624,10 @@ def rand(shape, dtype=None, name=None):
# [0.870881 , 0.2984597 ]]] # random
# example 3: attr shape is a Tensor, the data type must be int64 or int32.
var_shape = paddle.to_variable
(np.array([2, 3]))
result_3 = paddle.rand(var_shape
)
shape_tensor = paddle.to_tensor
(np.array([2, 3]))
out2 = paddle.rand(shape_tensor
)
# [[0.22920267, 0.841956 , 0.05981819], # random
# [0.4836288 , 0.24573246, 0.7516129 ]] # random
"""
if
dtype
is
None
:
dtype
=
paddle
.
framework
.
get_default_dtype
()
if
dtype
not
in
[
'float32'
,
'float64'
]:
raise
TypeError
(
"rand only supports [float32, float64], but the default dtype is %s"
%
dtype
)
out
=
uniform
(
shape
,
dtype
,
min
=
0.0
,
max
=
1.0
,
name
=
name
)
out
.
stop_gradient
=
True
return
out
return
uniform
(
shape
,
dtype
,
min
=
0.0
,
max
=
1.0
,
name
=
name
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录