Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
688305f8
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
688305f8
编写于
5月 26, 2017
作者:
L
Liu Yiqun
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Centralize the use of sse and neon instrinsic.
上级
32a85081
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
342 addition
and
266 deletion
+342
-266
paddle/cuda/include/hl_cpu_scalar.cuh
paddle/cuda/include/hl_cpu_scalar.cuh
+41
-6
paddle/cuda/include/hl_cpu_simd_neon.cuh
paddle/cuda/include/hl_cpu_simd_neon.cuh
+46
-6
paddle/cuda/include/hl_cpu_simd_sse.cuh
paddle/cuda/include/hl_cpu_simd_sse.cuh
+88
-11
paddle/cuda/include/hl_matrix_base.cuh
paddle/cuda/include/hl_matrix_base.cuh
+4
-26
paddle/cuda/include/hl_matrix_base_detail.cuh
paddle/cuda/include/hl_matrix_base_detail.cuh
+151
-0
paddle/cuda/include/hl_matrix_base_sse.cuh
paddle/cuda/include/hl_matrix_base_sse.cuh
+0
-211
paddle/cuda/include/hl_matrix_type.cuh
paddle/cuda/include/hl_matrix_type.cuh
+12
-6
未找到文件。
paddle/cuda/include/hl_cpu_scalar.cuh
浏览文件 @
688305f8
...
...
@@ -15,6 +15,9 @@ limitations under the License. */
#ifndef HL_CPU_SCALAR_CUH_
#define HL_CPU_SCALAR_CUH_
#define VECTOR_SIMD false
#define VECTOR_SET hl_vec_set
#ifndef PADDLE_TYPE_DOUBLE
/* size of float */
#define VECTOR_SIZE 4
...
...
@@ -25,15 +28,47 @@ limitations under the License. */
typedef
real
vecType
;
inline
void
set_zero
(
vecType
&
mm
)
{
mm
=
(
vecType
)
0.0
f
;
}
/* Consider a real as a vector */
#define VECTOR_LEN 1
#define VECTOR_SET set_zero
template
<
class
Agg
>
inline
real
hl_agg_op
(
Agg
agg
,
vecType
mm
)
{
return
mm
;
}
INLINE
real
hl_vec_set
(
const
real
r
)
{
return
r
;
}
INLINE
real
hl_vec_max
(
const
real
a
,
const
real
b
)
{
return
a
>
b
?
a
:
b
;
}
INLINE
real
hl_vec_min
(
const
real
a
,
const
real
b
)
{
return
a
>
b
?
b
:
a
;
}
INLINE
real
hl_vec_add
(
const
real
a
,
const
real
b
)
{
return
a
+
b
;
}
INLINE
real
hl_vec_sub
(
const
real
a
,
const
real
b
)
{
return
a
-
b
;
}
INLINE
real
hl_vec_mul
(
const
real
a
,
const
real
b
)
{
return
a
*
b
;
}
INLINE
real
hl_vec_div
(
const
real
a
,
const
real
b
)
{
return
a
/
b
;
}
INLINE
real
hl_vec_classification_error
(
const
real
a
,
const
real
b
,
const
real
p
,
const
real
r
)
{
return
((
a
>
p
)
==
(
b
>
p
))
?
0.0
f
:
1.0
f
;
}
#endif // HL_CPU_SCALAR_CUH_
paddle/cuda/include/hl_cpu_simd_neon.cuh
浏览文件 @
688305f8
...
...
@@ -17,7 +17,9 @@ limitations under the License. */
#include <arm_neon.h>
#define VECTOR_SIMD true
#define VECTOR_SIZE 16
#define VECTOR_SET hl_vec_set
#ifndef PADDLE_TYPE_DOUBLE
...
...
@@ -25,7 +27,6 @@ typedef float32x4_t vecType;
/* number of float in vector */
#define VECTOR_LEN 4
#define VECTOR_SET vdupq_n_f32
template
<
class
Agg
>
inline
real
hl_agg_op
(
Agg
agg
,
vecType
mm
)
{
...
...
