diff --git a/CMakeLists.txt b/CMakeLists.txt index 4921226ec1c90a969fa1cfc383823820500c7757..4783095194dc9c6409dc31c95588f46c9bee7c61 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -86,6 +86,14 @@ if(ANDROID OR IOS) "Disable MKLDNN when cross-compiling for Android and iOS" FORCE) set(WITH_MKLML OFF CACHE STRING "Disable MKLML package when cross-compiling for Android and iOS" FORCE) + + # Compile PaddlePaddle mobile inference library + if (NOT WITH_C_API) + set(WITH_C_API ON CACHE STRING + "Always compile the C_API when cross-compiling for Android and iOS" FORCE) + endif() + set(MOBILE_INFERENCE ON) + add_definitions(-DPADDLE_MOBILE_INFERENCE) endif() set(THIRD_PARTY_PATH "${CMAKE_BINARY_DIR}/third_party" CACHE STRING @@ -160,9 +168,11 @@ endif(USE_NNPACK) add_subdirectory(proto) -# "add_subdirectory(go)" should be placed after the following loine, -# because it depends on paddle/optimizer. -add_subdirectory(paddle/optimizer) +if(NOT MOBILE_INFERENCE) + # "add_subdirectory(go)" should be placed after the following loine, + # because it depends on paddle/optimizer. + add_subdirectory(paddle/optimizer) +endif() # "add_subdirectory(paddle)" and "add_subdirectory(python)" should be # placed after this block, because they depends on it. diff --git a/cmake/configure.cmake b/cmake/configure.cmake index 926a7b1d69c7f8f9bb2e2e1de084c6cd42cfc674..c1c93e17fd82ea048ba27b127b1527d9a8c9da41 100644 --- a/cmake/configure.cmake +++ b/cmake/configure.cmake @@ -53,7 +53,8 @@ if(NOT WITH_GPU) list(APPEND CMAKE_CXX_SOURCE_FILE_EXTENSIONS cu) else() - add_definitions(-DPADDLE_WITH_GPU) + add_definitions(-DPADDLE_WITH_CUDA) + FIND_PACKAGE(CUDA REQUIRED) if(${CUDA_VERSION_MAJOR} VERSION_LESS 7) diff --git a/cmake/util.cmake b/cmake/util.cmake index d1aee3e170a2d143ac06b438725e907e96f041c8..117ab7f49cdf4a568cd203b2b17767643d0b2d50 100644 --- a/cmake/util.cmake +++ b/cmake/util.cmake @@ -73,25 +73,43 @@ function(link_paddle_exe TARGET_NAME) generate_rdma_links() endif() - target_circle_link_libraries(${TARGET_NAME} - ARCHIVE_START - paddle_gserver - paddle_function - ARCHIVE_END - paddle_pserver - paddle_trainer_lib - paddle_network - paddle_math - paddle_utils - paddle_parameter - paddle_proto - paddle_cuda - paddle_optimizer - ${EXTERNAL_LIBS} - ${CMAKE_THREAD_LIBS_INIT} - ${CMAKE_DL_LIBS} - ${RDMA_LD_FLAGS} - ${RDMA_LIBS}) + if(MOBILE_INFERENCE) + target_circle_link_libraries(${TARGET_NAME} + ARCHIVE_START + paddle_gserver + paddle_function + ARCHIVE_END + paddle_math + paddle_utils + paddle_parameter + paddle_proto + paddle_cuda + ${EXTERNAL_LIBS} + ${CMAKE_THREAD_LIBS_INIT} + ${CMAKE_DL_LIBS} + ${RDMA_LD_FLAGS} + ${RDMA_LIBS}) + else() + target_circle_link_libraries(${TARGET_NAME} + ARCHIVE_START + paddle_gserver + paddle_function + ARCHIVE_END + paddle_pserver + paddle_trainer_lib + paddle_network + paddle_math + paddle_utils + paddle_parameter + paddle_proto + paddle_cuda + paddle_optimizer + ${EXTERNAL_LIBS} + ${CMAKE_THREAD_LIBS_INIT} + ${CMAKE_DL_LIBS} + ${RDMA_LD_FLAGS} + ${RDMA_LIBS}) + endif() if(ANDROID) target_link_libraries(${TARGET_NAME} log) diff --git a/doc/design/block.md b/doc/design/block.md index be8800122035984df281692fc40009c397565046..4d5dd4ba95a686d18b2339c69f0316c340681909 100644 --- a/doc/design/block.md +++ b/doc/design/block.md @@ -55,17 +55,23 @@ Let us consolidate the discussion by presenting some examples. The following C++ programs shows how blocks are used with the `if-else` structure: ```c++ +namespace pd = paddle; + int x = 10; -int y = 20; -int out; +int y = 1; +int z = 10; bool cond = false; +int o1, o2; if (cond) { int z = x + y; - out = softmax(z); + o1 = z; + o2 = pd::layer::softmax(z); } else { - int z = fc(x); - out = z; + int d = pd::layer::fc(z); + o1 = d; + o2 = d+1; } + ``` An equivalent PaddlePaddle program from the design doc of the [IfElseOp operator](./if_else_op.md) is as follows: @@ -73,57 +79,55 @@ An equivalent PaddlePaddle program from the design doc of the [IfElseOp operator ```python import paddle as pd -x = var(10) -y = var(20) -cond = var(false) -ie = pd.create_ifelseop(inputs=[x], output_num=1) +x = minibatch([10, 20, 30]) # shape=[None, 1] +y = var(1) # shape=[1], value=1 +z = minibatch([10, 20, 30]) # shape=[None, 1] +cond = larger_than(x, 15) # [false, true, true] + +ie = pd.ifelse() with ie.true_block(): - x = ie.inputs(true, 0) - z = operator.add(x, y) - ie.set_output(true, 0, operator.softmax(z)) + d = pd.layer.add_scalar(x, y) + ie.output(d, pd.layer.softmax(d)) with ie.false_block(): - x = ie.inputs(false, 0) - z = layer.fc(x) - ie.set_output(true, 0, operator.softmax(z)) -out = b(cond) + d = pd.layer.fc(z) + ie.output(d, d+1) +o1, o2 = ie(cond) ``` -In both examples, the left branch computes `softmax(x+y)` and the right branch computes `fc(x)`. +In both examples, the left branch computes `x+y` and `softmax(x+y)`, the right branch computes `x+1` and `fc(x)`. A difference is that variables in the C++ program contain scalar values, whereas those in the PaddlePaddle programs are mini-batches of instances. The `ie.input(true, 0)` invocation returns instances in the 0-th input, `x`, that corresponds to true values in `cond` as the local variable `x`, where `ie.input(false, 0)` returns instances corresponding to false values. + ### Blocks with `for` and `RNNOp` The following RNN model from the [RNN design doc](./rnn.md) ```python -x = sequence([10, 20, 30]) -m = var(0) -W = tensor() -U = tensor() - -rnn = create_rnn(inputs=[input]) -with rnn.stepnet() as net: - x = net.set_inputs(0) - h = net.add_memory(init=m) - fc_out = pd.matmul(W, x) - hidden_out = pd.matmul(U, h.pre(n=1)) - sum = pd.add_two(fc_out, hidden_out) - act = pd.sigmoid(sum) - h.update(act) # update memory with act - net.set_outputs(0, act, hidden_out) # two outputs - +x = sequence([10, 20, 30]) # shape=[None, 1] +m = var(0) # shape=[1] +W = var(0.314, param=true) # shape=[1] +U = var(0.375, param=true) # shape=[1] + +rnn = pd.rnn() +with rnn.step(): + h = rnn.memory(init = m) + hh = rnn.previous_memory(h) + a = layer.fc(W, x) + b = layer.fc(U, hh) + s = pd.add(a, b) + act = pd.sigmoid(s) + rnn.update_memory(h, act) + rnn.output(a, b) o1, o2 = rnn() -print o1, o2 ``` - has its equivalent C++ program as follows ```c++ int* x = {10, 20, 30}; -int m = 0; -int W = some_value(); -int U = some_other_value(); +int* m = {0}; +int* W = {0.314}; +int* U = {0.375}; int mem[sizeof(x) / sizeof(x[0]) + 1]; int o1[sizeof(x) / sizeof(x[0]) + 1]; @@ -131,20 +135,16 @@ int o2[sizeof(x) / sizeof(x[0]) + 1]; for (int i = 1; i <= sizeof(x)/sizeof(x[0]); ++i) { int x = x[i-1]; if (i == 1) mem[0] = m; - int fc_out = W * x; - int hidden_out = Y * mem[i-1]; - int sum = fc_out + hidden_out; + int a = W * x; + int b = Y * mem[i-1]; + int s = fc_out + hidden_out; int act = sigmoid(sum); mem[i] = act; o1[i] = act; o2[i] = hidden_out; } - -print_array(o1); -print_array(o2); ``` - ## Compilation and Execution Like TensorFlow programs, a PaddlePaddle program is written in Python. The first part describes a neural network as a protobuf message, and the rest part executes the message for training or inference. @@ -210,11 +210,11 @@ a = pd.Varaible(shape=[20, 20]) b = pd.fc(a, params=["fc.w", "fc.b"]) rnn = pd.create_rnn() -with rnn.stepnet() as net: - x = net.set_inputs(a) +with rnn.stepnet() + x = a.as_step_input() # reuse fc's parameter fc_without_b = pd.get_variable("fc.w") - net.set_outputs(fc_without_b) + rnn.output(fc_without_b) out = rnn() ``` diff --git a/doc/design/if_else_op.md b/doc/design/if_else_op.md index 954a19c0733358c235eae3cffe134c23dac94c95..26d140f06db4ecefa86be015eaa731ffddc6910c 100644 --- a/doc/design/if_else_op.md +++ b/doc/design/if_else_op.md @@ -1,41 +1,51 @@ -IfOp should have only one branch. An IfOp operator takes a `cond` variable whose value must be a vector of N boolean elements. Its return value has N instances. If cond[i] == True, input instance input[i] will go through true_block() and generate output[i]; otherwise it will produce output from false_bloack(). +# The `IfElse` Operator -```python -import paddle as pd +PaddlePaddle's `IfElse` operator differs from TensorFlow's: -x = var() -y = var() -cond = var() -default_value = var() -b = pd.create_ifelseop(inputs=[x], output_num=1) -with b.true_block(): - x = b.inputs(0) - z = operator.add(x, y) - b.set_output(0, operator.softmax(z)) - -with b.false_block(): - x = b.inputs(0) - z = layer.fc(x) - b.set_output(0, operator.softmax(z)) - -out = b(cond) -``` +- the TensorFlow version takes a scalar boolean value as the condition so that the whole mini-batch goes to either the true or the false branch, whereas +- the PaddlePaddle version takes a vector of boolean value as the condition, and instances corresponding to true values go to the true branch, those corresponding to false values go to the false branch. + +## Example + +The following PaddlePaddle program shows the usage of the IfElse operator: -If only true_block is set in an IfElseOp, a special case is that we can have a default value for false as: ```python import paddle as pd -x = var() -y = var() -cond = var() -default_value = var() -b = pd.create_ifelseop(inputs=[x], output_num=1, default_value) - -with b.true_block(): - x = b.inputs(0) - z = operator.add(x, y) - b.set_output(0, operator.softmax(z)) +x = minibatch([10, 20, 30]) # shape=[None, 1] +y = var(1) # shape=[1], value=1 +z = minibatch([10, 20, 30]) # shape=[None, 1] +cond = larger_than(x, 15) # [false, true, true] + +ie = pd.ifelse() +with ie.true_block(): + d = pd.layer.add(x, y) + ie.output(d, pd.layer.softmax(d)) +with ie.false_block(): + d = pd.layer.fc(z) + ie.output(d, d+1) +o1, o2 = ie(cond) +``` -out = b(cond) +A challenge to implement the `IfElse` operator is to infer those variables to be split, or, say, to identify the variable of the mini-batch or those derived from the mini-batch. + +An equivalent C++ program is as follows: + +```c++ +namespace pd = paddle; + +int x = 10; +int y = 1; +int z = 10; +bool cond = false; +int o1, o2; +if (cond) { + int d = x + y; + o1 = z; + o2 = pd::layer::softmax(z); +} else { + int d = pd::layer::fc(z); + o1 = d; + o2 = d+1; +} ``` -where default_value is a list of vars for `cond` == False. diff --git a/doc/design/program.md b/doc/design/program.md index fb8f86ac07af403c9fee015f2a3adbfaa3c6d631..bd2456787c4e336d357a65255a8274a7c9e465cc 100644 --- a/doc/design/program.md +++ b/doc/design/program.md @@ -1,8 +1,10 @@ -# Design Doc: ProgramDesc +# Design Doc: PaddlePaddle Programs -The basic structure of a PaddlePaddle program is some nested blocks, as a C++ or Java program. +## Compile and Execution + +A PaddlePaddle program consists of two parts -- the first generates a `ProgramDesc` protobuf message that describes the program, and the second runs this message using a C++ class `Executor`. -As described in [graph.md](./graph.md), the first five lines of the following PaddlePaddle program +A simple example PaddlePaddle program can be found in [graph.md](./graph.md): ```python x = layer.data("images") @@ -13,36 +15,112 @@ optimize(cost) train(cost, reader=mnist.train()) ``` -generates, or compiles, a PaddelPaddle program, which is represented by the following protobuf message: +The first five lines of the following PaddlePaddle program generates, or, compiles, the `ProgramDesc` message. The last line runs it. -```protobuf -message ProgramDesc { - repeated BlockDesc blocks = 1; +## Programs and Blocks + +The basic structure of a PaddlePaddle program is some nested blocks, as a C++ or Java program. + +- program: some nested blocks +- [block](./block.md): + - some local variable definitions, and + - a sequence of operators + +The concept of block comes from usual programs. For example, the following C++ program has three blocks: + +```c++ +int main() { // block 0 + int i = 0; + if (i < 10) { // block 1 + for (int j = 0; j < 10; j++) { // block 2 + } + } + return 0; } +``` + +The following PaddlePaddle program has three blocks: + +```python +import paddle as pd // block 0 + +x = minibatch([10, 20, 30]) # shape=[None, 1] +y = var(1) # shape=[1], value=1 +z = minibatch([10, 20, 30]) # shape=[None, 1] +cond = larger_than(x, 15) # [false, true, true] +ie = pd.ifelse() +with ie.true_block(): // block 1 + d = pd.layer.add_scalar(x, y) + ie.output(d, pd.layer.softmax(d)) +with ie.false_block(): // block 2 + d = pd.layer.fc(z) + ie.output(d, d+1) +o1, o2 = ie(cond) +``` + +## `BlockDesc` and `ProgramDesc` + +All protobuf messages are defined in `framework.proto`. + +`BlockDesc` is straight-forward -- it includes local variable definitions, `vars`, and a sequence of operators, `ops`. + +```protobuf message BlockDesc { required int32 parent = 1; repeated VarDesc vars = 2; repeated OpDesc ops = 3; } +``` + +The parent ID indicates the parent block so that operators in a block can refer to variables defined locally and also those defined in their ancestor blocks. + +All hierarchical blocks in a program are flattened and stored in an array. The block ID is the index of the block in this array. + +```protobuf +message ProgramDesc { + repeated BlockDesc blocks = 1; +} +``` + + +### Global Block +The global block is the first one in the above array. + +## Operators that Use Blocks + +In the above example, the operator `IfElseOp` has two blocks -- the true branch and the false branch. + +The definition of `OpDesc` shows that an operator could have some attributes: + +```protobuf message OpDesc { AttrDesc attrs = 1; ... } +``` + +and an attribute could be of type block, which is, in fact, a block ID as described above: +``` message AttrDesc { - required AttrType type = 1; + required string name = 1; - // index into ProgramDesc::blocks when type==BLOCK - optional int32 block = 2; + enum AttrType { + INT = 1, + STRING = 2, + ... + BLOCK = ... + } + required AttrType type = 2; + + optional int32 block = 10; // when type == BLOCK ... } ``` -When each of the first five lines runs, related Python function, e.g., `layer.fc`, calls C++ InferShape functions. This InferShape function needs to access the properties of VarDesc's accessed by the current OpDesc. These VarDesc's might not be defined in the current block, but in some ancestor blocks. This requires that we can trace the parent of a block. - -A nested block is often an attribute of an operator, most likely, an IfElseOp or a WhileOp. In above solution, all blocks are in `ProgramDesc::blocks`, this implicitly assigns a zero-based ID to each block -- the index of the block in `ProgramDesc::blocks`. So that `AttrDesc::block` could be an integer block ID. +## InferShape With this design, the InferShape function should take the following parameters: diff --git a/doc/design/python_api.md b/doc/design/python_api.md index 5c68354274d577c29e054fdd1d3b17c7ea9b4cf9..6213da65c8c5931bc16e42574b8628b676424873 100644 --- a/doc/design/python_api.md +++ b/doc/design/python_api.md @@ -15,9 +15,9 @@ Please be aware that these Python classes need to maintain some construction-tim ### Program -A `ProgramDesc` describes a [DL program](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/program.md), which is composed of an array of `BlockDesc`s. A `BlockDesc` refers to its parent block by its index in the array. For example, operators in the step block of an RNN operator needs to be able to access variables in its ancessor blocks. +A `ProgramDesc` describes a [DL program](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/program.md), which is composed of an array of `BlockDesc`s. The `BlockDesc`s in a `ProgramDesc` can have a tree-like hierarchical structure. However, the `ProgramDesc` onlys stores a flattened array of `BlockDesc`s. A `BlockDesc` refers to its parent block by its index in the array. For example, operators in the step block of an RNN operator need to be able to access variables in its ancestor blocks. -Whenever we create a block, we need set its parent block to the current block, so the Python class `Program` needs to maintain a data member `current_block`. +Whenever we create a block, we need to set its parent block to the current block, hence the Python class `Program` needs to maintain a data member `current_block`. ```python class Program(objects): @@ -81,13 +81,13 @@ class Block(objects): self.ops.prepend(Operator(self, ...)) ``` -`create_parameter` is necessary because parameters are global variables, those defined in the global block, but can be created in some sub-blocks, e.g., an FC layer in the step block of an RNN