@@ -39,6 +40,45 @@ inline real hl_agg_op(Agg agg, vecType mm) {
return
vgetq_lane_f32
(
ret
,
0
);
}
inline
float32x4_t
hl_vec_set
(
const
real
f
)
{
return
vdupq_n_f32
(
f
);
}
inline
float32x4_t
hl_vec_max
(
const
float32x4_t
a
,
const
float32x4_t
b
)
{
return
vmaxq_f32
(
a
,
b
);
}
inline
float32x4_t
hl_vec_min
(
const
float32x4_t
a
,
const
float32x4_t
b
)
{
return
vminq_f32
(
a
,
b
);
}
inline
float32x4_t
hl_vec_add
(
const
float32x4_t
a
,
const
float32x4_t
b
)
{
return
vaddq_f32
(
a
,
b
);
}
inline
float32x4_t
hl_vec_sub
(
const
float32x4_t
a
,
const
float32x4_t
b
)
{
return
vsubq_f32
(
a
,
b
);
}
inline
float32x4_t
hl_vec_mul
(
const
float32x4_t
a
,
const
float32x4_t
b
)
{
return
vmulq_f32
(
a
,
b
);
}
inline
float32x4_t
hl_vec_div
(
const
float32x4_t
a
,
const
float32x4_t
b
)
{
float32x4_t
tmp
=
vrecpeq_f32
(
b
);
return
vmulq_f32
(
a
,
tmp
);
}
inline
float32x4_t
hl_vec_classification_error
(
const
float32x4_t
a
,
const
float32x4_t
b
,
const
float32x4_t
p
,
const
float32x4_t
r
)
{
uint32x4_t
tmp1
=
vcgtq_f32
(
a
,
p
);
uint32x4_t
tmp2
=
vcgtq_f32
(
b
,
p
);
uint32x4_t
tmp3
=
veorq_u32
(
tmp1
,
tmp2
);
return
vcvtq_f32_u32
(
vandq_u32
(
tmp3
,
vcvtq_u32_f32
(
r
)));
}
#else
#ifdef __aarch64__
...
...
@@ -51,7 +91,7 @@ typedef float64x2_t vecType;
#error To be implemented
#else
#error NEON instructions does not support double precision
#endif
#endif
// __aarch64__
#endif
...
...
paddle/cuda/include/hl_cpu_simd_sse.cuh
浏览文件 @
688305f8
...
...
@@ -12,14 +12,16 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef HL_SIMD_SSE_CUH_
#define HL_SIMD_SSE_CUH_
#ifndef HL_
CPU_
SIMD_SSE_CUH_
#define HL_
CPU_
SIMD_SSE_CUH_
#include <mmintrin.h>
#include <xmmintrin.h>
#include <emmintrin.h>
#define VECTOR_SIMD true
#define VECTOR_SIZE 16
#define VECTOR_SET hl_vec_set
#ifndef PADDLE_TYPE_DOUBLE
...
...
@@ -27,7 +29,6 @@ typedef __m128 vecType;
/* number of float in vector */
#define VECTOR_LEN 4
#define VECTOR_SET _mm_set_ps1
template
<
class
Agg
>
inline
real
hl_agg_op
(
Agg
agg
,
vecType
mm
)
{
...
...
@@ -40,16 +41,50 @@ inline real hl_agg_op(Agg agg, vecType mm) {
return
_mm_cvtss_f32
(
ret
);
}
inline
__m128
hl_vec_set
(
const
real
f
)
{
return
_mm_set_ps1
(
f
);
}
inline
__m128
hl_vec_max
(
const
__m128
a
,
const
__m128
b
)
{
return
_mm_max_ps
(
a
,
b
);
}
inline
__m128
hl_vec_min
(
const
__m128
a
,
const
__m128
b
)
{
return
_mm_min_ps
(
a
,
b
);
}
inline
__m128
hl_vec_add
(
const
__m128
a
,
const
__m128
b
)
{
return
_mm_add_ps
(
a
,
b
);
}
inline
__m128
hl_vec_sub
(
const
__m128
a
,
const
__m128
b
)
{
return
_mm_sub_ps
(
a
,
b
);
}
inline
__m128
hl_vec_mul
(
const
__m128
a
,
const
__m128
b
)
{
return
_mm_mul_ps
(
a
,
b
);
}
inline
__m128
hl_vec_div
(
const
__m128
a
,
const
__m128
b
)
{
return
_mm_div_ps
(
a
,
b
);
}
inline
__m128
hl_vec_classification_error
(
const
__m128
a
,
const
__m128
b
,
const
__m128
p
,
const
__m128
r
)
{
__m128
tmp1
=
_mm_cmpgt_ps
(
a
,
p
);
__m128
tmp2
=
_mm_cmpgt_ps
(
b
,
p
);
__m128
tmp3
=
_mm_xor_ps
(
tmp1
,
tmp2
);
return
_mm_and_ps
(
tmp3
,
r
);
}
#else
typedef
__m128d
vecType
;
/* number of double in vector */
#define VECTOR_LEN 2
#if defined(__APPLE__) || defined(__OSX__)
#define _mm_set_pd1 _mm_set1_pd
#endif
#define VECTOR_SET _mm_set_pd1
template
<
class
Agg
>
inline
real
hl_agg_op
(
Agg
agg
,
vecType
mm
)
{
...
...
@@ -60,6 +95,48 @@ inline real hl_agg_op(Agg agg, vecType mm) {
return
_mm_cvtsd_f64
(
ret
);
}
inline
__m128d
hl_vec_set
(
const
real
d
)
{
#if defined(__APPLE__) || defined(__OSX__)
return
_mm_set1_pd
(
d
);
#else
return
_mm_set_pd1
(
d
);
#endif
}
inline
__m128d
hl_vec_max
(
const
__m128d
a
,
const
__m128d
b
)
{
return
_mm_max_pd
(
a
,
b
);
}
inline
__m128d
hl_vec_min
(
const
__m128d
a
,
const
__m128d
b
)
{
return
_mm_min_pd
(
a
,
b
);
}
inline
__m128d
hl_vec_add
(
const
__m128d
a
,
const
__m128d
b
)
{
return
_mm_add_pd
(
a
,
b
);
}
inline
__m128d
hl_vec_sub
(
const
__m128d
a
,
const
__m128d
b
)
{
return
_mm_sub_pd
(
a
,
b
);
}
inline
__m128d
hl_vec_mul
(
const
__m128d
a
,
const
__m128d
b
)
{
return
_mm_mul_pd
(
a
,
b
);
}
inline
__m128d
hl_vec_div
(
const
__m128d
a
,
const
__m128d
b
)
{
return
_mm_div_pd
(
a
,
b
);
}
inline
__m128d
hl_vec_classification_error
(
const
__m128d
a
,
const
__m128d
b
,
const
__m128d
p
,
const
__m128d
r
)
{
__m128d
tmp1
=
_mm_cmpgt_pd
(
a
,
p
);
__m128d
tmp2
=
_mm_cmpgt_pd
(
b
,
p
);
__m128d
tmp3
=
_mm_xor_pd
(
tmp1
,
tmp2
);
return
_mm_and_pd
(
tmp3
,
r
);
}
#endif
#endif // HL_SIMD_SSE_CUH_
#endif // HL_
CPU_
SIMD_SSE_CUH_
paddle/cuda/include/hl_matrix_base.cuh
浏览文件 @
688305f8
...
...
@@ -18,26 +18,6 @@ limitations under the License. */
#include "hl_matrix_type.cuh"
#ifdef __CUDA_ARCH__
/**
* CUDA kernel inline function
*/
#define INLINE __device__ inline
#else
/**
* CPP inline function
*/
#define INLINE inline
#endif
#ifndef PADDLE_TYPE_DOUBLE
#define DEVICE_FMAX fmaxf
#define DEVICE_FMIN fminf
#else
#define DEVICE_FMAX fmax
#define DEVICE_FMIN fmin
#endif
class
BaseOp
{
public:
static
const
bool
sse
=
false
;
...
...
@@ -52,11 +32,7 @@ public:
}
};
#if defined(__SSE3__)
#include "hl_matrix_base_sse.cuh"
#elif (defined(__ARM__NEON__) || defined(__ARM_NEON))
#include "hl_matrix_base_neon.cuh"
#else
#ifdef __CUDA_ARCH__
typedef
BaseOp
SSESum
;
typedef
BaseOp
SSEMax
;
typedef
BaseOp
SSEMin
;
...
...
@@ -70,6 +46,8 @@ typedef BaseOp SSESquaredDiff;
typedef
BaseOp
SSEFirst
;
typedef
BaseOp
SSESecond
;
typedef
BaseOp
SSEClassificationError
;
#else
#include "hl_matrix_base_detail.cuh"
#endif
namespace
aggregate
{
...
...
paddle/cuda/include/hl_matrix_base_
neon
.cuh
→
paddle/cuda/include/hl_matrix_base_
detail
.cuh
浏览文件 @
688305f8
...