operator. +`create_parameter` is necessary because parameters are global variables, defined in the global block, but can be created in some sub-blocks. For example, an FC layer in the step block of an RNN operator. -`prepand_operator` is necessary because the constructor of `Parameter` needs to create the initialize (or load) operator of the parameter, and would like to put it in the *preamble* of the global block. +`prepend_operator` is necessary because the constructor of `Parameter` needs to create the initialize (or load) operator of the parameter, and would like to put it in the *preamble* of the global block. ### Operator -The `Operator` class fills in the `OpDesc` message and calls the C++ function `InferShape` to infer output shape from input shape. +The `Operator` class fills in the `OpDesc` message and calls the C++ function `InferShape` to infer the output shapes from the input shapes. ```python class Operator(object): @@ -105,7 +105,7 @@ class Operator(object): return self.proto.type() ``` -`Operator` creates the `OpDesc` message in C++ space, so could it call the `InferShape` function, which is in C++. +`Operator` creates the `OpDesc` message in C++ space, so that it can call the `InferShape` function, which is in C++. ### Variable @@ -128,7 +128,7 @@ class Variable(object): self.writer = None ``` -Please be aware of `self.writer`, that tracks operator who creates the variable. It possible that there are more than one operators who write a variable, but in Python space, each writes to a variable is represented by a Variable class. This is guaranteed by the fact that **`core.NewVarDesc` must NOT create a new `VarDesc` message if its name already exists in the specified block**. +Please be aware of `self.writer`, that tracks operator who creates the variable. It possible that there are more than one operators who write a variable, but in Python space, each write to a variable is represented by a Variable class. This is guaranteed by the fact that **`core.NewVarDesc` must NOT create a new `VarDesc` message if its name already exists in the specified block**. ### Parameter @@ -155,7 +155,7 @@ class Parameter(Variable): initialize_op_attrs) ``` -When users create a parameter, s/he can call +When users create a parameter, they can call ```python program.create_parameter( diff --git a/doc/design/tensor_array.md b/doc/design/tensor_array.md index a0419ec002159893b035fae1300fce489e68936a..8378e97bf7cfaae54c36b1b92e202b16e4fe1e28 100644 --- a/doc/design/tensor_array.md +++ b/doc/design/tensor_array.md @@ -1,39 +1,250 @@ # Design for TensorArray +This design doc presents the necessity of a new C++ class `TensorArray`. +In addition to the very simple C++ implementation + +```c++ +class TensorArray { + public: + explicit TensorArray(const LoDTensor&); + explicit TensorArray(size_t size); + + private: + vector values_; +}; +``` + +We also need to expose it to PaddlePaddle's Python API, +because users would want to use it with our very flexible operators `WhileLoop`. +An example for a RNN based on dynamic operators is + +```python +input = pd.data(...) +num_steps = Var(12) + +TensorArray states(size=num_steps) +TensorArray step_inputs(unstack_from=input) +TensorArray step_outputs(size=num_steps) + +W = Tensor(...) +U = Tensor(...) +default_state = some_op() + +step = Var(1) + +wloop = paddle.create_whileloop(loop_vars=[step]) +with wloop.frame(): + wloop.break_if(pd.equal(step, num_steps) + pre_state = states.read(step-1, default_state) + step_input = step_inputs.read(step) + state = pd.sigmoid(pd.matmul(U, pre_state) + pd.matmul(W, step_input)) + states.write(step, state) + step_outputs.write(step, state) # output state + step.update(state+1) + +output = step_outputs.stack() +``` + +## Background +Steps are one of the core concepts of RNN. In each time step of RNN, there should be several input segments, states, and output segments; all these components act like arrays, for example, call `states[step_id]` will get the state in `step_id`th time step. + +An RNN can be implemented with the following pseudocode + +```c++ +Array states; +Array input_segments; +Array output_segments; +Parameter W, U; + +step = 1 +seq_len = 12 +while_loop { + if (step == seq_len) break; + states[step] = sigmoid(W * states[step-1] + U * input_segments[step]); + output_segments[step] = states[step] // take state as output + step++; +} +``` +According to the [RNN roadmap](https://github.com/PaddlePaddle/Paddle/issues/4561), there are several different RNNs that PaddlePaddle will eventually support. + +Currently, the basic RNN implementation supported by PaddlePaddle is the `recurrent_op` which takes tensors as input and splits them into `input_segments`. + + +Since a tensor cannot store variable-length sequences directly, PaddlePaddle implements the tensor with level of details (`LoDTensor` for short). +Segmenting the `LoDTensor` is much more complicated than splitting a tensor, that makes it necessary to refactor the `recurrent_op` with `LoDTensor` segmenting support. + +As the next step in RNN support, `dynamic_recurrent_op` should be introduced to handle inputs with variable-length sequences. + +The implementation is similar to `recurrent_op`. +The key difference is the way **the original input `LoDTensors` and outupts are split to get the `input_segments` and the `output_segments`.** + + +Though it can't be built over `recurrent_op` or `dynamic_recurrent_op` directly, +the logic behind splitting a tensor or a LoD tensor into `input_segments` remains the same. + +## Why `TensorArray` +The logic behind splitting the inputs to segments, states and outputs is similar and can be shared in a seperate module. + +The array of `states`, `input_segments` and `output_segments` would be exposed to users when writing a dynamic RNN model similar to the above pseudo codes. + +So there should be an array-like container, which can store the segments of a tensor or LoD tensor. + +**This container can store an array of tensors and provides several methods to split a tensor or a LoD tensor** . +This is where the notion of `TensorArray` comes from. + +## Introduce TensorArray to uniform all the three RNNs TensorArray as a new concept is borrowed from TensorFlow, it is meant to be used with dynamic iteration primitives such as `while_loop` and `map_fn`. This concept can be used to support our new design of dynamic operations, and help to refactor some existing variant-sentence-related layers, -such as `RecurrentGradientMachine`. +such as `recurrent_op`, `RecurrentGradientMachine`. In [our design for dynamic RNN](https://github.com/PaddlePaddle/Paddle/pull/4401), `TensorArray` is used to segment inputs and store states in all time steps. By providing some methods similar to a C++ array, -the definition of some state-based dynamic models such as RNN could be more natural and highly flexible. - -## Dynamic-Related Methods -Some basic methods should be proposed as follows: - -### stack() -Pack the values in a `TensorArray` into a tensor with rank one higher than each tensor in `values`. -### unstack(axis=0) -Unpacks the given dimension of a rank-`R` tensor into rank-`(R-1)` tensors. -### concat() -Return the values in the `TensorArray` as a concatenated Tensor. -### write(index, value, data_shared=true) -Write value into index of the TensorArray. -### read(index) -Read the value at location `index` in the `TensorArray`. -### size() -Return the number of values. +the definition of some state-based dynamic models such as RNN can be more natural and highly flexible. + +## Dynamic-operations on TensorArray + +`TensorArray` will be used directly when defining dynamic models, so some operators listed below should be implemented + +```python +# several helper operators for TensorArray +def tensor_array_stack(ta, tensor): + ''' + get a tensor array `ta`, return a packed `tensor`. + ''' + pass + +def tensor_array_unstack(tensor, ta): + ''' + get a `tensor`, unstack it and get a tensor array `ta`. + ''' + pass + +def tensor_array_write(ta, index, tensor, data_shared): + ''' + get a `tensor` and a scalar tensor `index`, write `tensor` into index-th + value of the tensor array `ta`. + `data_shared` is an attribute that specifies whether to copy or reference the tensors. + ''' + pass + +def tensor_array_read(ta, index, tensor): + ''' + get a tensor array `ta`, a scalar tensor `index`, read the index-th value of + `ta` and return as the `tensor`. + ''' + pass + +def tensor_array_size(ta, tensor): + ''' + get a tensor array `ta`, return the size of `ta` and return as the scalar `tensor`. + ''' + pass +``` + +It is trivial for users to use so many low-level operators, so some helper methods should be proposed in python wrapper to make `TensorArray` easier to use, +for example + +```python +class TensorArray: + def __init__(self, name): + self.name = name + self.desc = TensorArrayDesc() + + def stack(self, name=None): + ''' + Pack the values in a `TensorArray` into a tensor with rank one higher + than each tensor in `values`. + `stack` can be used to split tensor into time steps for RNN or whileloop. + + @name: str + the name of the variable to output. + ''' + tensor = NewVar(name) + tensor_array_stack(self.name, tensor) + return tensor + + def unstack(self, input): + ''' + Unpacks the given dimension of a rank-`R` tensor into rank-`(R-1)` tensors. + `unstack` can be used to concatenate all the time steps for RNN or whileloop. + + @input: str + the name of input tensor + ''' + tensor_array_unstack(tensor, self.name) + + def write(self, index, value, data_shared=True): + ''' + Write value into index of the TensorArray. + If `data_shared` is set to True, than the index-th value in TensorArray will + be shared with the tensor passed in. + + @index: str + name of a scalar tensor + @value: str + name of a tensor + @data_shared: bool + ''' + tensor_array_write(self.name, index, value, data_shared) + + def read(self, index, output): + ''' + Read the value at location `index` in the `TensorArray`. + + @index: str + name of a scalar tensor + @output: + name of a output variable + ''' + tensor_array_read(self.name, index, output) + + + def size(self, output): + ''' + Return the number of values. + + @output: str + name of a scalar tensor + ''' + tensor_array_size(self.name, output) +``` ## LoDTensor-related Supports -The `RecurrentGradientMachine` in Paddle serves as a flexible RNN layer; it takes variant length sequences as input, -because each step of RNN could only take a tensor-represented batch of data as input, +The `RecurrentGradientMachine` in Paddle serves as a flexible RNN layer; it takes varience-length sequences as input, and output sequences too. + +Since each step of RNN can only take a tensor-represented batch of data as input, some preprocess should be taken on the inputs such as sorting the sentences by their length in descending order and cut each word and pack to new batches. -Such cut-like operations can be embedded into `TensorArray` as general methods called `unpack` and `pack`. +Such cut-like operations can be embedded into `TensorArray` as general methods called `unpack` and `pack`, +these two operations are similar to `stack` and `unstack` except that they operate on variable-length sequences formated as a LoD tensor rather than a tensor. + +Some definitions are like + +```python +def unpack(level): + ''' + Split LodTensor in some `level` and generate batches, if set `sort_by_length`, + will sort by length. -With these two methods, a variant-sentence-RNN can be implemented like + Returns: + - a new `TensorArray`, whose values are LodTensors and represents batches + of data. + - an int32 Tensor, which stores the map from the new batch's indices to + original LoDTensor + ''' + pass + +def pack(level, indices_map): + ''' + Recover the original LoD-arranged LoDTensor with the values in a `TensorArray` + and `level` and `indices_map`. + ''' + pass +``` + +With these two methods, a varience-length sentence supported RNN can be implemented like ```c++ // input is the varient-length data @@ -58,16 +269,3 @@ LoDTensor rnn_output = ta.pack(ta, indice_map); ``` the code above shows that by embedding the LoDTensor-related preprocess operations into `TensorArray`, the implementation of a RNN that supports varient-length sentences is far more concise than `RecurrentGradientMachine` because the latter mixes all the codes together, hard to read and extend. - - -some details are as follows. - -### unpack(level, sort_by_length) -Split LodTensor in some `level` and generate batches, if set `sort_by_length`, will sort by length. - -Returns: - -- a new `TensorArray`, whose values are LodTensors and represents batches of data. -- an int32 Tensor, which stores the map from the new batch's indices to original LoDTensor -### pack(level, indices_map) -Recover the original LoD-arranged LoDTensor with the values in a `TensorArray` and `level` and `indices_map`. diff --git a/paddle/CMakeLists.txt b/paddle/CMakeLists.txt index b435de80a224571d16efdee168541aa301c3f73a..7d2becbdd772747d77890321fce6721d8d17fb30 100644 --- a/paddle/CMakeLists.txt +++ b/paddle/CMakeLists.txt @@ -1,27 +1,32 @@ add_subdirectory(cuda) add_subdirectory(function) add_subdirectory(utils) -add_subdirectory(testing) add_subdirectory(math) -add_subdirectory(parameter) add_subdirectory(gserver) -add_subdirectory(pserver) -add_subdirectory(trainer) -add_subdirectory(scripts) -add_subdirectory(string) - -if(Boost_FOUND) - add_subdirectory(memory) - add_subdirectory(platform) - add_subdirectory(framework) - add_subdirectory(operators) - add_subdirectory(pybind) -endif() +add_subdirectory(parameter) +add_subdirectory(testing) -if(WITH_C_API) +if(MOBILE_INFERENCE) add_subdirectory(capi) -endif() +else() + add_subdirectory(pserver) + add_subdirectory(trainer) + add_subdirectory(string) + add_subdirectory(scripts) + + if(WITH_C_API) + add_subdirectory(capi) + endif() + + if(Boost_FOUND) + add_subdirectory(memory) + add_subdirectory(platform) + add_subdirectory(framework) + add_subdirectory(operators) + add_subdirectory(pybind) + endif() -if(WITH_SWIG_PY) - add_subdirectory(api) + if(WITH_SWIG_PY) + add_subdirectory(api) + endif() endif() diff --git a/paddle/api/Util.cpp b/paddle/api/Util.cpp index 7446d892fdc272fc3d91b38d75873270080dcbed..11bd05c09d1ecbbcec6b6596c16416c26635a072 100644 --- a/paddle/api/Util.cpp +++ b/paddle/api/Util.cpp @@ -47,7 +47,7 @@ bool isUsingGpu() { return FLAGS_use_gpu; } void setUseGpu(bool useGpu) { FLAGS_use_gpu = useGpu; } bool isGpuVersion() { -#ifndef PADDLE_WITH_GPU +#ifndef PADDLE_WITH_CUDA return false; #else return true; diff --git a/paddle/capi/CMakeLists.txt b/paddle/capi/CMakeLists.txt index b9bbe58951c643f1b1649858880fbd2ba3a2a7b7..2c458a78c598bf206b30c0c07599ce605af77701 100644 --- a/paddle/capi/CMakeLists.txt +++ b/paddle/capi/CMakeLists.txt @@ -37,9 +37,7 @@ set(PADDLE_CAPI_INFER_LIBS paddle_cuda paddle_function paddle_gserver - paddle_proto - paddle_pserver - paddle_network) + paddle_proto) cc_library(paddle_capi_whole DEPS paddle_capi ${PADDLE_CAPI_INFER_LIBS}) diff --git a/paddle/capi/Matrix.cpp b/paddle/capi/Matrix.cpp index 5b3737a759ce4d7d85feceda854556d765aba2d8..4547afaf1dc9af8bc7909a684db766fdd7b159c0 100644 --- a/paddle/capi/Matrix.cpp +++ b/paddle/capi/Matrix.cpp @@ -46,7 +46,7 @@ paddle_error paddle_matrix_set_row(paddle_matrix mat, if (rowID >= ptr->mat->getHeight()) return kPD_OUT_OF_RANGE; paddle::real* buf = ptr->mat->getRowBuf(rowID); size_t width = ptr->mat->getWidth(); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA hl_memcpy(buf, rowArray, sizeof(paddle::real) * width); #else std::copy(rowArray, rowArray + width, buf); diff --git a/paddle/capi/tests/CMakeLists.txt b/paddle/capi/tests/CMakeLists.txt index 8208808b94f54f2ddaf4d426a65b8db562b36aca..bb38ace62808db5ce95a1a57ff465e8edc059213 100644 --- a/paddle/capi/tests/CMakeLists.txt +++ b/paddle/capi/tests/CMakeLists.txt @@ -4,11 +4,12 @@ add_unittest(capi_test_mats test_Vector.cpp target_include_directories(capi_test_mats PUBLIC ${PADDLE_CAPI_INC_PATH}) target_link_libraries(capi_test_mats paddle_capi) - -add_unittest_without_exec(capi_test_gradientMachine test_GradientMachine.cpp) -target_include_directories(capi_test_gradientMachine PUBLIC - ${PADDLE_CAPI_INC_PATH}) -target_link_libraries(capi_test_gradientMachine paddle_capi) -add_test(NAME capi_test_gradientMachine - COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python ${CMAKE_CURRENT_BINARY_DIR}/capi_test_gradientMachine - WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/capi/tests) +if(NOT MOBILE_INFERENCE) + add_unittest_without_exec(capi_test_gradientMachine test_GradientMachine.cpp) + target_include_directories(capi_test_gradientMachine PUBLIC + ${PADDLE_CAPI_INC_PATH}) + target_link_libraries(capi_test_gradientMachine paddle_capi) + add_test(NAME capi_test_gradientMachine + COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python ${CMAKE_CURRENT_BINARY_DIR}/capi_test_gradientMachine + WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/capi/tests) +endif() diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt index 5d394132b7f3ddd36cebeb45f5602f13d9acdf35..3e0e0f59038daa33cae1952ffbe5fc0bb1870485 100644 --- a/paddle/framework/CMakeLists.txt +++ b/paddle/framework/CMakeLists.txt @@ -23,13 +23,11 @@ cc_library(proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc cc_library(op_proto_maker SRCS op_proto_maker.cc DEPS framework_proto attribute) cc_test(op_proto_maker_test SRCS op_proto_maker_test.cc DEPS op_proto_maker) cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto proto_desc) -cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope) +cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope proto_desc) cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry) -cc_library(grad_op_builder SRCS grad_op_builder.cc DEPS operator proto_desc) -cc_library(op_registry SRCS op_registry.cc DEPS grad_op_builder op_proto_maker op_info) +cc_library(op_registry SRCS op_registry.cc DEPS op_proto_maker op_info operator) cc_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry) -cc_test(grad_op_builder_test SRCS grad_op_builder_test.cc DEPS grad_op_builder op_registry sum_op) py_proto_compile(framework_py_proto SRCS framework.proto) # Generate an empty __init__.py to make framework_py_proto as a valid python module. diff --git a/paddle/framework/backward.cc b/paddle/framework/backward.cc index c0188c0e55a6db04a86d80c216fd162ad5259593..c970e01dd19d80e9a47f315a05a920ba15585c90 100644 --- a/paddle/framework/backward.cc +++ b/paddle/framework/backward.cc @@ -13,10 +13,13 @@ limitations under the License. */ #include "paddle/framework/backward.h" +#include "paddle/operators/net_op.h" +#include #include #include +#include "paddle/framework/block_desc.h" #include "paddle/framework/op_registry.h" #include "paddle/operators/net_op.h" #include "paddle/operators/recurrent_op.h" @@ -24,6 +27,35 @@ namespace paddle { namespace framework { +static inline std::unique_ptr CreateGradOp( + const OperatorBase& op) { + OpDescBind op_desc; + op_desc.SetInputMap(op.Inputs()); + op_desc.SetOutputMap(op.Outputs()); + op_desc.SetType(op.Type()); + op_desc.SetAttrMap(op.Attrs()); + auto& info = OpInfoMap::Instance().Get(op.Type()); + auto grad_descs = info.GradOpMaker()(op_desc); + std::vector> grad_ops; + grad_ops.reserve(grad_descs.size()); + std::transform(grad_descs.begin(), grad_descs.end(), + std::back_inserter(grad_ops), + [](const std::unique_ptr& grad_desc) { + return OpRegistry::CreateOp(*grad_desc); + }); + PADDLE_ENFORCE(!grad_ops.empty()); + if (grad_ops.size() == 1) { + return std::move(grad_ops[0]); + } else { + auto net_op = new operators::NetOp(); + for (auto& grad_op : grad_ops) { + net_op->AppendOp(std::move(grad_op)); + } + net_op->CompleteAddOp(); + return std::unique_ptr(net_op); + } +} + template static void ForEachVarName(const Map& names, T callback) { for (auto& name : names) { @@ -171,7 +203,7 @@ static std::unique_ptr BackwardRecursive( net->InsertOp(pos.first + 1, std::move(pos.second)); } } else { - std::unique_ptr grad_op(OpRegistry::CreateGradOp(forwardOp)); + std::unique_ptr grad_op(CreateGradOp(forwardOp)); ForEachVarName(grad_op->Inputs(), [&no_grad_names, &net, &grad_op]( const std::string& grad_input) { @@ -240,5 +272,145 @@ std::unique_ptr Backward( return BackwardRecursive(forwardOp, no_grad_names, uid); } +// ==================================== // + +static bool AllGradInSet(const std::vector& names, + const std::unordered_set& set) { + for (const std::string& name : names) { + if (!set.count(GradVarName(name))) { + return false; + } + } + return true; +} + +std::vector> MakeOpGrad( + const std::unique_ptr& op_desc, + std::unordered_set& no_grad_vars) { + std::vector> grad_op_descs; + // All input gradients of forwarding operator do not need to calculat. + const std::vector& inputs = op_desc->InputArgumentNames(); + if (AllGradInSet(inputs, no_grad_vars)) { + return grad_op_descs; // empty vector + } + // All output gradients of forwarding operator do not need to calculate. + const std::vector& outputs = op_desc->OutputArgumentNames(); + if (AllGradInSet(outputs, no_grad_vars)) { + for (const std::string& name : inputs) { + no_grad_vars.insert(GradVarName(name)); + } + return grad_op_descs; // empty vector + } + + grad_op_descs = OpRegistry::CreateGradOpDescs(*op_desc); + + std::list> pending_fill_zeros_ops; + for (auto& desc : grad_op_descs) { + for (const std::string& in_name : desc->InputArgumentNames()) { + if (no_grad_vars.count(in_name)) { + std::string prefix = in_name.substr( + 0, in_name.size() - sizeof(kGradVarSuffix) / sizeof(char) + 1); + std::string new_name = prefix + kZeroVarSuffix; + desc->Rename(in_name, new_name); + std::unique_ptr fill_zeros_op(new OpDescBind( + "fill_zeros_like", {{"X", {prefix}}}, {{"Y", {new_name}}}, {})); + pending_fill_zeros_ops.push_back(std::move(fill_zeros_op)); + } + } + for (const std::string& out_name : desc->OutputArgumentNames()) { + if (no_grad_vars.count(out_name)) { + desc->Rename(out_name, kEmptyVarName); + } + } + } + + for (auto& p : pending_fill_zeros_ops) { + grad_op_descs.insert(grad_op_descs.begin(), std::move(p)); + } + return grad_op_descs; +} + +std::vector> MakeBlockBackward( + ProgramDescBind& program_desc, int block_idx, + std::unordered_set& no_grad_vars) { + BlockDescBind* cur_block = program_desc.Block(block_idx); + std::deque>& op_descs = cur_block->ops_; + std::unordered_map> dup_out_ops; + size_t grad_desc_idx = 0; + std::vector> backward_descs; + for (auto it = op_descs.rbegin(); it != op_descs.rend(); ++it) { + std::vector> op_grads = + MakeOpGrad(*it, no_grad_vars); + + if ((*it)->Type() == "recurrent") { + PADDLE_ENFORCE_EQ( + op_grads.size(), size_t(1), + "rnn_op's gradient process should contain only one op."); + int step_block_idx = (*it)->GetBlockAttr("stop_block"); + auto backward_block_op_descs = + MakeBlockBackward(program_desc, step_block_idx, no_grad_vars); + BlockDescBind* backward_block = program_desc.AppendBlock(*cur_block); + for (auto& ptr : backward_block_op_descs) { + backward_block->ops_.push_back(std::move(ptr)); + } + op_grads[0]->SetBlockAttr("step_block", *backward_block); + } + + for (const auto& desc : op_grads) { + for (const std::string& out_name : desc->OutputArgumentNames()) { + dup_out_ops[out_name].emplace_back(grad_desc_idx); + } + ++grad_desc_idx; + } + std::transform( + op_grads.begin(), op_grads.end(), std::back_inserter(backward_descs), + [](std::unique_ptr& ptr) { return std::move(ptr); }); + } + // Check whether some variables are written more than once + std::list>> pending_sum_ops; + for (const auto& dup : dup_out_ops) { + const std::string& out_name = dup.first; + const std::vector dup_op = dup.second; + if (out_name != kEmptyVarName && dup_op.size() > 1) { + std::vector sum_op_inputs; + for (size_t i = 0; i < dup_op.size(); ++i) { + std::string new_name = out_name + "@RENAME@" + std::to_string(i); + backward_descs[dup_op[i]]->Rename(out_name, new_name); + sum_op_inputs.emplace_back(new_name); + } + std::unique_ptr sum_op(new OpDescBind( + "sum", {{"X", sum_op_inputs}}, {{"Out", {out_name}}}, {})); + pending_sum_ops.push_back({dup_op.back(), std::move(sum_op)}); + } + } + pending_sum_ops.sort( + [](const std::pair>& a, + const std::pair>& b) { + return a.first > b.first; + }); + for (auto& p : pending_sum_ops) { + backward_descs.insert(backward_descs.begin() + p.first + 1, + std::move(p.second)); + } + return backward_descs; +} + +void AppendBackward(ProgramDescBind& program_desc, + const std::unordered_set& no_grad_vars) { + std::unordered_set no_grad_var_names; + no_grad_var_names.reserve(no_grad_vars.size() + 1); + no_grad_var_names.insert(std::string(kEmptyVarName) + kGradVarSuffix); + for (auto& name : no_grad_vars) { + no_grad_var_names.insert(GradVarName(name)); + } + const int root_block_idx = 0; + auto backward_op_descs = + MakeBlockBackward(program_desc, root_block_idx, no_grad_var_names); + auto& forw_op_descs = program_desc.Block(root_block_idx)->ops_; + for (auto& ptr : backward_op_descs) { + forw_op_descs.push_back(std::move(ptr)); + } +} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/backward.h b/paddle/framework/backward.h index 1ecf69881b3126c2904920b9f4b77bfcccc9cf86..7ffe4c28103f9d6a9f179422d1beb86106ef786e 100644 --- a/paddle/framework/backward.h +++ b/paddle/framework/backward.h @@ -13,8 +13,11 @@ limitations under the License. */ #pragma once + #include -#include "operator.h" +#include "paddle/framework/operator.h" +#include "paddle/framework/program_desc.h" + namespace paddle { namespace framework { @@ -23,5 +26,9 @@ namespace framework { extern std::unique_ptr Backward( const OperatorBase& forwardOp, const std::unordered_set& no_grad_vars); + +void AppendBackward(ProgramDescBind& program_desc, + const std::unordered_set& no_grad_vars); + } // namespace framework } // namespace paddle diff --git a/paddle/framework/backward_test.cc b/paddle/framework/backward_test.cc index a36e7bde8c61c6a8bfc6eefd46ce5e09907476ef..30225a4a99d993c4f12a5e0d276bda18acbc360e 100644 --- a/paddle/framework/backward_test.cc +++ b/paddle/framework/backward_test.cc @@ -15,30 +15,42 @@ #include "paddle/framework/backward.h" #include +#include "paddle/framework/block_desc.h" +#include "paddle/framework/op_desc.h" #include "paddle/framework/op_registry.h" #include "paddle/operators/net_op.h" namespace paddle { namespace framework { -using OperatorBase = framework::OperatorBase; -using OpProtoAndCheckerMaker = framework::OpProtoAndCheckerMaker; -using OpProto = framework::OpProto; -using OpAttrChecker = framework::OpAttrChecker; -using Scope = framework::Scope; using DeviceContext = platform::DeviceContext; class RowWiseAddOpMaker : public OpProtoAndCheckerMaker { public: RowWiseAddOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "Input X of Add").NotInGradient(); - AddInput("b", "Bias of Add").NotInGradient(); - AddOutput("Out", "Out of Add").NotInGradient(); + AddInput("X", "Input X of Add"); + AddInput("b", "Bias of Add"); + AddOutput("Out", "Out of Add"); AddComment("Add Op"); } }; +class RowWiseAddGradMaker : public SingleGradOpDescMaker { + public: + using SingleGradOpDescMaker::SingleGradOpDescMaker; + + protected: + std::unique_ptr Apply() const override { + auto grad_op = new OpDescBind(); + grad_op->SetInput(GradVarName("Out"), OutputGrad("Out")); + grad_op->SetOutput(GradVarName("X"), InputGrad("X")); + grad_op->SetOutput(GradVarName("b"), InputGrad("b")); + grad_op->SetType("rowwise_add_grad"); + return std::unique_ptr(grad_op); + } +}; + class MulOpMaker : public OpProtoAndCheckerMaker { public: MulOpMaker(OpProto *proto, OpAttrChecker *op_checker) @@ -137,10 +149,20 @@ class SumOpMaker : public framework::OpProtoAndCheckerMaker { public: SumOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "the input tensors of sum operator.") - .AsDuplicable() - .NotInGradient(); - AddOutput("Out", "the output tensor of sum operator.").NotInGradient(); + AddInput("X", "the input tensors of sum operator.").AsDuplicable(); + AddOutput("Out", "the output tensor of sum operator."); + AddComment(""); + } +}; + +class MultInOutOpMaker : public OpProtoAndCheckerMaker { + public: + MultInOutOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "x"); + AddInput("H", "h"); + AddOutput("Y", "y"); + AddOutput("Z", "z"); AddComment(""); } }; @@ -151,8 +173,9 @@ class SumOpMaker : public framework::OpProtoAndCheckerMaker { namespace f = paddle::framework; namespace ops = paddle::operators; using EnforceNotMet = paddle::platform::EnforceNotMet; -REGISTER_OP(rowwise_add, f::NOP, f::RowWiseAddOpMaker, rowwise_add_grad, - f::NOP); +REGISTER_OPERATOR(rowwise_add, f::NOP, f::RowWiseAddOpMaker, + f::RowWiseAddGradMaker); +REGISTER_OPERATOR(rowwise_add_grad, f::NOP); REGISTER_OP(mul, f::NOP, f::MulOpMaker, mul_grad, f::NOP); REGISTER_OP(sigmoid, f::NOP, f::SigmoidOpMaker, sigmoid_grad, f::NOP); REGISTER_OP_WITHOUT_GRADIENT(nograd, f::NOP, f::NoGradOpMaker); @@ -161,17 +184,7 @@ REGISTER_OP(sum, f::NOP, f::SumOpMaker, sum_grad, f::NOP); REGISTER_OP_WITHOUT_GRADIENT(fc, f::FcOp, f::FcOpMaker); REGISTER_OP(many_output_op, f::NOP, f::ManyOutputOpMaker, many_output_op_grad, f::NOP); - -TEST(Backward, simple_op_grad) { - auto fwd = f::OpRegistry::CreateOp( - "rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {}); - ASSERT_NE(fwd, nullptr); - auto gop = f::OpRegistry::CreateGradOp(*fwd); - ASSERT_EQ(1UL, gop->Inputs().size()); - ASSERT_EQ("rowwise_add_grad", gop->Type()); - ASSERT_EQ(f::GradVarName("x"), gop->Output(f::GradVarName("X"))); - ASSERT_EQ(f::GradVarName("b"), gop->Output(f::GradVarName("b"))); -} +REGISTER_OP(mult_in_out, f::NOP, f::MultInOutOpMaker, mult_in_out_grad, f::NOP); TEST(Backward, simple_op_not_need_grad) { auto fwd = f::OpRegistry::CreateOp( @@ -289,17 +302,6 @@ TEST(Backward, net_shared_weight) { ASSERT_EQ("sum", bwd_net->ops_[2]->Type()); } -TEST(Backward, op_register_grad_not_for_network) { - auto fwd = - f::OpRegistry::CreateOp("fc", {{"X", {"x"}}, {"W", {"w"}}, {"b", {"b"}}}, - {{"mul_result", {"mul_out"}}, - {"add_result", {"add_out"}}, - {"Out", {"out1"}}}, - {{"temporary_index", std::vector{0, 1}}}); - - ASSERT_THROW(f::OpRegistry::CreateGradOp(*fwd), EnforceNotMet); -} - TEST(Backward, op_all_input_are_not_need) { auto fwd = f::OpRegistry::CreateOp( "rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {}); @@ -402,3 +404,293 @@ TEST(Backward, linear_net_intermediate_variable_has_no_grad) { EXPECT_EQ(bwd_net->ops_[2]->Inputs(all).size(), 0UL); EXPECT_EQ(bwd_net->ops_[2]->Outputs(all).size(), 0UL); } + +// =================================== // + +f::ProgramDesc *GetNewProgramDesc() { + auto *program_desc = new f::ProgramDesc(); + auto *root_block = program_desc->add_blocks(); + root_block->set_idx(0); + root_block->set_parent_idx(-1); + return program_desc; +} + +TEST(Backward, simple_single_op) { + f::ProgramDesc *program_desc = GetNewProgramDesc(); + f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc); + f::BlockDescBind *block = program.Block(0); + f::OpDescBind *op = block->AppendOp(); + op->SetType("rowwise_add"); + op->SetInput("X", {"x"}); + op->SetInput("b", {"b"}); + op->SetOutput("Out", {"out"}); + + AppendBackward(program, {}); + + ASSERT_EQ(block->AllOps().size(), 2UL); + f::OpDescBind *grad_op = block->AllOps()[1]; + EXPECT_EQ(grad_op->Type(), "rowwise_add_grad"); + ASSERT_EQ(grad_op->InputNames().size(), 1UL); + ASSERT_EQ(grad_op->OutputNames().size(), 2UL); + EXPECT_EQ(grad_op->Input(f::GradVarName("Out")), + std::vector({f::GradVarName("out")})); + EXPECT_EQ(grad_op->Output(f::GradVarName("X")), + std::vector({f::GradVarName("x")})); + EXPECT_EQ(grad_op->Output(f::GradVarName("b")), + std::vector({f::GradVarName("b")})); +} + +TEST(Backward, simple_mult_op) { + f::ProgramDesc *program_desc = GetNewProgramDesc(); + f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc); + f::BlockDescBind *block = program.Block(0); + f::OpDescBind *op1 = block->AppendOp(); + op1->SetType("rowwise_add"); + op1->SetInput("X", {"x1"}); + op1->SetInput("b", {"b1"}); + op1->SetOutput("Out", {"out1"}); + + f::OpDescBind *op2 = block->AppendOp(); + op2->SetType("mul"); + op2->SetInput("X", {"out1"}); + op2->SetInput("Y", {"y2"}); + op2->SetOutput("Out", {"out2"}); + + f::OpDescBind *op3 = block->AppendOp(); + op3->SetType("rowwise_add"); + op3->SetInput("X", {"out2"}); + op3->SetInput("b", {"b3"}); + op3->SetOutput("Out", {"out3"}); + + AppendBackward(program, {}); + + ASSERT_EQ(block->AllOps().size(), 6UL); + f::OpDescBind *grad_op1 = block->AllOps()[5]; + EXPECT_EQ(grad_op1->Type(), "rowwise_add_grad"); + ASSERT_EQ(grad_op1->InputNames().size(), 1UL); + ASSERT_EQ(grad_op1->OutputNames().size(), 2UL); + EXPECT_EQ(grad_op1->Input(f::GradVarName("Out")), + std::vector({f::GradVarName("out1")})); + EXPECT_EQ(grad_op1->Output(f::GradVarName("X")), + std::vector({f::GradVarName("x1")})); + EXPECT_EQ(grad_op1->Output(f::GradVarName("b")), + std::vector({f::GradVarName("b1")})); + + f::OpDescBind *grad_op2 = block->AllOps()[4]; + EXPECT_EQ(grad_op2->Type(), "mul_grad"); + ASSERT_EQ(grad_op2->InputNames().size(), 4UL); + ASSERT_EQ(grad_op2->OutputNames().size(), 2UL); + EXPECT_EQ(grad_op2->Input("X"), std::vector({"out1"})); + EXPECT_EQ(grad_op2->Input("Y"), std::vector({"y2"})); + EXPECT_EQ(grad_op2->Input("Out"), std::vector({"out2"})); + EXPECT_EQ(grad_op2->Input(f::GradVarName("Out")), + std::vector({f::GradVarName("out2")})); + EXPECT_EQ(grad_op2->Output(f::GradVarName("X")), + std::vector({f::GradVarName("out1")})); + EXPECT_EQ(grad_op2->Output(f::GradVarName("Y")), + std::vector({f::GradVarName("y2")})); + + f::OpDescBind *grad_op3 = block->AllOps()[3]; + EXPECT_EQ(grad_op3->Type(), "rowwise_add_grad"); + ASSERT_EQ(grad_op3->InputNames().size(), 1UL); + ASSERT_EQ(grad_op3->OutputNames().size(), 2UL); + EXPECT_EQ(grad_op3->Input(f::GradVarName("Out")), + std::vector({f::GradVarName("out3")})); + EXPECT_EQ(grad_op3->Output(f::GradVarName("X")), + std::vector({f::GradVarName("out2")})); + EXPECT_EQ(grad_op3->Output(f::GradVarName("b")), + std::vector({f::GradVarName("b3")})); +} + +TEST(Backward, intermedia_var_no_grad) { + f::ProgramDesc *program_desc = GetNewProgramDesc(); + f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc); + f::BlockDescBind *block = program.Block(0); + f::OpDescBind *op1 = block->AppendOp(); + op1->SetType("rowwise_add"); + op1->SetInput("X", {"x1"}); + op1->SetInput("b", {"b1"}); + op1->SetOutput("Out", {"out1"}); + + f::OpDescBind *op2 = block->AppendOp(); + op2->SetType("mul"); + op2->SetInput("X", {"x2"}); + op2->SetInput("Y", {"y2"}); + op2->SetOutput("Out", {"out2"}); + + f::OpDescBind *op3 = block->AppendOp(); + op3->SetType("rowwise_add"); + op3->SetInput("X", {"out2"}); + op3->SetInput("b", {"b3"}); + op3->SetOutput("Out", {"out3"}); + + f::OpDescBind *op4 = block->AppendOp(); + op4->SetType("mul"); + op4->SetInput("X", {"out1"}); + op4->SetInput("Y", {"out3"}); + op4->SetOutput("Out", {"out4"}); + + AppendBackward(program, {"out3"}); + + ASSERT_EQ(block->AllOps().size(), 6UL); + f::OpDescBind *grad_op1 = block->AllOps()[5]; + EXPECT_EQ(grad_op1->Type(), "rowwise_add_grad"); + ASSERT_EQ(grad_op1->InputNames().size(), 1UL); + ASSERT_EQ(grad_op1->OutputNames().size(), 2UL); + EXPECT_EQ(grad_op1->Input(f::GradVarName("Out")), + std::vector({f::GradVarName("out1")})); + EXPECT_EQ(grad_op1->Output(f::GradVarName("X")), + std::vector({f::GradVarName("x1")})); + EXPECT_EQ(grad_op1->Output(f::GradVarName("b")), + std::vector({f::GradVarName("b1")})); + + f::OpDescBind *grad_op4 = block->AllOps()[4]; + EXPECT_EQ(grad_op4->Type(), "mul_grad"); + ASSERT_EQ(grad_op4->InputNames().size(), 4UL); + ASSERT_EQ(grad_op4->OutputNames().size(), 2UL); + EXPECT_EQ(grad_op4->Input("X"), std::vector({"out1"})); + EXPECT_EQ(grad_op4->Input("Y"), std::vector({"out3"})); + EXPECT_EQ(grad_op4->Input("Out"), std::vector({"out4"})); + EXPECT_EQ(grad_op4->Input(f::GradVarName("Out")), + std::vector({f::GradVarName("out4")})); + EXPECT_EQ(grad_op4->Output(f::GradVarName("X")), + std::vector({f::GradVarName("out1")})); + EXPECT_EQ(grad_op4->Output(f::GradVarName("Y")), + std::vector({f::kEmptyVarName})); +} + +TEST(Backward, var_no_grad) { + f::ProgramDesc *program_desc = GetNewProgramDesc(); + f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc); + f::BlockDescBind *block = program.Block(0); + f::OpDescBind *op1 = block->AppendOp(); + op1->SetType("mult_in_out"); + op1->SetInput("X", {"x1"}); + op1->SetInput("H", {"h1"}); + op1->SetOutput("Y", {"y1"}); + op1->SetOutput("Z", {"z1"}); + + f::OpDescBind *op2 = block->AppendOp(); + op2->SetType("mult_in_out"); + op2->SetInput("X", {"y1"}); + op2->SetInput("H", {"z1"}); + op2->SetOutput("Y", {"y2"}); + op2->SetOutput("Z", {"z2"}); + + AppendBackward(program, {"z1"}); + + ASSERT_EQ(block->AllOps().size(), 5UL); + f::OpDescBind *grad_op2 = block->AllOps()[2]; + ASSERT_EQ(grad_op2->Type(), "mult_in_out_grad"); + ASSERT_EQ(grad_op2->InputNames().size(), 6UL); + ASSERT_EQ(grad_op2->OutputNames().size(), 2UL); + EXPECT_EQ(grad_op2->Input("X"), std::vector({"y1"})); + EXPECT_EQ(grad_op2->Input("H"), std::vector({"z1"})); + EXPECT_EQ(grad_op2->Input("Y"), std::vector({"y2"})); + EXPECT_EQ(grad_op2->Input("Z"), std::vector({"z2"})); + EXPECT_EQ(grad_op2->Input(f::GradVarName("Y")), + std::vector({f::GradVarName("y2")})); + EXPECT_EQ(grad_op2->Input(f::GradVarName("Z")), + std::vector({f::GradVarName("z2")})); + EXPECT_EQ(grad_op2->Output(f::GradVarName("X")), + std::vector({f::GradVarName("y1")})); + EXPECT_EQ(grad_op2->Output(f::GradVarName("H")), + std::vector({f::kEmptyVarName})); + + f::OpDescBind *fill_zero_op = block->AllOps()[3]; + ASSERT_EQ(fill_zero_op->Type(), "fill_zeros_like"); + ASSERT_EQ(fill_zero_op->InputNames().size(), 1UL); + ASSERT_EQ(fill_zero_op->OutputNames().size(), 1UL); + EXPECT_EQ(fill_zero_op->Input("X"), std::vector({"z1"})); + EXPECT_EQ(fill_zero_op->Output("Y"), + std::vector({std::string("z1") + f::kZeroVarSuffix})); + + f::OpDescBind *grad_op1 = block->AllOps()[4]; + ASSERT_EQ(grad_op1->Type(), "mult_in_out_grad"); + ASSERT_EQ(grad_op1->InputNames().size(), 6UL); + ASSERT_EQ(grad_op1->OutputNames().size(), 2UL); + EXPECT_EQ(grad_op1->Input("X"), std::vector({"x1"})); + EXPECT_EQ(grad_op1->Input("H"), std::vector({"h1"})); + EXPECT_EQ(grad_op1->Input("Y"), std::vector({"y1"})); + EXPECT_EQ(grad_op1->Input("Z"), std::vector({"z1"})); + EXPECT_EQ(grad_op1->Input(f::GradVarName("Y")), + std::vector({f::GradVarName("y1")})); + EXPECT_EQ(grad_op1->Input(f::GradVarName("Z")), + std::vector({std::string("z1") + f::kZeroVarSuffix})); + EXPECT_EQ(grad_op1->Output(f::GradVarName("X")), + std::vector({f::GradVarName("x1")})); + EXPECT_EQ(grad_op1->Output(f::GradVarName("H")), + std::vector({f::GradVarName("h1")})); +} + +TEST(Backward, shared_var) { + f::ProgramDesc *program_desc = GetNewProgramDesc(); + f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc); + f::BlockDescBind *block = program.Block(0); + f::OpDescBind *op1 = block->AppendOp(); + op1->SetType("rowwise_add"); + op1->SetInput("X", {"x1"}); + op1->SetInput("b", {"b1"}); + op1->SetOutput("Out", {"out1"}); + + f::OpDescBind *op2 = block->AppendOp(); + op2->SetType("mul"); + op2->SetInput("X", {"out1"}); + op2->SetInput("Y", {"y2"}); + op2->SetOutput("Out", {"out2"}); + + f::OpDescBind *op3 = block->AppendOp(); + op3->SetType("rowwise_add"); + op3->SetInput("X", {"out1"}); + op3->SetInput("b", {"b3"}); + op3->SetOutput("Out", {"out3"}); + + AppendBackward(program, {}); + + ASSERT_EQ(block->AllOps().size(), 7UL); + f::OpDescBind *grad_op3 = block->AllOps()[3]; + ASSERT_EQ(grad_op3->Type(), "rowwise_add_grad"); + ASSERT_EQ(grad_op3->InputNames().size(), 1UL); + ASSERT_EQ(grad_op3->OutputNames().size(), 2UL); + EXPECT_EQ(grad_op3->Input(f::GradVarName("Out")), + std::vector({f::GradVarName("out3")})); + EXPECT_EQ(grad_op3->Output(f::GradVarName("X")), + std::vector({f::GradVarName("out1") + "@RENAME@0"})); + EXPECT_EQ(grad_op3->Output(f::GradVarName("b")), + std::vector({f::GradVarName("b3")})); + + f::OpDescBind *grad_op4 = block->AllOps()[4]; + ASSERT_EQ(grad_op4->Type(), "mul_grad"); + ASSERT_EQ(grad_op4->InputNames().size(), 4UL); + ASSERT_EQ(grad_op4->OutputNames().size(), 2UL); + EXPECT_EQ(grad_op4->Input("X"), std::vector({"out1"})); + EXPECT_EQ(grad_op4->Input("Y"), std::vector({"y2"})); + EXPECT_EQ(grad_op4->Input("Out"), std::vector({"out2"})); + EXPECT_EQ(grad_op4->Input(f::GradVarName("Out")), + std::vector({f::GradVarName("out2")})); + EXPECT_EQ(grad_op4->Output(f::GradVarName("X")), + std::vector({f::GradVarName("out1") + "@RENAME@1"})); + EXPECT_EQ(grad_op4->Output(f::GradVarName("Y")), + std::vector({f::GradVarName("y2")})); + + f::OpDescBind *sum_op = block->AllOps()[5]; + ASSERT_EQ(sum_op->Type(), "sum"); + ASSERT_EQ(sum_op->InputNames().size(), 1UL); + ASSERT_EQ(sum_op->OutputNames().size(), 1UL); + EXPECT_EQ(sum_op->Input("X"), + std::vector({f::GradVarName("out1") + "@RENAME@0", + f::GradVarName("out1") + "@RENAME@1"})); + EXPECT_EQ(sum_op->Output("Out"), + std::vector({f::GradVarName("out1")})); + + f::OpDescBind *grad_op1 = block->AllOps()[6]; + ASSERT_EQ(grad_op1->Type(), "rowwise_add_grad"); + ASSERT_EQ(grad_op1->InputNames().size(), 1UL); + ASSERT_EQ(grad_op1->OutputNames().size(), 2UL); + EXPECT_EQ(grad_op1->Input(f::GradVarName("Out")), + std::vector({f::GradVarName("out1")})); + EXPECT_EQ(grad_op1->Output(f::GradVarName("X")), + std::vector({f::GradVarName("x1")})); + EXPECT_EQ(grad_op1->Output(f::GradVarName("b")), + std::vector({f::GradVarName("b1")})); +} \ No newline at end of file diff --git a/paddle/framework/block_desc.cc b/paddle/framework/block_desc.cc index 9570aedfdda332b797a8f348e0f6cf81bb2aee2f..509aa235d3ee226adef15f08f5785866700499f1 100644 --- a/paddle/framework/block_desc.cc +++ b/paddle/framework/block_desc.cc @@ -34,6 +34,10 @@ VarDescBind *BlockDescBind::Var(const std::string &name) const { return it->second.get(); } +bool BlockDescBind::HasVar(const std::string &name) const { + return vars_.find(name) != vars_.end(); +} + std::vector BlockDescBind::AllVars() const { std::vector res; for (const auto &p : vars_) { @@ -70,6 +74,12 @@ void BlockDescBind::Sync() { for (auto &op_desc : ops_) { op_field.AddAllocated(op_desc->Proto()); } + auto &var_field = *this->desc_->mutable_vars(); + var_field.Clear(); + var_field.Reserve(static_cast(vars_.size())); + for (auto &var_desc : vars_) { + var_field.AddAllocated(var_desc.second->Proto()); + } need_update_ = false; } } diff --git a/paddle/framework/block_desc.h b/paddle/framework/block_desc.h index 59513ede33ebb41acbeb0e1acab66be5947a9a3c..2de270f60ec2ae981335f1adb204cfc3bf78c622 100644 --- a/paddle/framework/block_desc.h +++ b/paddle/framework/block_desc.h @@ -32,6 +32,14 @@ class ProgramDescBind; class BlockDescBind { public: + friend std::vector> MakeBlockBackward( + ProgramDescBind &program_desc, int block_idx, + std::unordered_set &no_grad_vars); + + friend void AppendBackward( + ProgramDescBind &program_desc, + const std::unordered_set &no_grad_vars); + BlockDescBind(ProgramDescBind *prog, BlockDesc *desc) : prog_(prog), desc_(desc), need_update_(false) {} @@ -43,6 +51,8 @@ class BlockDescBind { VarDescBind *Var(const std::string &name_bytes) const; + bool HasVar(const std::string &var_name) const; + std::vector AllVars() const; BlockDescBind *ParentBlock() const; diff --git a/paddle/framework/framework.proto b/paddle/framework/framework.proto index d696cdf5ad68118c98577fcaf1aed1cf013df296..ac2827e54773f811eb855c092e3c0ed2fab06dd3 100644 --- a/paddle/framework/framework.proto +++ b/paddle/framework/framework.proto @@ -66,7 +66,6 @@ message OpProto { optional bool duplicable = 3 [ default = false ]; optional bool intermediate = 4 [ default = false ]; - optional bool not_in_gradient = 5 [ default = false ]; } // AttrProto describes the C++ type Attribute. @@ -116,4 +115,7 @@ message BlockDesc { repeated OpDesc ops = 4; } +// Please refer to +// https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/program.md +// for more details. message ProgramDesc { repeated BlockDesc blocks = 1; } diff --git a/paddle/framework/grad_op_builder.cc b/paddle/framework/grad_op_builder.cc deleted file mode 100644 index 3661ce41beba1328d1b1cdd9f0f913e693af9cff..0000000000000000000000000000000000000000 --- a/paddle/framework/grad_op_builder.cc +++ /dev/null @@ -1,97 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOpArgType::OUT WARRANTIES OR CONDITIONS OF ANY KOpArgType::IND, either -express or implied. See the License for the specific language governing -permissions and limitations under the License. */ - -#include "paddle/framework/grad_op_builder.h" -#include "paddle/framework/op_registry.h" - -namespace paddle { -namespace framework { -enum class OpArgType { IN, OUT }; - -static void TransOpArg(const OperatorBase* src_op, const OpArgType& src_type, - bool is_grad, VariableNameMap* vars) { - const auto& src_inout = - src_type == OpArgType::IN ? src_op->Inputs() : src_op->Outputs(); - auto& dst_inout = *vars; - auto& proto = OpInfoMap::Instance().Get(src_op->Type()).Proto(); - const auto& src_arg_list = - src_type == OpArgType::IN ? proto.inputs() : proto.outputs(); - for (const auto& arg : src_arg_list) { - if (arg.not_in_gradient() && !is_grad) continue; - const std::string src_name = arg.name(); - std::string dst_name = is_grad ? GradVarName(src_name) : src_name; - dst_inout[dst_name].reserve(src_inout.at(src_name).size()); - for (auto& var_name : src_inout.at(src_name)) { - std::string s = is_grad ? GradVarName(var_name) : var_name; - dst_inout[dst_name].emplace_back(s); - } - } -} - -OperatorBase* BuildGradOp(const OperatorBase* op) { - auto& info = OpInfoMap::Instance().Get(op->Type()); - PADDLE_ENFORCE(info.HasGradientOp()); - - VariableNameMap inputs; - VariableNameMap outputs; - TransOpArg(op, OpArgType::IN, false, &inputs); // I - TransOpArg(op, OpArgType::OUT, false, &inputs); // O - TransOpArg(op, OpArgType::OUT, true, &inputs); // OG - TransOpArg(op, OpArgType::IN, true, &outputs); // IG - - auto& grad_info = OpInfoMap::Instance().Get(info.grad_op_type_); - return grad_info.Creator()(info.grad_op_type_, inputs, outputs, op->Attrs()); -} - -static void TransOpDescArg(const OpDescBind* src_op, const OpArgType& src_type, - bool is_grad, OpDescBind* dst_op, - const OpArgType& dst_type) { - PADDLE_ENFORCE(dst_op != nullptr, - "Protobuf desc of gradient op must be initialized first."); - const auto& proto = OpInfoMap::Instance().Get(src_op->Type()).Proto(); - const auto& src_arg_list = - src_type == OpArgType::IN ? proto.inputs() : proto.outputs(); - for (const auto& arg : src_arg_list) { - if (arg.not_in_gradient() && !is_grad) continue; - const std::string src_name = arg.name(); - std::vector vars = src_type == OpArgType::IN - ? src_op->Input(src_name) - : src_op->Output(src_name); - if (is_grad) { - for (std::string& var : vars) { - var = GradVarName(var); - } - } - std::string dst_name = is_grad ? GradVarName(src_name) : src_name; - dst_type == OpArgType::IN ? dst_op->SetInput(dst_name, vars) - : dst_op->SetOutput(dst_name, vars); - } -} - -void CompleteGradOpDesc(const OpDescBind* forw_op, OpDescBind* grad_op) { - auto& info = OpInfoMap::Instance().Get(forw_op->Type()); - PADDLE_ENFORCE(info.HasGradientOp()); - - grad_op->SetType(info.grad_op_type_); - - TransOpDescArg(forw_op, OpArgType::IN, false, grad_op, OpArgType::IN); - TransOpDescArg(forw_op, OpArgType::OUT, false, grad_op, OpArgType::IN); - TransOpDescArg(forw_op, OpArgType::OUT, true, grad_op, OpArgType::IN); - TransOpDescArg(forw_op, OpArgType::IN, true, grad_op, OpArgType::OUT); - - grad_op->SetAttrMap(forw_op->GetAttrMap()); -} - -} // namespace framework -} // namespace paddle diff --git a/paddle/framework/grad_op_builder.h b/paddle/framework/grad_op_builder.h deleted file mode 100644 index b601406061f9f8f24302251c2144b07b6e65717f..0000000000000000000000000000000000000000 --- a/paddle/framework/grad_op_builder.h +++ /dev/null @@ -1,28 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#pragma once - -#include "paddle/framework/op_desc.h" -#include "paddle/framework/operator.h" - -namespace paddle { -namespace framework { - -OperatorBase* BuildGradOp(const OperatorBase* op); - -void CompleteGradOpDesc(const OpDescBind* forw_op, OpDescBind* grad_op); - -} // namespace framework -} // namespace paddle diff --git a/paddle/framework/grad_op_builder_test.cc b/paddle/framework/grad_op_builder_test.cc deleted file mode 100644 index 2dbc2e66208a3130620160b7a355b0413ad4fd84..0000000000000000000000000000000000000000 --- a/paddle/framework/grad_op_builder_test.cc +++ /dev/null @@ -1,186 +0,0 @@ -#include "paddle/framework/grad_op_builder.h" -#include -#include "paddle/framework/op_registry.h" -#include "paddle/framework/operator.h" - -USE_OP(sum); - -namespace paddle { -namespace framework { - -class MutiInOutOpMaker : public OpProtoAndCheckerMaker { - public: - MutiInOutOpMaker(OpProto *proto, OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("In1", "a single input"); - AddInput("In2_mult", "a multiple input").AsDuplicable(); - AddInput("In3", "another single input"); - AddOutput("Out1", "a single output"); - AddOutput("Out2_mult", "a multiple output").AsDuplicable(); - AddComment("test op with multiple inputs and outputs"); - } -}; - -class IOIgnoredOpMaker : public OpProtoAndCheckerMaker { - public: - IOIgnoredOpMaker(OpProto *proto, OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("In1", "a single input"); - AddInput("In2_mult", "a multiple input").AsDuplicable().NotInGradient(); - AddInput("In3_mult", "another multiple input").AsDuplicable(); - AddOutput("Out1_mult", "a multiple output").AsDuplicable(); - AddOutput("Out2", "a single output").NotInGradient(); - AddComment("op with inputs and outputs ignored in gradient calculating"); - } -}; - -} // namespace framework -} // namespace paddle - -namespace f = paddle::framework; - -REGISTER_OP(mult_io, f::NOP, f::MutiInOutOpMaker, mult_io_grad, f::NOP); -REGISTER_OP(io_ignored, f::NOP, f::IOIgnoredOpMaker, io_ignored_grad, f::NOP); - -TEST(GradOpBuilder, MutiInOut) { - std::shared_ptr test_op(f::OpRegistry::CreateOp( - "mult_io", {{"In1", {"in1"}}, - {"In2_mult", {"in2_1", "in2_2", "in2_3"}}, - {"In3", {"in3"}}}, - {{"Out1", {"out1"}}, {"Out2_mult", {"out2_1", "out2_2"}}}, {})); - std::shared_ptr grad_test_op = - f::OpRegistry::CreateGradOp(*test_op); - - ASSERT_EQ(grad_test_op->Inputs().size(), 3UL + 2UL + 2UL); - EXPECT_EQ(grad_test_op->Input("In1"), "in1"); - EXPECT_EQ(grad_test_op->Inputs("In2_mult"), - std::vector({"in2_1", "in2_2", "in2_3"})); - EXPECT_EQ(grad_test_op->Input("In3"), "in3"); - EXPECT_EQ(grad_test_op->Input("Out1"), "out1"); - EXPECT_EQ(grad_test_op->Inputs("Out2_mult"), - std::vector({"out2_1", "out2_2"})); - EXPECT_EQ(grad_test_op->Input(f::GradVarName("Out1")), - f::GradVarName("out1")); - EXPECT_EQ(grad_test_op->Inputs(f::GradVarName("Out2_mult")), - std::vector( - {f::GradVarName("out2_1"), f::GradVarName("out2_2")})); - - ASSERT_EQ(grad_test_op->Outputs().size(), 3UL); - EXPECT_EQ(grad_test_op->Output(f::GradVarName("In1")), f::GradVarName("in1")); - EXPECT_EQ(grad_test_op->Outputs(f::GradVarName("In2_mult")), - std::vector({f::GradVarName("in2_1"), - f::GradVarName("in2_2"), - f::GradVarName("in2_3")})); - EXPECT_EQ(grad_test_op->Output(f::GradVarName("In3")), f::GradVarName("in3")); -} - -TEST(GradOpBuilder, IOIgnoredInGradient) { - std::shared_ptr test_op(f::OpRegistry::CreateOp( - "io_ignored", {{"In1", {"in1"}}, - {"In2_mult", {"in2_1", "in2_2"}}, - {"In3_mult", {"in3_1", "in3_2"}}}, - {{"Out1_mult", {"out1_1", "out1_2"}}, {"Out2", {"out2"}}}, {})); - std::shared_ptr grad_test_op = - f::OpRegistry::CreateGradOp(*test_op); - - // 'In2' and 'Out2' are ignored in gradient calculating - ASSERT_EQ(grad_test_op->Inputs().size(), 2UL + 1UL + 2UL); - EXPECT_EQ(grad_test_op->Input("In1"), "in1"); - EXPECT_EQ(grad_test_op->Inputs("In3_mult"), - std::vector({"in3_1", "in3_2"})); - EXPECT_EQ(grad_test_op->Inputs("Out1_mult"), - std::vector({"out1_1", "out1_2"})); - EXPECT_EQ(grad_test_op->Inputs(f::GradVarName("Out1_mult")), - std::vector( - {f::GradVarName("out1_1"), f::GradVarName("out1_2")})); - EXPECT_EQ(grad_test_op->Input(f::GradVarName("Out2")), - f::GradVarName("out2")); - - ASSERT_EQ(grad_test_op->Outputs().size(), 3UL); - EXPECT_EQ(grad_test_op->Output(f::GradVarName("In1")), f::GradVarName("in1")); - EXPECT_EQ(grad_test_op->Outputs(f::GradVarName("In2_mult")), - std::vector( - {f::GradVarName("in2_1"), f::GradVarName("in2_2")})); - EXPECT_EQ(grad_test_op->Outputs(f::GradVarName("In3_mult")), - std::vector( - {f::GradVarName("in3_1"), f::GradVarName("in3_2")})); -} - -TEST(GradOpDescBuilder, MutiInOut) { - f::OpDescBind *forw_op = new f::OpDescBind(); - forw_op->SetType("mult_io"); - forw_op->SetInput("In1", {"in1"}); - forw_op->SetInput("In2_mult", {"in2_1", "in2_2", "in2_3"}); - forw_op->SetInput("In3", {"in3"}); - forw_op->SetOutput("Out1", {"out1"}); - forw_op->SetOutput("Out2_mult", {"out2_1", "out2_2"}); - - f::OpDescBind *grad_op = new f::OpDescBind(); - f::CompleteGradOpDesc(forw_op, grad_op); - - EXPECT_EQ(grad_op->Type(), "mult_io_grad"); - ASSERT_EQ(grad_op->InputNames().size(), 3UL + 2UL + 2UL); - EXPECT_EQ(grad_op->Input("In1"), std::vector({"in1"})); - EXPECT_EQ(grad_op->Input("In2_mult"), - std::vector({"in2_1", "in2_2", "in2_3"})); - EXPECT_EQ(grad_op->Input("In3"), std::vector({"in3"})); - EXPECT_EQ(grad_op->Input("Out1"), std::vector({"out1"})); - EXPECT_EQ(grad_op->Input("Out2_mult"), - std::vector({"out2_1", "out2_2"})); - EXPECT_EQ(grad_op->Input(f::GradVarName("Out1")), - std::vector({f::GradVarName("out1")})); - EXPECT_EQ(grad_op->Input(f::GradVarName("Out2_mult")), - std::vector( - {f::GradVarName("out2_1"), f::GradVarName("out2_2")})); - - ASSERT_EQ(grad_op->OutputNames().size(), 3UL); - EXPECT_EQ(grad_op->Output(f::GradVarName("In1")), - std::vector({f::GradVarName("in1")})); - EXPECT_EQ(grad_op->Output(f::GradVarName("In2_mult")), - std::vector({f::GradVarName("in2_1"), - f::GradVarName("in2_2"), - f::GradVarName("in2_3")})); - EXPECT_EQ(grad_op->Output(f::GradVarName("In3")), - std::vector({f::GradVarName("in3")})); - delete forw_op; - delete grad_op; -} - -TEST(GradOpDescBuilder, IOIgnoredInGradient) { - f::OpDescBind *forw_op = new f::OpDescBind(); - forw_op->SetType("io_ignored"); - forw_op->SetInput("In1", {"in1"}); - forw_op->SetInput("In2_mult", {"in2_1", "in2_2"}); - forw_op->SetInput("In3_mult", {"in3_1", "in3_2"}); - forw_op->SetOutput("Out1_mult", {"out1_1", "out1_2"}); - forw_op->SetOutput("Out2", {"out2"}); - - f::OpDescBind *grad_op = new f::OpDescBind(); - f::CompleteGradOpDesc(forw_op, grad_op); - - EXPECT_EQ(grad_op->Type(), "io_ignored_grad"); - // 'In2' and 'Out2' are ignored in gradient calculating - ASSERT_EQ(grad_op->InputNames().size(), 2UL + 1UL + 2UL); - EXPECT_EQ(grad_op->Input("In1"), std::vector({"in1"})); - EXPECT_EQ(grad_op->Input("In3_mult"), - std::vector({"in3_1", "in3_2"})); - EXPECT_EQ(grad_op->Input("Out1_mult"), - std::vector({"out1_1", "out1_2"})); - EXPECT_EQ(grad_op->Input(f::GradVarName("Out1_mult")), - std::vector( - {f::GradVarName("out1_1"), f::GradVarName("out1_2")})); - EXPECT_EQ(grad_op->Input(f::GradVarName("Out2")), - std::vector({f::GradVarName("out2")})); - - ASSERT_EQ(grad_op->OutputNames().size(), 3UL); - EXPECT_EQ(grad_op->Output(f::GradVarName("In1")), - std::vector({f::GradVarName("in1")})); - EXPECT_EQ(grad_op->Output(f::GradVarName("In2_mult")), - std::vector( - {f::GradVarName("in2_1"), f::GradVarName("in2_2")})); - EXPECT_EQ(grad_op->Output(f::GradVarName("In3_mult")), - std::vector( - {f::GradVarName("in3_1"), f::GradVarName("in3_2")})); - delete forw_op; - delete grad_op; -} \ No newline at end of file diff --git a/paddle/framework/lod_tensor.h b/paddle/framework/lod_tensor.h index b12c95b6b7b728ca902c63ae96bfecb2f653e20b..4db36ee76609ac6360fe2fc7b4a366e0284d1016 100644 --- a/paddle/framework/lod_tensor.h +++ b/paddle/framework/lod_tensor.h @@ -15,7 +15,7 @@ #pragma once #include -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA #include #include #include @@ -29,7 +29,7 @@ namespace paddle { namespace framework { -#ifndef PADDLE_WITH_GPU +#ifndef PADDLE_WITH_CUDA template using Vector = std::vector; #else diff --git a/paddle/framework/op_desc.cc b/paddle/framework/op_desc.cc index 852f0f1eb8ea09b336d656afea4f5b146c8d45de..02aa74a8420a5c685c88d7cb0b487284814b3690 100644 --- a/paddle/framework/op_desc.cc +++ b/paddle/framework/op_desc.cc @@ -18,6 +18,15 @@ limitations under the License. */ namespace paddle { namespace framework { +OpDescBind::OpDescBind(const std::string &type, const VariableNameMap &inputs, + const VariableNameMap &outputs, + const AttributeMap &attrs) { + op_desc_.set_type(type); + inputs_ = inputs; + outputs_ = outputs; + attrs_ = attrs; +} + OpDesc *OpDescBind::Proto() { Sync(); return &op_desc_; @@ -31,6 +40,14 @@ const std::vector &OpDescBind::Input( return it->second; } +std::vector OpDescBind::InputArgumentNames() const { + std::vector retv; + for (auto &ipt : this->inputs_) { + retv.insert(retv.end(), ipt.second.begin(), ipt.second.end()); + } + return retv; +} + void OpDescBind::SetInput(const std::string ¶m_name, const std::vector &args) { need_update_ = true; @@ -45,6 +62,14 @@ const std::vector &OpDescBind::Output( return it->second; } +std::vector OpDescBind::OutputArgumentNames() const { + std::vector retv; + for (auto &ipt : this->outputs_) { + retv.insert(retv.end(), ipt.second.begin(), ipt.second.end()); + } + return retv; +} + void OpDescBind::SetOutput(const std::string ¶m_name, const std::vector &args) { need_update_ = true; @@ -94,6 +119,18 @@ const std::unordered_map &OpDescBind::GetAttrMap() return attrs_; } +void OpDescBind::Rename(const std::string &old_name, + const std::string &new_name) { + for (auto &input : inputs_) { + std::replace(input.second.begin(), input.second.end(), old_name, new_name); + } + for (auto &output : outputs_) { + std::replace(output.second.begin(), output.second.end(), old_name, + new_name); + } + need_update_ = true; +} + struct SetAttrDescVisitor : public boost::static_visitor { explicit SetAttrDescVisitor(OpDesc::Attr *attr) : attr_(attr) {} mutable OpDesc::Attr *attr_; diff --git a/paddle/framework/op_desc.h b/paddle/framework/op_desc.h index 397393f796ed11312578859495529f4aedd17e78..b39808dad1de061e896936ec84169cd62e29856d 100644 --- a/paddle/framework/op_desc.h +++ b/paddle/framework/op_desc.h @@ -27,6 +27,11 @@ class BlockDescBind; class OpDescBind { public: + OpDescBind() {} + + OpDescBind(const std::string &type, const VariableNameMap &inputs, + const VariableNameMap &outputs, const AttributeMap &attrs); + OpDesc *Proto(); std::string Type() const { return op_desc_.type(); } @@ -35,11 +40,15 @@ class OpDescBind { const std::vector &Input(const std::string &name) const; + std::vector InputArgumentNames() const; + void SetInput(const std::string ¶m_name, const std::vector &args); const std::vector &Output(const std::string &name) const; + std::vector OutputArgumentNames() const; + void SetOutput(const std::string ¶m_name, const std::vector &args); @@ -61,6 +70,8 @@ class OpDescBind { int GetBlockAttr(const std::string &name) const; + void Rename(const std::string &old_name, const std::string &new_name); + // Only be used in C++ const AttributeMap &GetAttrMap() const; @@ -70,6 +81,22 @@ class OpDescBind { std::vector InputNames() const { return MapKeys(inputs_); } std::vector OutputNames() const { return MapKeys(outputs_); } + void SetInputMap(const VariableNameMap &input) { + this->inputs_ = input; + this->need_update_ = true; + } + + void SetOutputMap(const VariableNameMap &output) { + this->outputs_ = output; + this->need_update_ = true; + } + + void Sync(); + + const VariableNameMap &Inputs() const { return inputs_; } + + const VariableNameMap &Outputs() const { return outputs_; } + private: template static std::vector MapKeys(const MapType &map) { @@ -81,8 +108,6 @@ class OpDescBind { return ret_val; } - void Sync(); - OpDesc op_desc_; VariableNameMap inputs_; VariableNameMap outputs_; diff --git a/paddle/framework/op_info.h b/paddle/framework/op_info.h index 8b7882485ff82860b884d3a8bc3d5543e2426898..c504f69e30bb899c183bd4281d2eadb50fd3b376 100644 --- a/paddle/framework/op_info.h +++ b/paddle/framework/op_info.h @@ -17,6 +17,7 @@ #include #include #include + #include "paddle/framework/attribute.h" #include "paddle/framework/op_desc.h" #include "paddle/framework/type_defs.h" @@ -27,7 +28,6 @@ namespace framework { struct OpInfo { OpCreator creator_; - std::string grad_op_type_; GradOpMakerFN grad_op_maker_; OpProto* proto_{nullptr}; OpAttrChecker* checker_{nullptr}; @@ -43,19 +43,19 @@ struct OpInfo { return *proto_; } - const OpAttrChecker& Checker() const { - PADDLE_ENFORCE_NOT_NULL(checker_, - "Operator Checker has not been registered"); - return *checker_; - } - const OpCreator& Creator() const { PADDLE_ENFORCE_NOT_NULL(creator_, "Operator Creator has not been registered"); return creator_; } - bool HasGradientOp() const { return !grad_op_type_.empty(); } + const GradOpMakerFN& GradOpMaker() const { + PADDLE_ENFORCE_NOT_NULL(grad_op_maker_, + "Operator GradOpMaker has not been registered."); + return grad_op_maker_; + } + + const OpAttrChecker* Checker() const { return checker_; } }; class OpInfoMap { diff --git a/paddle/framework/op_proto_maker.h b/paddle/framework/op_proto_maker.h index 4d55a37db9f0a3deac7b3489c8bc288ea41f4799..a134befd90a1eaeff6f6ea62f11412df63cdc394 100644 --- a/paddle/framework/op_proto_maker.h +++ b/paddle/framework/op_proto_maker.h @@ -44,11 +44,6 @@ class OpProtoAndCheckerMaker { var_->set_intermediate(true); return *this; } - - VariableBuilder& NotInGradient() { - var_->set_not_in_gradient(true); - return *this; - } }; VariableBuilder AddInput(const std::string& name, const std::string& comment); diff --git a/paddle/framework/op_proto_maker_test.cc b/paddle/framework/op_proto_maker_test.cc index b01e30f75371ca4aa63dae86ddfb966b1d4c7830..988a14cf4de8fdf052ca7e8c41bff0c05ba2daaa 100644 --- a/paddle/framework/op_proto_maker_test.cc +++ b/paddle/framework/op_proto_maker_test.cc @@ -48,4 +48,4 @@ TEST(ProtoMaker, DuplicatedInOut) { paddle::framework::OpAttrChecker op_checker; auto proto_maker = TestInOutProtoMaker(&op_proto, &op_checker); ASSERT_THROW(proto_maker.Validate(), paddle::platform::EnforceNotMet); -} \ No newline at end of file +} diff --git a/paddle/framework/op_registry.cc b/paddle/framework/op_registry.cc index b0e85dd49f97da4a7f889fde0b5f060954947be8..66043f6e04fdb63b5d11a15c66abc84339e13c9a 100644 --- a/paddle/framework/op_registry.cc +++ b/paddle/framework/op_registry.cc @@ -23,7 +23,9 @@ std::unique_ptr OpRegistry::CreateOp( const std::string& type, const VariableNameMap& inputs, const VariableNameMap& outputs, AttributeMap attrs) { auto& info = OpInfoMap::Instance().Get(type); - info.Checker().Check(attrs); + if (info.Checker() != nullptr) { + info.Checker()->Check(attrs); + } auto op = info.Creator()(type, inputs, outputs, attrs); return std::unique_ptr(op); } @@ -52,9 +54,15 @@ std::unique_ptr OpRegistry::CreateOp(const OpDesc& op_desc) { return CreateOp(op_desc.type(), inputs, outputs, attrs); } -std::unique_ptr OpRegistry::CreateGradOp(const OperatorBase& op) { - PADDLE_ENFORCE(!op.IsNetOp(), "Use framework::Backward to get backward ops"); - return std::unique_ptr(BuildGradOp(&op)); +std::unique_ptr OpRegistry::CreateOp(const OpDescBind& op_desc) { + return CreateOp(op_desc.Type(), op_desc.Inputs(), op_desc.Outputs(), + op_desc.GetAttrMap()); +} + +std::vector> OpRegistry::CreateGradOpDescs( + const OpDescBind& op_desc) { + auto& info = OpInfoMap::Instance().Get(op_desc.Type()); + return info.grad_op_maker_(op_desc); } } // namespace framework diff --git a/paddle/framework/op_registry.h b/paddle/framework/op_registry.h index aca6579f36e6f840c8a9f759cd2baa391c19fddb..cce3605fd480c1d79a5969f6a4cb170ea4d879f2 100644 --- a/paddle/framework/op_registry.h +++ b/paddle/framework/op_registry.h @@ -23,25 +23,37 @@ limitations under the License. */ #include "paddle/framework/attribute.h" #include "paddle/framework/details/op_registry.h" #include "paddle/framework/framework.pb.h" -#include "paddle/framework/grad_op_builder.h" +#include "paddle/framework/grad_op_desc_maker.h" +#include "paddle/framework/op_desc.h" #include "paddle/framework/operator.h" #include "paddle/framework/scope.h" namespace paddle { namespace framework { +class Registrar { + public: + // In our design, various kinds of classes, e.g., operators and kernels, + // have their corresponding registry and registrar. The action of + // registration is in the constructor of a global registrar variable, which, + // however, are not used in the code that calls package framework, and would + // be removed from the generated binary file by the linker. To avoid such + // removal, we add Touch to all registrar classes and make USE_OP macros to + // call this method. So, as long as the callee code calls USE_OP, the global + // registrar variable won't be removed by the linker. + void Touch() {} +}; template -struct OperatorRegistrar { +struct OperatorRegistrar : public Registrar { explicit OperatorRegistrar(const char* op_type) : op_type(op_type) { PADDLE_ENFORCE(!OpInfoMap::Instance().Has(op_type), "'%s' is registered more than once.", op_type); static_assert(sizeof...(ARGS) != 0, "OperatorRegistrar should be invoked at least by OpClass"); details::OperatorRegistrarRecursive<0, false, ARGS...