...
@@ -12,32 +12,33 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef HL_MATRIX_BASE_DETAIL_CUH_
#define HL_MATRIX_BASE_DETAIL_CUH_
#ifndef HL_MATRIX_BASE_NEON_CUH_
#define HL_MATRIX_BASE_NEON_CUH_
#include "hl_matrix_type.cuh"
namespace
aggregate
{
class
SSESum
{
public:
static
const
bool
sse
=
true
;
INLINE
float32x4_t
vecOp
(
const
float32x4_t
a
,
const
float32x4_t
b
)
const
{
return
vaddq_f32
(
a
,
b
);
static
const
bool
sse
=
VECTOR_SIMD
;
INLINE
vecType
vecOp
(
const
vecType
a
,
const
vecType
b
)
const
{
return
hl_vec_add
(
a
,
b
);
}
};
class
SSEMax
{
public:
static
const
bool
sse
=
true
;
INLINE
float32x4_t
vecOp
(
const
float32x4_t
a
,
const
float32x4_t
b
)
const
{
return
vmaxq_f32
(
a
,
b
);
static
const
bool
sse
=
VECTOR_SIMD
;
INLINE
vecType
vecOp
(
const
vecType
a
,
const
vecType
b
)
const
{
return
hl_vec_max
(
a
,
b
);
}
};
class
SSEMin
{
public:
static
const
bool
sse
=
true
;
INLINE
float32x4_t
vecOp
(
const
float32x4_t
a
,
const
float32x4_t
b
)
const
{
return
vminq_f32
(
a
,
b
);
static
const
bool
sse
=
VECTOR_SIMD
;
INLINE
vecType
vecOp
(
const
vecType
a
,
const
vecType
b
)
const
{
return
hl_vec_min
(
a
,
b
);
}
};
}
// namespace aggregate
...
...
@@ -46,8 +47,8 @@ namespace base {
namespace
unary
{
class
SSEIdentity
{
public:
static
const
bool
sse
=
true
;
INLINE
float32x4_t
vecOp
(
const
float32x4_t
a
)
const
{
static
const
bool
sse
=
VECTOR_SIMD
;
INLINE
vecType
vecOp
(
const
vecType
a
)
const
{
return
a
;
}
};
...
...
@@ -56,106 +57,95 @@ public:
namespace
binary
{
class
SSEAdd
{
public:
static
const
bool
sse
=
true
;
INLINE
float32x4_t
vecOp
(
const
float32x4_t
a
,
const
float32x4_t
b
)
const
{
return
vaddq_f32
(
a
,
b
);
static
const
bool
sse
=
VECTOR_SIMD
;
INLINE
vecType
vecOp
(
const
vecType
a
,
const
vecType
b
)
const
{
return
hl_vec_add
(
a
,
b
);
}
};
class
SSEAdd2
{
public:
static
const
bool
sse
=
true
;
static
const
bool
sse
=
VECTOR_SIMD
;
const
real
p1
;
const
real
p2
;
float32x4_t
mp1
;
float32x4_t
mp2
;
vecType
mp1
;
vecType
mp2
;
public:
SSEAdd2
(
const
real
s1
,
const
real
s2
)
:
p1
(
s1
),
p2
(
s2
)
{
mp1
=
vdupq_n_f32
(
p1
);
mp2
=
vdupq_n_f32
(
p2
);
mp1
=
hl_vec_set
(
p1
);
mp2
=
hl_vec_set
(
p2
);
}
INLINE
float32x4_t
vecOp
(
const
float32x4_t
a
,
const
float32x4_t
b
)
const
{
float32x4_t
tmp1
,
tmp2
;
tmp1
=
vmulq_f32
(
mp1
,
a
);
tmp2
=
vmulq_f32
(
mp2
,
b
);
return
vaddq_f32
(
tmp1
,
tmp2
);
INLINE
vecType
vecOp
(
const
vecType
a
,
const
vecType
b
)
const
{
return
hl_vec_add
(
hl_vec_mul
(
mp1
,
a
),
hl_vec_mul
(
mp2
,
b
));
}
};
class
SSESub
{
public:
static
const
bool
sse
=
true
;
INLINE
float32x4_t
vecOp
(
const
float32x4_t
a
,
const
float32x4_t
b
)
const
{
return
vsubq_f32
(
a
,
b
);
static
const
bool
sse
=
VECTOR_SIMD
;
INLINE
vecType
vecOp
(
const
vecType
a
,
const
vecType
b
)
const
{
return
hl_vec_sub
(
a
,
b
);
}
};
class
SSEMul
{
public:
static
const
bool
sse
=
true
;
INLINE
float32x4_t
vecOp
(
const
float32x4_t
a
,
const
float32x4_t
b
)
const
{
return
vmulq_f32
(
a
,
b
);
static
const
bool
sse
=
VECTOR_SIMD
;
INLINE
vecType
vecOp
(
const
vecType
a
,
const
vecType
b
)
const
{
return
hl_vec_mul
(
a
,
b
);
}
};
class
SSEDiv
{
public:
static
const
bool
sse
=
true
;
INLINE
float32x4_t
vecOp
(
const
float32x4_t
a
,
const
float32x4_t
b
)
const
{
float32x4_t
tmp
;
tmp
=
vrecpeq_f32
(
b
);
return
vmulq_f32
(
a
,
tmp
);
static
const
bool
sse
=
VECTOR_SIMD
;
INLINE
vecType
vecOp
(
const
vecType
a
,
const
vecType
b
)
const
{
return
hl_vec_div
(
a
,
b
);
}
};
class
SSESquaredDiff
{
public:
static
const
bool
sse
=
true
;
INLINE
float32x4_t
vecOp
(
const
float32x4_t
a
,
const
float32x4_t
b
)
const
{
float32x4_t
tmp
;
tmp
=
vsubq_f32
(
a
,
b
);
return
vmulq_f32
(
tmp
,
tmp
);
static
const
bool
sse
=
VECTOR_SIMD
;
INLINE
vecType
vecOp
(
const
vecType
a
,
const
vecType
b
)
const
{
return
hl_vec_mul
(
hl_vec_sub
(
a
,
b
),
hl_vec_sub
(
a
,
b
));
}
};
class
SSEFirst
{
public:
static
const
bool
sse
=
true
;
INLINE
float32x4_t
vecOp
(
const
float32x4_t
a
,
const
float32x4_t
b
)
const
{
static
const
bool
sse
=
VECTOR_SIMD
;
INLINE
vecType
vecOp
(
const
vecType
a
,
const
vecType
b
)
const
{
return
a
;
}
};
class
SSESecond
{
public:
static
const
bool
sse
=
true
;
INLINE
float32x4_t
vecOp
(
const
float32x4_t
a
,
const
float32x4_t
b
)
const
{
static
const
bool
sse
=
VECTOR_SIMD
;
INLINE
vecType
vecOp
(
const
vecType
a
,
const
vecType
b
)
const
{
return
b
;
}
};
class
SSEClassificationError
{
public:
static
const
bool
sse
=
true
;
static
const
bool
sse
=
VECTOR_SIMD
;
const
real
p
;
float32x4_t
mp
;
uint32x4_t
result
;
vecType
mp
;
vecType
result
;
public:
explicit
SSEClassificationError
(
const
real
s
)
:
p
(
s
)
{
mp
=
vdupq_n_f32
(
p
);
result
=
vdupq_n_u32
(
1
);
mp
=
hl_vec_set
(
p
);
result
=
hl_vec_set
(
1.0
f
);
}
// TODO: to be check
INLINE
float32x4_t
vecOp
(
const
float32x4_t
a
,
const
float32x4_t
b
)
const
{
uint32x4_t
tmp1
=
vcgtq_f32
(
a
,
mp
);
uint32x4_t
tmp2
=
vcgtq_f32
(
b
,
mp
);
uint32x4_t
tmp3
=
veorq_u32
(
tmp1
,
tmp2
);
return
vcvtq_f32_u32
(
vandq_u32
(
tmp3
,
result
));
INLINE
vecType
vecOp
(
const
vecType
a
,
const
vecType
b
)
const
{
return
hl_vec_classification_error
(
a
,
b
,
mp
,
result
);
}
};
}
// namespace binary
}
// namespace base
#endif
/* HL_MATRIX_BASE_
NEON
_CUH_ */
#endif
/* HL_MATRIX_BASE_
DETAIL
_CUH_ */
paddle/cuda/include/hl_matrix_base_sse.cuh
已删除
100644 → 0
浏览文件 @
32a85081
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef HL_MATRIX_BASE_SSE_CUH_
#define HL_MATRIX_BASE_SSE_CUH_
namespace
aggregate
{
class
SSESum
{
public:
static
const
bool
sse
=
true
;
INLINE
__m128
vecOp
(
const
__m128
a
,
const
__m128
b
)
const
{
return
_mm_add_ps
(
a
,
b
);
}
INLINE
__m128d
vecOp
(
const
__m128d
a
,
const
__m128d
b
)
const
{
return
_mm_add_pd
(
a
,
b
);
}
};
class
SSEMax
{
public:
static
const
bool
sse
=
true
;
INLINE
__m128
vecOp
(
const
__m128
a
,
const
__m128
b
)
const
{
return
_mm_max_ps
(
a
,
b
);
}
INLINE
__m128d
vecOp
(
const
__m128d
a
,
const
__m128d
b
)
const
{
return
_mm_max_pd
(
a
,
b
);
}
};
class
SSEMin
{
public:
static
const
bool
sse
=
true
;
INLINE
__m128
vecOp
(
const
__m128
a
,
const
__m128
b
)
const
{
return
_mm_min_ps
(
a
,
b
);
}
INLINE
__m128d
vecOp
(
const
__m128d
a
,
const
__m128d
b
)
const
{
return
_mm_min_pd
(
a
,
b
);
}
};
}
// namespace aggregate
namespace
base
{
namespace
unary
{
class
SSEIdentity
{
public:
static
const
bool
sse
=
true
;
INLINE
__m128
vecOp
(
const
__m128
a
)
const
{
return
a
;
}
INLINE
__m128d
vecOp
(
const
__m128d
a
)
const
{
return
a
;
}
};
}
// namespace unary
namespace
binary
{
class
SSEAdd
{
public:
static
const
bool
sse
=
true
;
INLINE
__m128
vecOp
(
const
__m128
a
,
const
__m128
b
)
const
{
return
_mm_add_ps
(
a
,
b
);
}
INLINE
__m128d
vecOp
(
const
__m128d
a
,
const
__m128d
b
)
const
{
return
_mm_add_pd
(
a
,
b
);
}
};
class
SSEAdd2
{
public:
static
const
bool
sse
=
true
;
const
real
p1
;
const
real
p2
;
union
{
__m128
f
;
__m128d
d
;}
mp1
;
union
{
__m128
f
;
__m128d
d
;}
mp2
;
public:
SSEAdd2
(
const
real
s1
,
const
real
s2
)
:
p1
(
s1
),
p2
(
s2
)
{
if
(
sizeof
(
real
)
==
sizeof
(
float
))
{
mp1
.
f
=
_mm_set1_ps
(
p1
);
mp2
.
f
=
_mm_set1_ps
(
p2
);
}
else
{
mp1
.
d
=
_mm_set1_pd
(
p1
);
mp2
.
d
=
_mm_set1_pd
(
p2
);
}
}
INLINE
__m128
vecOp
(
const
__m128
a
,
const
__m128
b
)
const
{
__m128
tmp1
,
tmp2
;
tmp1
=
_mm_mul_ps
(
mp1
.
f
,
a
);
tmp2
=
_mm_mul_ps
(
mp2
.
f
,
b
);
return
_mm_add_ps
(
tmp1
,
tmp2
);
}
INLINE
__m128d
vecOp
(
const
__m128d
a
,
const
__m128d
b
)
const
{
__m128d
tmp1
,
tmp2
;
tmp1
=
_mm_mul_pd
(
mp1
.
d
,
a
);
tmp2
=
_mm_mul_pd
(
mp2
.
d
,
b
);
return
_mm_add_pd
(
tmp1
,
tmp2
);
}
};
class
SSESub
{
public:
static
const
bool
sse
=
true
;
INLINE
__m128
vecOp
(
const
__m128
a
,
const
__m128
b
)
const
{
return
_mm_sub_ps
(
a
,
b
);
}
INLINE
__m128d
vecOp
(
const
__m128d
a
,
const
__m128d
b
)
const
{
return
_mm_sub_pd
(
a
,
b
);
}
};
class
SSEMul
{
public:
static
const
bool
sse
=
true
;
INLINE
__m128
vecOp
(
const
__m128
a
,
const
__m128
b
)
const
{
return
_mm_mul_ps
(
a
,
b
);
}
INLINE
__m128d
vecOp
(
const
__m128d
a
,
const
__m128d
b
)
const
{
return
_mm_mul_pd
(
a
,
b
);
}
};
class
SSEDiv
{
public:
static
const
bool
sse
=
true
;
INLINE
__m128
vecOp
(
const
__m128
a
,
const
__m128
b
)
const
{
return
_mm_div_ps
(
a
,
b
);
}
INLINE
__m128d
vecOp
(
const
__m128d
a
,
const
__m128d
b
)
const
{
return
_mm_div_pd
(
a
,
b
);
}
};
class
SSESquaredDiff
{
public:
static
const
bool
sse
=
true
;
INLINE
__m128
vecOp
(
const
__m128
a
,
const
__m128
b
)
const
{
return
_mm_mul_ps
(
_mm_sub_ps
(
a
,
b
),
_mm_sub_ps
(
a
,
b
));
}
INLINE
__m128d
vecOp
(
const
__m128d
a
,
const
__m128d
b
)
const
{
return
_mm_mul_pd
(
_mm_sub_pd
(
a
,
b
),
_mm_sub_pd
(
a
,
b
));
}
};
class
SSEFirst
{
public:
static
const
bool
sse
=
true
;
INLINE
__m128
vecOp
(
const
__m128
a
,
const
__m128
b
)
const
{
return
a
;
}
INLINE
__m128d
vecOp
(
const
__m128d
a
,
const
__m128d
b
)
const
{
return
a
;
}
};
class
SSESecond
{
public:
static
const
bool
sse
=
true
;
INLINE
__m128
vecOp
(
const
__m128
a
,
const
__m128
b
)
const
{
return
b
;
}
INLINE
__m128d
vecOp
(
const
__m128d
a
,
const
__m128d
b
)
const
{
return
b
;
}
};
class
SSEClassificationError
{
public:
static
const
bool
sse
=
true
;
const
real
p
;
union
{
__m128
f
;
__m128d
d
;}
mp
;
union
{
__m128
f
;
__m128d
d
;}
result
;
public:
explicit
SSEClassificationError
(
const
real
s
)
:
p
(
s
)
{
if
(
sizeof
(
real
)
==
sizeof
(
float
))
{
mp
.
f
=
_mm_set1_ps
(
p
);
result
.
f
=
_mm_set1_ps
(
1.0
f
);
}
else
{
mp
.
d
=
_mm_set1_pd
(
p
);
result
.
d
=
_mm_set1_pd
(
1.0
);
}
}
INLINE
__m128
vecOp
(
const
__m128
a
,
const
__m128
b
)
const
{
__m128
tmp1
=
_mm_cmpgt_ps
(
a
,
mp
.
f
);
__m128
tmp2
=
_mm_cmpgt_ps
(
b
,
mp
.
f
);
__m128
tmp3
=
_mm_xor_ps
(
tmp1
,
tmp2
);
return
_mm_and_ps
(
tmp3
,
result
.
f
);
}
INLINE
__m128d
vecOp
(
const
__m128d
a
,
const
__m128d
b
)
const
{
__m128d
tmp1
=
_mm_cmpgt_pd
(
a
,
mp
.
d
);
__m128d
tmp2
=
_mm_cmpgt_pd
(
b
,
mp
.
d
);
__m128d
tmp3
=
_mm_xor_pd
(
tmp1
,
tmp2
);
return
_mm_and_pd
(
tmp3
,
result
.
d
);
}
};
}
// namespace binary
}
// namespace base
#endif
/* HL_MATRIX_BASE_SSE_CUH_ */
paddle/cuda/include/hl_matrix_type.cuh
浏览文件 @
688305f8
...
...
@@ -17,6 +17,18 @@ limitations under the License. */
#include "hl_base.h"
#ifdef __CUDA_ARCH__
/**
* CUDA kernel inline function
*/
#define INLINE __device__ inline
#else
/**
* CPP inline function
*/
#define INLINE inline
#endif
#ifdef __CUDA_ARCH__
#include <vector_types.h>
#ifndef PADDLE_TYPE_DOUBLE
...
...
@@ -32,10 +44,4 @@ typedef double2 vecType;
#include "hl_cpu_scalar.cuh"
#endif
#ifdef __CUDA_ARCH__
#define INLINE __device__ inline
#else
#define INLINE inline
#endif
#endif // HL_MATRIX_TYPE_CUH_
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录