>(op_type, &info); + OpInfoMap::Instance().Insert(op_type, info); } - ~OperatorRegistrar() { OpInfoMap::Instance().Insert(op_type, info); } - const char* op_type; OpInfo info; @@ -67,20 +79,10 @@ class OpRegistry { static std::unique_ptr CreateOp(const OpDesc& op_desc); - static std::unique_ptr CreateGradOp(const OperatorBase& op); -}; + static std::vector> CreateGradOpDescs( + const OpDescBind& op_desc); -class Registrar { - public: - // In our design, various kinds of classes, e.g., operators and kernels, - // have their corresponding registry and registrar. The action of - // registration is in the constructor of a global registrar variable, which, - // however, are not used in the code that calls package framework, and would - // be removed from the generated binary file by the linker. To avoid such - // removal, we add Touch to all registrar classes and make USE_OP macros to - // call this method. So, as long as the callee code calls USE_OP, the global - // registrar variable won't be removed by the linker. - void Touch() {} + static std::unique_ptr CreateOp(const OpDescBind& op_desc); }; template @@ -138,33 +140,41 @@ class OpKernelRegistrar : public Registrar { __test_global_namespace_##uniq_name##__>::value, \ msg) +#define REGISTER_OPERATOR(op_type, op_class, ...) \ + STATIC_ASSERT_GLOBAL_NAMESPACE( \ + __reg_op__##op_type, \ + "REGISTER_OPERATOR must be called in global namespace"); \ + class _OpClass_##op_type##_ : public op_class { \ + public: \ + DEFINE_OP_CLONE_METHOD(_OpClass_##op_type##_); \ + DEFINE_OP_CONSTRUCTOR(_OpClass_##op_type##_, op_class); \ + }; \ + static ::paddle::framework::OperatorRegistrar<_OpClass_##op_type##_, \ + ##__VA_ARGS__> \ + __op_registrar_##op_type##__(#op_type); \ + int TouchOpRegistrar_##op_type() { \ + __op_registrar_##op_type##__.Touch(); \ + return 0; \ + } + /** * Macro to register Operator. */ -#define REGISTER_OP(op_type, op_class, op_maker_class, grad_op_type, \ - grad_op_class) \ - STATIC_ASSERT_GLOBAL_NAMESPACE( \ - __reg_op__##op_type, "REGISTER_OP must be called in global namespace"); \ - class _OpClass_##op_type##_ : public op_class { \ - public: \ - DEFINE_OP_CLONE_METHOD(_OpClass_##op_type##_); \ - DEFINE_OP_CONSTRUCTOR(_OpClass_##op_type##_, op_class); \ - }; \ - class _OpGradClass_##op_type##_ : public grad_op_class { \ - public: \ - DEFINE_OP_CLONE_METHOD(_OpGradClass_##op_type##_); \ - DEFINE_OP_CONSTRUCTOR(_OpGradClass_##op_type##_, grad_op_class); \ - }; \ - static ::paddle::framework::OpRegistrar< \ - _OpClass_##op_type##_, op_maker_class, _OpGradClass_##op_type##_> \ - __op_registrar_##op_type##__(#op_type, #grad_op_type); \ - int TouchOpRegistrar_##op_type() { \ - __op_registrar_##op_type##__.Touch(); \ - return 0; \ - } +#define REGISTER_OP(op_type, op_class, op_maker_class, grad_op_type, \ + grad_op_class) \ + REGISTER_OPERATOR(grad_op_type, grad_op_class); \ + class _GradOpDescMaker_##grad_op_type##_ \ + : public ::paddle::framework::DefaultGradOpDescMaker { \ + using ::paddle::framework::DefaultGradOpDescMaker::DefaultGradOpDescMaker; \ + \ + protected: \ + virtual std::string GradOpType() const { return #grad_op_type; } \ + }; \ + REGISTER_OPERATOR(op_type, op_class, _GradOpDescMaker_##grad_op_type##_, \ + op_maker_class); #define REGISTER_OP_WITHOUT_GRADIENT(op_type, op_class, op_maker_class) \ - REGISTER_OP(op_type, op_class, op_maker_class, , ::paddle::framework::NOP) + REGISTER_OPERATOR(op_type, op_class, op_maker_class) /** * Macro to register OperatorKernel. @@ -211,7 +221,7 @@ class OpKernelRegistrar : public Registrar { // TODO(fengjiayi): The following macros // seems ugly, do we have better method? -#ifndef PADDLE_WITH_GPU +#ifndef PADDLE_WITH_CUDA #define USE_OP_KERNEL(op_type) USE_OP_DEVICE_KERNEL(op_type, CPU) #else #define USE_OP_KERNEL(op_type) \ diff --git a/paddle/framework/op_registry_test.cc b/paddle/framework/op_registry_test.cc index f89f40b444f893d898595db50e245824a19284f6..b860fe6cac773d1e85adecc43f5dfec42b6c7661 100644 --- a/paddle/framework/op_registry_test.cc +++ b/paddle/framework/op_registry_test.cc @@ -183,4 +183,4 @@ class CosineOpComplete : public paddle::framework::CosineOp { TEST(OperatorRegistrar, Test) { using namespace paddle::framework; OperatorRegistrar reg("cos"); -} \ No newline at end of file +} diff --git a/paddle/framework/operator.cc b/paddle/framework/operator.cc index 21c1c6f9e688a34ddfb98f515059409568c06988..2fca816f353635d3bff184323755961ee82fbb68 100644 --- a/paddle/framework/operator.cc +++ b/paddle/framework/operator.cc @@ -25,7 +25,7 @@ Eigen::DefaultDevice& ExecutionContext::GetEigenDevice< return *device_context_.GetEigenDevice(); } -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA template <> Eigen::GpuDevice& ExecutionContext::GetEigenDevice() const { @@ -205,13 +205,13 @@ void OperatorBase::GenerateTemporaryNames() { } template <> -const Tensor* InferShapeContext::Input(const std::string& name) const { +const Tensor* ExecutionContext::Input(const std::string& name) const { auto* var = InputVar(name); return var == nullptr ? nullptr : GetTensorFromVar(var); } template <> -const std::vector InferShapeContext::MultiInput( +const std::vector ExecutionContext::MultiInput( const std::string& name) const { auto names = op().Inputs(name); std::vector res; @@ -225,13 +225,13 @@ const std::vector InferShapeContext::MultiInput( } template <> -Tensor* InferShapeContext::Output(const std::string& name) const { +Tensor* ExecutionContext::Output(const std::string& name) const { auto var = OutputVar(name); return var == nullptr ? nullptr : var->GetMutable(); } template <> -std::vector InferShapeContext::MultiOutput( +std::vector ExecutionContext::MultiOutput( const std::string& name) const { auto names = op().Outputs(name); std::vector res; diff --git a/paddle/framework/operator.h b/paddle/framework/operator.h index 73e53a4176db32b7cbfd79c088dadfc23037213f..1e9ace99876e00b9f733da3e66f37dc0dc2f8cad 100644 --- a/paddle/framework/operator.h +++ b/paddle/framework/operator.h @@ -22,6 +22,7 @@ limitations under the License. */ #include "op_info.h" #include "paddle/framework/attribute.h" +#include "paddle/framework/block_desc.h" #include "paddle/framework/data_type.h" #include "paddle/framework/framework.pb.h" #include "paddle/framework/lod_tensor.h" @@ -56,7 +57,6 @@ inline std::string GradVarName(const std::string& var_name) { } class OperatorBase; -class InferShapeContext; class ExecutionContext; extern const Tensor* GetTensorFromVar(const Variable* var); @@ -168,10 +168,11 @@ class NOP : public OperatorBase { } }; -class InferShapeContext { +class ExecutionContext { public: - InferShapeContext(const OperatorBase& op, const Scope& scope) - : op_(op), scope_(scope) {} + ExecutionContext(const OperatorBase& op, const Scope& scope, + const platform::DeviceContext& device_context) + : op_(op), scope_(scope), device_context_(device_context) {} const OperatorBase& op() const { return op_; } @@ -277,66 +278,153 @@ class InferShapeContext { out_tensor->set_lod(in_tensor.lod()); } + template ::EigenDeviceType> + DeviceType& GetEigenDevice() const; + + platform::Place GetPlace() const { return device_context_.GetPlace(); } + + const platform::DeviceContext& device_context() const { + return device_context_; + } + private: const OperatorBase& op_; const Scope& scope_; + const platform::DeviceContext& device_context_; }; template <> -const Tensor* InferShapeContext::Input(const std::string& name) const; +const Tensor* ExecutionContext::Input(const std::string& name) const; template <> -const std::vector InferShapeContext::MultiInput( +const std::vector ExecutionContext::MultiInput( const std::string& name) const; template <> -Tensor* InferShapeContext::Output(const std::string& name) const; +Tensor* ExecutionContext::Output(const std::string& name) const; template <> -std::vector InferShapeContext::MultiOutput( +std::vector ExecutionContext::MultiOutput( const std::string& name) const; -class ExecutionContext : public InferShapeContext { +class CompileTimeInferShapeContext : public InferShapeContext { public: - ExecutionContext(const OperatorBase& op, const Scope& scope, - const platform::DeviceContext& device_context) - : InferShapeContext(op, scope), device_context_(device_context) {} + CompileTimeInferShapeContext(const OpDescBind& op, const BlockDescBind& block) + : op_(op), block_(block) {} + + bool HasInput(const std::string& name) const override { + const std::vector& input_names = op_.Input(name); + auto length = input_names.size(); + PADDLE_ENFORCE_EQ(length, 1UL, + "Input(%s) should have only one value, " + "but it have %d now", + name, length); + return block_.HasVar(input_names[0]); + } + + bool HasOutput(const std::string& name) const override { + const std::vector& output_names = op_.Output(name); + auto length = output_names.size(); + PADDLE_ENFORCE_EQ(length, 1UL, + "Output(%s) should have only one value, " + "but it have %d now", + name, length); + return block_.HasVar(output_names[0]); + } + + bool HasInputs(const std::string& name) const override { + const std::vector& input_names = op_.Input(name); + PADDLE_ENFORCE(!input_names.empty(), "Inputs(%s) length is 0", name); + for (auto& input : input_names) { + if (!block_.HasVar(input)) return false; + } + return true; + } - template ::EigenDeviceType> - DeviceType& GetEigenDevice() const; + bool HasOutputs(const std::string& name) const override { + const std::vector& output_names = op_.Output(name); + PADDLE_ENFORCE(!output_names.empty(), "Inputs(%s) length is 0", name); + for (auto& output : output_names) { + if (!block_.HasVar(output)) return false; + } + return true; + } - platform::Place GetPlace() const { return device_context_.GetPlace(); } + DDim GetInputDim(const std::string& name) const override { + std::vector ddims = GetInputsDim(name); + auto length = ddims.size(); + PADDLE_ENFORCE_EQ(length, 1UL, + "Input(%s) should have 1 value, " + "but it has %d now", + name, length); + return ddims[0]; + } - const platform::DeviceContext& device_context() const { - return device_context_; + void SetInputDim(const std::string& name, const DDim& dim) override { + SetInputsDim(name, {dim}); + } + + DDim GetOutputDim(const std::string& name) const override { + std::vector ddims = GetOutputsDim(name); + auto length = ddims.size(); + PADDLE_ENFORCE_EQ(length, 1UL, + "Output(%s) should have 1 value, " + "but it has %d now", + name, length); + return ddims[0]; + } + + void SetOutputDim(const std::string& name, const DDim& dim) override { + SetOutputsDim(name, {dim}); + } + + AttrReader Attrs() const override { return AttrReader(op_.GetAttrMap()); } + + const std::vector& Inputs( + const std::string& name) const override { + return op_.Input(name); + } + + const std::vector& Outputs( + const std::string& name) const override { + return op_.Output(name); } private: - const platform::DeviceContext& device_context_; + DDim GetDim(const std::string& name) const override { + return framework::make_ddim(block_.Var(name)->Shape()); + } + + void SetDim(const std::string& name, const DDim& dim) override { + block_.Var(name)->SetShape(framework::vectorize(dim)); + } + + const OpDescBind& op_; + const BlockDescBind& block_; }; -class RuntimeInferShapeContext : public InferShapeContextBase { +class RuntimeInferShapeContext : public InferShapeContext { public: RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope) : op_(op), scope_(scope) {} - bool HasInput(const std::string& name) const { + bool HasInput(const std::string& name) const override { auto ipt = op_.Input(name); auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt); return var != nullptr; } - bool HasOutput(const std::string& name) const { + bool HasOutput(const std::string& name) const override { auto ipt = op_.Output(name); auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt); return var != nullptr; } - bool HasInputs(const std::string& name) const { + bool HasInputs(const std::string& name) const override { auto inputs = op_.Inputs(name); - if (inputs.size() == 0UL) { + if (inputs.empty()) { return false; } for (auto& input : inputs) { @@ -347,9 +435,9 @@ class RuntimeInferShapeContext : public InferShapeContextBase { return true; } - bool HasOutputs(const std::string& name) const { + bool HasOutputs(const std::string& name) const override { auto outputs = op_.Outputs(name); - if (outputs.size() == 0UL) { + if (outputs.empty()) { return false; } for (auto& output : outputs) { @@ -360,29 +448,31 @@ class RuntimeInferShapeContext : public InferShapeContextBase { return true; } - DDim GetInputDim(const std::string& name) const { + DDim GetInputDim(const std::string& name) const override { return GetDim(op_.Input(name)); } - void SetInputDim(const std::string& name, const DDim& dim) { + void SetInputDim(const std::string& name, const DDim& dim) override { SetDim(op_.Input(name), dim); } - DDim GetOutputDim(const std::string& name) const { + DDim GetOutputDim(const std::string& name) const override { return GetDim(op_.Output(name)); } - void SetOutputDim(const std::string& name, const DDim& dim) { + void SetOutputDim(const std::string& name, const DDim& dim) override { SetDim(op_.Output(name), dim); } - AttrReader Attrs() const { return AttrReader(op_.Attrs()); } + AttrReader Attrs() const override { return AttrReader(op_.Attrs()); } - const std::vector& Inputs(const std::string& name) const { + const std::vector& Inputs( + const std::string& name) const override { return op_.Inputs(name); } - const std::vector& Outputs(const std::string& name) const { + const std::vector& Outputs( + const std::string& name) const override { return op_.Outputs(name); } @@ -403,11 +493,11 @@ class RuntimeInferShapeContext : public InferShapeContextBase { return t; } - DDim GetDim(const std::string& name) const { + DDim GetDim(const std::string& name) const override { return GetTensor(name)->dims(); } - void SetDim(const std::string& name, const DDim& dim) { + void SetDim(const std::string& name, const DDim& dim) override { GetTensor(name)->Resize(dim); } @@ -513,9 +603,9 @@ class OperatorWithKernel : public OperatorBase { }); } - protected: - virtual void InferShape(InferShapeContextBase* ctx) const = 0; + virtual void InferShape(InferShapeContext* ctx) const = 0; + protected: // indicate kernel DataType by input data. Defaultly all input data must be // same. virtual DataType IndicateDataType(const ExecutionContext& ctx) const { diff --git a/paddle/framework/operator_test.cc b/paddle/framework/operator_test.cc index a0c17b41f27d9ec9a0f8e80576a052617919b000..a02f4668bca2360995cc05206f7f97e027db0907 100644 --- a/paddle/framework/operator_test.cc +++ b/paddle/framework/operator_test.cc @@ -113,7 +113,7 @@ class OpWithKernelTest : public OperatorWithKernel { using OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override {} + void InferShape(framework::InferShapeContext* ctx) const override {} DataType IndicateDataType(const ExecutionContext& ctx) const override { return DataType::FP32; } diff --git a/paddle/framework/shape_inference.h b/paddle/framework/shape_inference.h index bc8af0eb3ec7e8685eb7d2734e9b8f75372d1309..64aab16ae54d34fd614add348c7c420b4a8f771d 100644 --- a/paddle/framework/shape_inference.h +++ b/paddle/framework/shape_inference.h @@ -19,9 +19,12 @@ limitations under the License. */ namespace paddle { namespace framework { -class InferShapeContextBase { +// TODO(longfei): Once after both CompileTimeInferShapeContext and +// RuntimeInferShapeContext get merged, we can rename InferShapeContext into +// InferShapeContext so to replace the current InferShapeContext. +class InferShapeContext { public: - virtual ~InferShapeContextBase() {} + virtual ~InferShapeContext() {} virtual bool HasInput(const std::string &name) const = 0; virtual bool HasOutput(const std::string &name) const = 0; diff --git a/paddle/framework/tensor_array.cc b/paddle/framework/tensor_array.cc index d54714c66c04f3f923aae4288c0d2bac8be5972c..2728bce1c1af848285e80d8ee8b3b61ec046342e 100644 --- a/paddle/framework/tensor_array.cc +++ b/paddle/framework/tensor_array.cc @@ -217,12 +217,11 @@ LoDTensor DynamicBatchUnpacker::GetBatch(size_t index) { // collect indice need to copy to the batch std::vector indice; - for (size_t seq_id = 0; seq_id < meta.size(); seq_id++) { - const auto& seq_meta = meta[seq_id]; - if (index >= seq_meta.end) break; - indice.push_back(seq_meta.begin + index); + for (const auto& seq : meta) { + size_t id = seq.begin + index; + if (id >= seq.end) break; + indice.push_back(id); } - PADDLE_ENFORCE(!indice.empty(), "invalid batch at %d", index); // copy the indice of records in LoDTensor @@ -232,16 +231,18 @@ LoDTensor DynamicBatchUnpacker::GetBatch(size_t index) { result.Resize(make_ddim(record_dims_vec)); result.mutable_data(platform::CPUPlace()); - for (size_t i = 0; i < indice.size() - 1; i++) { + for (size_t i = 0; i < indice.size(); i++) { auto index = indice[i]; auto target = result.Slice(i, i + 1); auto source_ = source->Slice(index, index + 1); + target.CopyFrom(source_, platform::CPUPlace()); } return result; } +// TODO(supejom) to cache lod if reasonable LoDTensor PackDynamicBatch(const std::vector& source, const std::vector& meta, const LoD& lod, size_t level) { @@ -273,7 +274,6 @@ LoDTensor PackDynamicBatch(const std::vector& source, } result.set_lod(lod); - return result; } diff --git a/paddle/framework/tensor_array.h b/paddle/framework/tensor_array.h index 22ae6a966f90c47fe8b4bbaaf5eb227c39d84173..94a14c2df492b175cf6a643800937878e95c5f37 100644 --- a/paddle/framework/tensor_array.h +++ b/paddle/framework/tensor_array.h @@ -26,6 +26,9 @@ namespace framework { * in original lod-tensor. */ struct DySeqMeta { + DySeqMeta(size_t begin, size_t end, size_t ori_idx) + : begin(begin), end(end), ori_idx(ori_idx) {} + size_t begin; size_t end; // not included size_t ori_idx; diff --git a/paddle/framework/tensor_impl.h b/paddle/framework/tensor_impl.h index 1cde1f74b83fce2e1d90370a9dad792a43043ffd..379eac94f985c9fa10b6c773065551575f57f033 100644 --- a/paddle/framework/tensor_impl.h +++ b/paddle/framework/tensor_impl.h @@ -65,7 +65,7 @@ inline T* Tensor::mutable_data(platform::Place place) { holder_.reset(new PlaceholderImpl( boost::get(place), size)); } else if (platform::is_gpu_place(place)) { -#ifndef PADDLE_WITH_GPU +#ifndef PADDLE_WITH_CUDA PADDLE_THROW("'GPUPlace' is not supported in CPU only device."); } #else @@ -103,7 +103,7 @@ inline void Tensor::CopyFrom(const Tensor& src, memory::Copy(boost::get(dst_place), dst_ptr, boost::get(src_place), src_ptr, size); } -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA else if (platform::is_gpu_place(src_place) && platform::is_cpu_place(dst_place)) { memory::Copy(boost::get(dst_place), dst_ptr, diff --git a/paddle/framework/tensor_test.cc b/paddle/framework/tensor_test.cc index 86c6945ab588a2bbbc5bd38c98a041e95ce17917..58cf0fc3cb6cf0bad693118ca57d71fb21c55a40 100644 --- a/paddle/framework/tensor_test.cc +++ b/paddle/framework/tensor_test.cc @@ -74,7 +74,7 @@ TEST(Tensor, MutableData) { EXPECT_EQ(p1, p2); } -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA { Tensor src_tensor; float* p1 = nullptr; @@ -126,7 +126,7 @@ TEST(Tensor, ShareDataWith) { ASSERT_EQ(src_tensor.data(), dst_tensor.data()); } -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA { Tensor src_tensor; Tensor dst_tensor; @@ -163,7 +163,7 @@ TEST(Tensor, Slice) { EXPECT_EQ(src_data_address + 3 * 4 * 1 * sizeof(int), slice_data_address); } -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA { Tensor src_tensor; src_tensor.mutable_data(make_ddim({6, 9}), GPUPlace()); @@ -218,7 +218,7 @@ TEST(Tensor, CopyFrom) { EXPECT_EQ(dst_ptr[i], slice_ptr[i]); } } -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA { Tensor src_tensor; Tensor gpu_tensor; diff --git a/paddle/function/BlockExpandOp.cpp b/paddle/function/BlockExpandOp.cpp index ad78f5f5844a69597a74acba47f4fcdd8a39aa18..bd0fe119ce46df9c333258c9c1ad7b5b2bdc544f 100644 --- a/paddle/function/BlockExpandOp.cpp +++ b/paddle/function/BlockExpandOp.cpp @@ -194,7 +194,7 @@ public: REGISTER_TYPED_FUNC(BlockExpand, CPU, BlockExpandForward); REGISTER_TYPED_FUNC(BlockExpandGrad, CPU, BlockExpandBackward); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA REGISTER_TYPED_FUNC(BlockExpand, GPU, BlockExpandForward); REGISTER_TYPED_FUNC(BlockExpandGrad, GPU, BlockExpandBackward); #endif diff --git a/paddle/function/ContextProjectionOp.cpp b/paddle/function/ContextProjectionOp.cpp index ab18c39df8a74603cc42c911d56e1d6f3fe37402..23916c0f4b6319004ca0793bc9305b8a1dd0ae89 100644 --- a/paddle/function/ContextProjectionOp.cpp +++ b/paddle/function/ContextProjectionOp.cpp @@ -395,7 +395,7 @@ REGISTER_TYPED_FUNC(ContextProjectionForward, REGISTER_TYPED_FUNC(ContextProjectionBackward, CPU, ContextProjectionBackwardFunc); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA REGISTER_TYPED_FUNC(ContextProjectionForward, GPU, ContextProjectionForwardFunc); diff --git a/paddle/function/CosSimOp.cpp b/paddle/function/CosSimOp.cpp index 4418f144d3a9c88a3c575ce43def119f9ffd82bd..2e5c281f37d8ffb1062121b5dc5b4f790ab52089 100644 --- a/paddle/function/CosSimOp.cpp +++ b/paddle/function/CosSimOp.cpp @@ -233,7 +233,7 @@ private: REGISTER_TYPED_FUNC(CosSimForward, CPU, CosSimForwardFunc); REGISTER_TYPED_FUNC(CosSimBackward, CPU, CosSimBackwardFunc); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA REGISTER_TYPED_FUNC(CosSimForward, GPU, CosSimForwardFunc); REGISTER_TYPED_FUNC(CosSimBackward, GPU, CosSimBackwardFunc); #endif diff --git a/paddle/function/CropOp.cpp b/paddle/function/CropOp.cpp index 39504cc2c19868639568c48d13c751133c62a17f..46f98f12c1f150fdf3ed53a7a96e5cf0020e14a4 100644 --- a/paddle/function/CropOp.cpp +++ b/paddle/function/CropOp.cpp @@ -169,7 +169,7 @@ private: REGISTER_TYPED_FUNC(Crop, CPU, CropFunc); REGISTER_TYPED_FUNC(CropGrad, CPU, CropGradFunc); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA REGISTER_TYPED_FUNC(Crop, GPU, CropFunc); REGISTER_TYPED_FUNC(CropGrad, GPU, CropGradFunc); #endif diff --git a/paddle/function/CrossMapNormalOp.cpp b/paddle/function/CrossMapNormalOp.cpp index 1cf0918bedf28350d9f42f3294c2bf89ee1341ba..9e88669d37bd50179dcc0464e8c1cd6e2fed74db 100644 --- a/paddle/function/CrossMapNormalOp.cpp +++ b/paddle/function/CrossMapNormalOp.cpp @@ -336,7 +336,7 @@ private: REGISTER_TYPED_FUNC(CrossMapNormal, CPU, CrossMapNormalFunc); REGISTER_TYPED_FUNC(CrossMapNormalGrad, CPU, CrossMapNormalGradFunc); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA REGISTER_TYPED_FUNC(CrossMapNormal, GPU, CrossMapNormalFunc); REGISTER_TYPED_FUNC(CrossMapNormalGrad, GPU, CrossMapNormalGradFunc); #endif diff --git a/paddle/function/DepthwiseConvOp.cpp b/paddle/function/DepthwiseConvOp.cpp index 7656ab3d0aca8f54e7a5f9bb3d74ddba295664ad..9863e3ae1d5fcb1eece5267fd4f2a6b593b799df 100644 --- a/paddle/function/DepthwiseConvOp.cpp +++ b/paddle/function/DepthwiseConvOp.cpp @@ -292,7 +292,7 @@ REGISTER_TYPED_FUNC(DepthwiseConvGradInput, REGISTER_TYPED_FUNC(DepthwiseConvGradFilter, CPU, DepthwiseConvGradFilterFunction); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA REGISTER_TYPED_FUNC(DepthwiseConv, GPU, DepthwiseConvFunction); REGISTER_TYPED_FUNC(DepthwiseConvGradInput, GPU, diff --git a/paddle/function/DepthwiseConvOpTest.cpp b/paddle/function/DepthwiseConvOpTest.cpp index 39033ecb2b5c6916ab6f500a6f1f1fba7c0fb4e2..b1a90da7db2b647dd384e3772820294140e5ec9d 100644 --- a/paddle/function/DepthwiseConvOpTest.cpp +++ b/paddle/function/DepthwiseConvOpTest.cpp @@ -17,7 +17,7 @@ limitations under the License. */ namespace paddle { -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA TEST(DepthwiseConv, Forward) { DepthwiseConvolution( "GemmConv-CPU", "DepthwiseConv-GPU", forward); diff --git a/paddle/function/GemmConvOp.cpp b/paddle/function/GemmConvOp.cpp index 68e08c1480a1c976f2abb9b0d23c5aa63bd78f71..bdb56ddac38b91d756fc6f31282f29c0489fd660 100644 --- a/paddle/function/GemmConvOp.cpp +++ b/paddle/function/GemmConvOp.cpp @@ -340,7 +340,7 @@ public: REGISTER_TYPED_FUNC(GemmConv, CPU, GemmConvFunction); REGISTER_TYPED_FUNC(GemmConvGradInput, CPU, GemmConvGradInputFunction); REGISTER_TYPED_FUNC(GemmConvGradFilter, CPU, GemmConvGradFilterFunction); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA REGISTER_TYPED_FUNC(GemmConv, GPU, GemmConvFunction); REGISTER_TYPED_FUNC(GemmConvGradInput, GPU, GemmConvGradInputFunction); REGISTER_TYPED_FUNC(GemmConvGradFilter, GPU, GemmConvGradFilterFunction); diff --git a/paddle/function/GemmConvOpTest.cpp b/paddle/function/GemmConvOpTest.cpp index bd1cf3c6a4c3f3fa67f74dd36a6100602d23d6f6..b5b5e1f35b79e422b14f7495bc321533cc1d618a 100644 --- a/paddle/function/GemmConvOpTest.cpp +++ b/paddle/function/GemmConvOpTest.cpp @@ -24,7 +24,7 @@ TEST(GemmConv, NaiveConv) { "NaiveConv-CPU", "GemmConv-CPU", forward); } -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA TEST(GemmConv, Forward) { Convolution( "GemmConv-CPU", "GemmConv-GPU", forward); diff --git a/paddle/function/Im2ColTest.cpp b/paddle/function/Im2ColTest.cpp index 55325e94b58dd587474751051d29ad1eb2fc34e3..a0a01a5fc7fc055dce6ddb3ee51c7ab18f8a4ca7 100644 --- a/paddle/function/Im2ColTest.cpp +++ b/paddle/function/Im2ColTest.cpp @@ -116,7 +116,7 @@ void TestIm2ColFunctor() { TEST(Im2ColFunctor, CPU) { TestIm2ColFunctor(); } -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA TEST(Im2ColFunctor, GPU) { TestIm2ColFunctor(); } diff --git a/paddle/function/MulOp.cpp b/paddle/function/MulOp.cpp index 655026320c19e3e2c81421d46b28e569deadae1a..704a8c41325ef86067a3bd8ed6d772b77df147c5 100644 --- a/paddle/function/MulOp.cpp +++ b/paddle/function/MulOp.cpp @@ -341,7 +341,7 @@ private: }; REGISTER_TYPED_FUNC(MulOp, CPU, MulFunc); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA REGISTER_TYPED_FUNC(MulOp, GPU, MulFunc); #endif } // namespace paddle diff --git a/paddle/function/PadOp.cpp b/paddle/function/PadOp.cpp index 24c9bf4e72a2a04f1ba6ad5fbedc2880a663990b..eed2f2e3089b6b6167ef7c5a7acb7ecaa08945e1 100644 --- a/paddle/function/PadOp.cpp +++ b/paddle/function/PadOp.cpp @@ -207,7 +207,7 @@ private: REGISTER_TYPED_FUNC(Pad, CPU, PadFunc); REGISTER_TYPED_FUNC(PadGrad, CPU, PadGradFunc); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA REGISTER_TYPED_FUNC(Pad, GPU, PadFunc); REGISTER_TYPED_FUNC(PadGrad, GPU, PadGradFunc); #endif diff --git a/paddle/function/RowConvOp.cpp b/paddle/function/RowConvOp.cpp index 09e702f71a5b1d72b715597f18cadf6b6f2b73a7..7c802d66273c6f7aa56b2f460e3dff4401967517 100644 --- a/paddle/function/RowConvOp.cpp +++ b/paddle/function/RowConvOp.cpp @@ -217,7 +217,7 @@ public: REGISTER_TYPED_FUNC(RowConv, CPU, RowConvFunc); REGISTER_TYPED_FUNC(RowConvGrad, CPU, RowConvGradFunc); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA REGISTER_TYPED_FUNC(RowConv, GPU, RowConvFunc); REGISTER_TYPED_FUNC(RowConvGrad, GPU, RowConvGradFunc); #endif diff --git a/paddle/function/SwitchOp.cpp b/paddle/function/SwitchOp.cpp index db839b5b76ffce8880bd71e94585c4731cb7a94c..597723a2dded6a6a116e05b7d4c942cd633e2c99 100644 --- a/paddle/function/SwitchOp.cpp +++ b/paddle/function/SwitchOp.cpp @@ -132,7 +132,7 @@ public: REGISTER_TYPED_FUNC(NCHW2NHWC, CPU, NCHW2NHWCFunc); REGISTER_TYPED_FUNC(NHWC2NCHW, CPU, NHWC2NCHWFunc); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA REGISTER_TYPED_FUNC(NCHW2NHWC, GPU, NCHW2NHWCFunc); REGISTER_TYPED_FUNC(NHWC2NCHW, GPU, NHWC2NCHWFunc); #endif diff --git a/paddle/gserver/CMakeLists.txt b/paddle/gserver/CMakeLists.txt index 62cff9361ccba3ae3b9359ddb932f5b26146eb97..5f39167afc34affbea7858fa0794ef52b786a383 100644 --- a/paddle/gserver/CMakeLists.txt +++ b/paddle/gserver/CMakeLists.txt @@ -60,6 +60,36 @@ if(NOT WITH_PYTHON) dataproviders/PyDataProvider.h) endif() +if(MOBILE_INFERENCE) + # Remove evaluators + list(REMOVE_ITEM GSERVER_SOURCES + layers/ValidationLayer.cpp + evaluators/Evaluator.cpp + evaluators/DetectionMAPEvaluator.cpp + evaluators/CTCErrorEvaluator.cpp + evaluators/ChunkEvaluator.cpp) + + # Remove dataproviders + list(REMOVE_ITEM GSERVER_SOURCES + dataproviders/DataProvider.cpp + dataproviders/MultiDataProvider.cpp + dataproviders/ProtoDataProvider.cpp + dataproviders/PyDataProvider2.cpp + dataproviders/PyDataProvider.cpp) + + # Remove useless gradientmachines + list(REMOVE_ITEM GSERVER_SOURCES + gradientmachines/MultiNetwork.cpp + gradientmachines/RecurrentGradientMachine.cpp + gradientmachines/ParallelNeuralNetwork.cpp + gradientmachines/GradientMachineMode.cpp + gradientmachines/MultiGradientMachine.cpp) + + # Remove useless layers + list(REMOVE_ITEM GSERVER_SOURCES + layers/RecurrentLayerGroup.cpp) +endif() + if(WITH_GPU) cuda_add_library(paddle_gserver ${GSERVER_SOURCES}) else() diff --git a/paddle/gserver/gradientmachines/GradientMachine.cpp b/paddle/gserver/gradientmachines/GradientMachine.cpp index b44e4dc202f01956ed21c175aa897ced8e92546b..de5faf5e1e2b3e73bc07fe7f1635110f4efd7eec 100644 --- a/paddle/gserver/gradientmachines/GradientMachine.cpp +++ b/paddle/gserver/gradientmachines/GradientMachine.cpp @@ -17,12 +17,15 @@ limitations under the License. */ #include #include "paddle/utils/Logging.h" +#include "NeuralNetwork.h" +#include "hl_gpu.h" + +#ifndef PADDLE_MOBILE_INFERENCE #include "GradientMachineMode.h" #include "MultiGradientMachine.h" #include "MultiNetwork.h" -#include "NeuralNetwork.h" #include "ParallelNeuralNetwork.h" -#include "hl_gpu.h" +#endif namespace paddle { @@ -30,13 +33,16 @@ GradientMachine* GradientMachine::create( const ModelConfig& config, int mode, const std::vector& parameterTypes) { +#ifndef PADDLE_MOBILE_INFERENCE if (auto gm = IGradientMachineMode::tryCreateGradientMachine(mode, config)) { return gm; } if (FLAGS_trainer_count > 1) { return new MultiGradientMachine(config, FLAGS_use_gpu); } +#endif if (FLAGS_trainer_count == 1) { // single +#ifndef PADDLE_MOBILE_INFERENCE NeuralNetwork* nn; if (config.type() == "multi_nn") { /* multi submodel calculate, thread(s) will be initialized inside */ @@ -48,6 +54,9 @@ GradientMachine* GradientMachine::create( /* single thread calculate */ nn = NeuralNetwork::create(config); } +#else + NeuralNetwork* nn = NeuralNetwork::create(config); +#endif ParamInitCallback testParamInitCb = [](int paramId, Parameter* para) { para->enableType(PARAMETER_VALUE); }; diff --git a/paddle/gserver/gradientmachines/GradientMachine.h b/paddle/gserver/gradientmachines/GradientMachine.h index f9c82a2bef82b4e6bcbf0c73583505d2692f3926..ebfe0573cfdbfb2ef54a29b038e8b85356cc6c27 100644 --- a/paddle/gserver/gradientmachines/GradientMachine.h +++ b/paddle/gserver/gradientmachines/GradientMachine.h @@ -20,13 +20,16 @@ limitations under the License. */ #include "ModelConfig.pb.h" #include "TrainerConfig.pb.h" #include "paddle/gserver/dataproviders/DataProvider.h" -#include "paddle/gserver/evaluators/Evaluator.h" #include "paddle/gserver/layers/Layer.h" #include "paddle/math/Matrix.h" #include "paddle/parameter/Parameter.h" #include "paddle/parameter/ParameterUpdaterBase.h" #include "paddle/utils/Thread.h" +#ifndef PADDLE_MOBILE_INFERENCE +#include "paddle/gserver/evaluators/Evaluator.h" +#endif + namespace paddle { /** * @brief A gradient machine is capable of calculating some outputs given @@ -147,6 +150,7 @@ public: virtual void onPassEnd() = 0; +#ifndef PADDLE_MOBILE_INFERENCE /** * Create an evaluator which can be used for eval() */ @@ -156,6 +160,7 @@ public: * evaluate using the given evaluator */ virtual void eval(Evaluator* evaluator) const = 0; +#endif std::vector& getParameters() { return parameters_; } diff --git a/paddle/gserver/gradientmachines/NeuralNetwork.cpp b/paddle/gserver/gradientmachines/NeuralNetwork.cpp index 26cff3e67710b2f38d93572c5d58849aa94a5135..dcf0acb5a2cc7698625a2e254d4c12a32bc9631d 100644 --- a/paddle/gserver/gradientmachines/NeuralNetwork.cpp +++ b/paddle/gserver/gradientmachines/NeuralNetwork.cpp @@ -14,15 +14,17 @@ limitations under the License. */ #include "paddle/utils/Util.h" +#include "NeuralNetwork.h" +#include "hl_gpu.h" +#include "paddle/gserver/layers/AgentLayer.h" #include "paddle/utils/CustomStackTrace.h" #include "paddle/utils/Logging.h" +#include "paddle/utils/Stat.h" +#ifndef PADDLE_MOBILE_INFERENCE #include "MultiNetwork.h" -#include "NeuralNetwork.h" #include "RecurrentGradientMachine.h" -#include "hl_gpu.h" -#include "paddle/gserver/layers/AgentLayer.h" -#include "paddle/utils/Stat.h" +#endif namespace paddle { void parameterInitNN(int paramId, @@ -54,6 +56,7 @@ void parameterInitNN(int paramId, } NeuralNetwork* NeuralNetwork::create(const ModelConfig& config) { +#ifndef PADDLE_MOBILE_INFERENCE if (config.type() == "recurrent_nn") { return newNeuralNetwork("root"); } else if (config.type() == "multi_nn") { @@ -61,6 +64,9 @@ NeuralNetwork* NeuralNetwork::create(const ModelConfig& config) { } else { return newNeuralNetwork(); } +#else + return new NeuralNetwork(); +#endif } std::map NeuralNetwork::dllInitMap; @@ -304,6 +310,8 @@ void NeuralNetwork::onPassEnd() { } } +#ifndef PADDLE_MOBILE_INFERENCE + class CombinedEvaluator : public Evaluator { public: void addEvaluator(std::unique_ptr&& evaluator) { @@ -466,6 +474,8 @@ Evaluator* NeuralNetwork::makeEvaluator() const { void NeuralNetwork::eval(Evaluator* evaluator) const { evaluator->eval(*this); } +#endif + void NeuralNetwork::setOutputGrad(const std::vector& args) { CHECK_GE(outputLayers_.size(), args.size()); for (size_t i = 0; i < args.size(); ++i) { diff --git a/paddle/gserver/gradientmachines/NeuralNetwork.h b/paddle/gserver/gradientmachines/NeuralNetwork.h index 12810f642519b7965fc1b7d751290445e3350dd5..56a1ec78460731554c9b47cf3f517f7654dc314f 100644 --- a/paddle/gserver/gradientmachines/NeuralNetwork.h +++ b/paddle/gserver/gradientmachines/NeuralNetwork.h @@ -97,9 +97,12 @@ public: virtual void onPassEnd(); +#ifndef PADDLE_MOBILE_INFERENCE virtual Evaluator* makeEvaluator() const; virtual void eval(Evaluator* evaluator) const; +#endif + virtual void resetState(); virtual void setOutputGrad(const std::vector& args); diff --git a/paddle/gserver/layers/BatchNormBaseLayer.cpp b/paddle/gserver/layers/BatchNormBaseLayer.cpp index 55f52816ab496a1d62e5e2778babab12da17a4ce..bc7d1c83a48aefeb4bc6d3baa32b78aba712e58d 100644 --- a/paddle/gserver/layers/BatchNormBaseLayer.cpp +++ b/paddle/gserver/layers/BatchNormBaseLayer.cpp @@ -16,7 +16,7 @@ limitations under the License. */ #include "BatchNormalizationLayer.h" #include "Layer.h" #include "paddle/utils/Stat.h" -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA #include "CudnnBatchNormLayer.h" #endif diff --git a/paddle/gserver/layers/BatchNormalizationLayer.cpp b/paddle/gserver/layers/BatchNormalizationLayer.cpp index 33cf24431d70e541854858d077b2438587ea93f5..dacff25e5927daf9c991577a71be86b160228317 100644 --- a/paddle/gserver/layers/BatchNormalizationLayer.cpp +++ b/paddle/gserver/layers/BatchNormalizationLayer.cpp @@ -13,7 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/utils/Stat.h" -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA #include "hl_batch_transpose.h" #endif #include "BatchNormalizationLayer.h" @@ -90,7 +90,7 @@ void BatchNormalizationLayer::expandMat(const MatrixPtr& in, MatrixPtr& out) { size_t batchSize = in->getHeight(); CHECK_EQ(out->getHeight(), batchSize * imgPixels_); if (useGpu_) { -#ifndef PADDLE_WITH_GPU +#ifndef PADDLE_WITH_CUDA LOG(FATAL) << "paddle is compiled only for cpu"; #else batchTranspose( @@ -127,7 +127,7 @@ void BatchNormalizationLayer::shrinkMat(const MatrixPtr& in, MatrixPtr& out) { } CHECK_EQ(in->getHeight(), static_cast(batchSize * imgPixels_)); if (useGpu_) { -#ifndef PADDLE_WITH_GPU +#ifndef PADDLE_WITH_CUDA LOG(FATAL) << "paddle is compiled only for cpu"; #else batchTranspose( diff --git a/paddle/gserver/layers/Layer.cpp b/paddle/gserver/layers/Layer.cpp index e95f42c863b3733ca66055e1b3939e734cae8ad1..01f2aae6cf88d47296da804061b9b039cca593db 100644 --- a/paddle/gserver/layers/Layer.cpp +++ b/paddle/gserver/layers/Layer.cpp @@ -15,11 +15,14 @@ limitations under the License. */ #include "paddle/utils/Util.h" #include "CostLayer.h" -#include "ValidationLayer.h" #include "paddle/math/SparseMatrix.h" #include "paddle/utils/Error.h" #include "paddle/utils/Logging.h" +#ifndef PADDLE_MOBILE_INFERENCE +#include "ValidationLayer.h" +#endif + DEFINE_bool(log_error_clipping, false, "enable log error clipping or not"); namespace paddle { @@ -103,10 +106,12 @@ LayerPtr Layer::create(const LayerConfig& config) { return LayerPtr(new MultiClassCrossEntropy(config)); else if (type == "rank-cost") return LayerPtr(new RankingCost(config)); +#ifndef PADDLE_MOBILE_INFERENCE else if (type == "auc-validation") return LayerPtr(new AucValidation(config)); else if (type == "pnpair-validation") return LayerPtr(new PnpairValidation(config)); +#endif return LayerPtr(registrar_.createByType(config.type(), config)); } diff --git a/paddle/gserver/layers/PoolLayer.cpp b/paddle/gserver/layers/PoolLayer.cpp index 43ab4e4d4741cc938e92f948d48eee853ebe808b..7b932d5a76e9c4fe7cbe5882bbc19eb3de4b503a 100644 --- a/paddle/gserver/layers/PoolLayer.cpp +++ b/paddle/gserver/layers/PoolLayer.cpp @@ -15,7 +15,7 @@ limitations under the License. */ #include "PoolLayer.h" #include "PoolProjectionLayer.h" #include "paddle/utils/Logging.h" -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA #include "CudnnPoolLayer.h" #endif namespace paddle { @@ -53,7 +53,7 @@ Layer* PoolLayer::create(const LayerConfig& config) { const std::string& pool = config.inputs(0).pool_conf().pool_type(); if (pool == "max-projection" || pool == "avg-projection") { return new PoolProjectionLayer(config); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA } else if (CudnnPoolLayer::typeCheck(pool)) { return new CudnnPoolLayer(config); #endif diff --git a/paddle/gserver/tests/CMakeLists.txt b/paddle/gserver/tests/CMakeLists.txt index de9b8e63dfc4291f8f42ca8c57cb5eb6baed8d8e..fcee19415c13e9731bd47eb53bbff9b52cf6450b 100644 --- a/paddle/gserver/tests/CMakeLists.txt +++ b/paddle/gserver/tests/CMakeLists.txt @@ -1,15 +1,17 @@ # gserver pacakge unittests +if(NOT MOBILE_INFERENCE) ################### test_ProtoDataProvider ############ -add_unittest_without_exec(test_ProtoDataProvider - test_ProtoDataProvider.cpp) - -# test_ProtoDataProvider will mkdir as same name, -# so if WORKING_DIRECTORY is default directory, then -# mkdir will get error. -add_test(NAME test_ProtoDataProvider - COMMAND ${CMAKE_CURRENT_BINARY_DIR}/test_ProtoDataProvider - WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle) + add_unittest_without_exec(test_ProtoDataProvider + test_ProtoDataProvider.cpp) + + # test_ProtoDataProvider will mkdir as same name, + # so if WORKING_DIRECTORY is default directory, then + # mkdir will get error. + add_test(NAME test_ProtoDataProvider + COMMAND ${CMAKE_CURRENT_BINARY_DIR}/test_ProtoDataProvider + WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle) +endif() ################# test_LayerGrad ####################### add_unittest_without_exec(test_LayerGrad @@ -98,9 +100,11 @@ add_unittest_without_exec(test_KmaxSeqScore add_test(NAME test_KmaxSeqScore COMMAND test_KmaxSeqScore) +if(NOT MOBILE_INFERENCE) ################## test_Evaluator ####################### -add_unittest(test_Evaluator - test_Evaluator.cpp) + add_unittest(test_Evaluator + test_Evaluator.cpp) +endif() ################ test_LinearChainCRF #################### add_simple_unittest(test_LinearChainCRF) @@ -131,27 +135,31 @@ if(NOT WITH_DOUBLE) WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle) endif() +if(NOT MOBILE_INFERENCE) ############### test_RecurrentGradientMachine ############### -# TODO(yuyang18): There is some bug in test_RecurrentGradientMachine -# I will fix it. -add_unittest_without_exec(test_RecurrentGradientMachine - test_RecurrentGradientMachine.cpp) -add_test(NAME test_RecurrentGradientMachine - COMMAND .set_python_path.sh -d - ${PADDLE_SOURCE_DIR}/python:${PADDLE_SOURCE_DIR}/paddle/gserver/tests - ${CMAKE_CURRENT_BINARY_DIR}/test_RecurrentGradientMachine - WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle) - -add_unittest_without_exec(test_NetworkCompare - test_NetworkCompare.cpp) -if(WITH_GPU) - add_test(NAME test_NetworkCompare - COMMAND .set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python ${CMAKE_CURRENT_BINARY_DIR}/test_NetworkCompare --use_gpu=true - WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle) -else() - add_test(NAME test_NetworkCompare - COMMAND .set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python ${CMAKE_CURRENT_BINARY_DIR}/test_NetworkCompare --use_gpu=false - WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle) + # TODO(yuyang18): There is some bug in test_RecurrentGradientMachine + # I will fix it. + add_unittest_without_exec(test_RecurrentGradientMachine + test_RecurrentGradientMachine.cpp) + add_test(NAME test_RecurrentGradientMachine + COMMAND .set_python_path.sh -d + ${PADDLE_SOURCE_DIR}/python:${PADDLE_SOURCE_DIR}/paddle/gserver/tests + ${CMAKE_CURRENT_BINARY_DIR}/test_RecurrentGradientMachine + WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle) +endif() + +if(NOT MOBILE_INFERENCE) + add_unittest_without_exec(test_NetworkCompare + test_NetworkCompare.cpp) + if(WITH_GPU) + add_test(NAME test_NetworkCompare + COMMAND .set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python ${CMAKE_CURRENT_BINARY_DIR}/test_NetworkCompare --use_gpu=true + WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle) + else() + add_test(NAME test_NetworkCompare + COMMAND .set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python ${CMAKE_CURRENT_BINARY_DIR}/test_NetworkCompare --use_gpu=false + WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle) + endif() endif() diff --git a/paddle/gserver/tests/LayerGradUtil.cpp b/paddle/gserver/tests/LayerGradUtil.cpp index 59df057a807e5d8bc0ab13b8f8961e3374517045..cd957c7c0bca4c6089cc07e8f4226b8260190f07 100644 --- a/paddle/gserver/tests/LayerGradUtil.cpp +++ b/paddle/gserver/tests/LayerGradUtil.cpp @@ -674,7 +674,7 @@ void testLayerGradKernel(TestConfig testConf, bool useGpu, bool useWeight, float epsilon) { -#ifndef PADDLE_WITH_GPU +#ifndef PADDLE_WITH_CUDA if (useGpu) return; #endif FLAGS_use_gpu = useGpu; diff --git a/paddle/gserver/tests/LayerGradUtil.h b/paddle/gserver/tests/LayerGradUtil.h index 88e831f78bd165f63806df6c081d84411be51502..e10a27eedfa3d207d77a9bf1c5bfb23480dcca69 100644 --- a/paddle/gserver/tests/LayerGradUtil.h +++ b/paddle/gserver/tests/LayerGradUtil.h @@ -15,7 +15,6 @@ limitations under the License. */ #pragma once #include "ModelConfig.pb.h" #include "paddle/gserver/layers/DataLayer.h" -#include "paddle/trainer/Trainer.h" #include "paddle/testing/TestUtil.h" using namespace std; // NOLINT diff --git a/paddle/gserver/tests/test_ActivationGrad.cpp b/paddle/gserver/tests/test_ActivationGrad.cpp index de93972a5880518dfbfb9f8582e17c594e54b9b8..f4c2a07c4426da36ff0b0570339a3a972dadec1f 100644 --- a/paddle/gserver/tests/test_ActivationGrad.cpp +++ b/paddle/gserver/tests/test_ActivationGrad.cpp @@ -17,7 +17,6 @@ limitations under the License. */ #include #include "ModelConfig.pb.h" #include "paddle/gserver/layers/DataLayer.h" -#include "paddle/trainer/Trainer.h" #include "LayerGradUtil.h" #include "paddle/testing/TestUtil.h" diff --git a/paddle/gserver/tests/test_BatchNorm.cpp b/paddle/gserver/tests/test_BatchNorm.cpp index c1c85f8fac43af6a7f260c10a18499e61ca7f17a..41116f480957153eca33d211d09095903d6a00d9 100644 --- a/paddle/gserver/tests/test_BatchNorm.cpp +++ b/paddle/gserver/tests/test_BatchNorm.cpp @@ -17,7 +17,6 @@ limitations under the License. */ #include #include "ModelConfig.pb.h" #include "paddle/gserver/layers/DataLayer.h" -#include "paddle/trainer/Trainer.h" #include "paddle/utils/GlobalConstants.h" #include "LayerGradUtil.h" @@ -119,7 +118,7 @@ TEST(Layer, batchNorm) { CHECK_EQ(static_cast(convLayer->getOutputValue()->getWidth()), 576); } -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA void batchNormInference(int n, int c, int h, int w) { MatrixPtr input = std::make_shared(n, c * h * w); MatrixPtr cudnnOut = std::make_shared(n, c * h * w); diff --git a/paddle/gserver/tests/test_CRFLayerGrad.cpp b/paddle/gserver/tests/test_CRFLayerGrad.cpp index df14449291e9ec08f45718de07bbb101f6dbea58..f010066ebc6c33eff17715ba20b4e238583f1966 100644 --- a/paddle/gserver/tests/test_CRFLayerGrad.cpp +++ b/paddle/gserver/tests/test_CRFLayerGrad.cpp @@ -16,7 +16,6 @@ limitations under the License. */ #include "ModelConfig.pb.h" #include "paddle/gserver/layers/DataLayer.h" #include "paddle/gserver/layers/LinearChainCRF.h" -#include "paddle/trainer/Trainer.h" #include "LayerGradUtil.h" #include "paddle/testing/TestUtil.h" diff --git a/paddle/gserver/tests/test_ConvTrans.cpp b/paddle/gserver/tests/test_ConvTrans.cpp index 6035a866b4eee4c6a61fa93f3adbf5e1d2d549f7..5f2f9665478ad4bdfb00421ec57b3ecc1b41b417 100644 --- a/paddle/gserver/tests/test_ConvTrans.cpp +++ b/paddle/gserver/tests/test_ConvTrans.cpp @@ -18,7 +18,6 @@ limitations under the License. */ #include "ModelConfig.pb.h" #include "paddle/gserver/layers/DataLayer.h" #include "paddle/math/MathUtils.h" -#include "paddle/trainer/Trainer.h" #include "paddle/utils/GlobalConstants.h" #include "LayerGradUtil.h" diff --git a/paddle/gserver/tests/test_ConvUnify.cpp b/paddle/gserver/tests/test_ConvUnify.cpp index 16556469cbf854a8e61321efe4e93e86f5641952..8634355b5206f5cde0aa0717df50ade39e173ae7 100644 --- a/paddle/gserver/tests/test_ConvUnify.cpp +++ b/paddle/gserver/tests/test_ConvUnify.cpp @@ -18,7 +18,6 @@ limitations under the License. */ #include "ModelConfig.pb.h" #include "paddle/gserver/layers/DataLayer.h" #include "paddle/math/MathUtils.h" -#include "paddle/trainer/Trainer.h" #include "paddle/utils/GlobalConstants.h" #include "LayerGradUtil.h" @@ -117,7 +116,7 @@ MatrixPtr doOneConvTest(size_t imgSize, } TEST(Layer, convParaUnified) { -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA MatrixPtr input, resultCpu, resultGpu; /// TEST1 for conv /// diff --git a/paddle/gserver/tests/test_CrossEntropyOverBeamGrad.cpp b/paddle/gserver/tests/test_CrossEntropyOverBeamGrad.cpp index c922237d33da5de0ece61df732334bee5592249d..477638426fe91f2c5b1f4d5011496385f07c2e90 100644 --- a/paddle/gserver/tests/test_CrossEntropyOverBeamGrad.cpp +++ b/paddle/gserver/tests/test_CrossEntropyOverBeamGrad.cpp @@ -18,7 +18,6 @@ limitations under the License. */ #include #include "ModelConfig.pb.h" #include "paddle/gserver/layers/DataLayer.h" -#include "paddle/trainer/Trainer.h" #include "LayerGradUtil.h" #include "paddle/testing/TestUtil.h" diff --git a/paddle/gserver/tests/test_DetectionOutput.cpp b/paddle/gserver/tests/test_DetectionOutput.cpp index 1a83f48fae17410b0014cf6b258b4aac29a86242..dc39c97a87f8b346dc9cc09d6158b1b4069bcf2d 100644 --- a/paddle/gserver/tests/test_DetectionOutput.cpp +++ b/paddle/gserver/tests/test_DetectionOutput.cpp @@ -150,7 +150,7 @@ TEST(Layer, detectionOutputLayerFwd) { useGpu, result2); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA // GPU case 1. useGpu = true; inputLoc = Matrix::create(1, 16, false, useGpu); diff --git a/paddle/gserver/tests/test_Evaluator.cpp b/paddle/gserver/tests/test_Evaluator.cpp index 42bb5705726cab26f3b5c126cdf08a75930241bf..62a131171fa5ae973cb3069151a582aaeac9ee0e 100644 --- a/paddle/gserver/tests/test_Evaluator.cpp +++ b/paddle/gserver/tests/test_Evaluator.cpp @@ -51,7 +51,7 @@ void testEvaluator(TestConfig testConf, string testEvaluatorName, size_t batchSize, bool useGpu) { -#ifndef PADDLE_WITH_GPU +#ifndef PADDLE_WITH_CUDA if (useGpu) return; #endif FLAGS_use_gpu = useGpu; diff --git a/paddle/gserver/tests/test_KmaxSeqScore.cpp b/paddle/gserver/tests/test_KmaxSeqScore.cpp index 1594de850210b631594e88bd7326b310a9c72eaf..ffe5cfb8dbb55d0b70a5699969abaa101f05f9ce 100644 --- a/paddle/gserver/tests/test_KmaxSeqScore.cpp +++ b/paddle/gserver/tests/test_KmaxSeqScore.cpp @@ -18,7 +18,6 @@ limitations under the License. */ #include #include "ModelConfig.pb.h" #include "paddle/gserver/layers/DataLayer.h" -#include "paddle/trainer/Trainer.h" #include "paddle/utils/GlobalConstants.h" #include "LayerGradUtil.h" @@ -97,7 +96,7 @@ TEST(Layer, kmaxSeqScoreLayer) { Matrix::create(subSeqStartPosition.back(), 1, false, false); std::vector mode = {false}; -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA mode.push_back(true); #endif diff --git a/paddle/gserver/tests/test_LayerGrad.cpp b/paddle/gserver/tests/test_LayerGrad.cpp index e887dee5f98c6ac5af3171ce43c048d92322186c..1a46fb49153a0aa4228f58db481b950bc2d6de83 100644 --- a/paddle/gserver/tests/test_LayerGrad.cpp +++ b/paddle/gserver/tests/test_LayerGrad.cpp @@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA #include #endif #include @@ -21,7 +21,6 @@ limitations under the License. */ #include "ModelConfig.pb.h" #include "paddle/gserver/layers/DataLayer.h" #include "paddle/math/MathUtils.h" -#include "paddle/trainer/Trainer.h" #include "LayerGradUtil.h" #include "paddle/testing/TestUtil.h" @@ -258,7 +257,7 @@ void testProjectionConv(size_t groups, bool isDeconv) { true); } -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA TEST(Projection, conv) { /// test ConvProjection testProjectionConv(1, false); @@ -422,7 +421,7 @@ TEST(Layer, depthwiseConvLayer) { // 'depthwise_conv' is a sepecial case of 'exconv' whose // groups size equals to the input channels size. testDepthwiseConvLayer("exconv", /* useGpu= */ false); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA testDepthwiseConvLayer("exconv", /* useGpu= */ true); #endif } @@ -480,7 +479,7 @@ void testConvLayer(const string& type, bool trans, bool useGpu) { TEST(Layer, convLayer) { testConvLayer("exconv", /* trans= */ false, /* useGpu= */ false); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA testConvLayer("exconv", /* trans= */ false, /* useGpu= */ true); testConvLayer("cudnn_conv", /* trans= */ false, /* useGpu= */ true); #endif @@ -525,7 +524,7 @@ TEST(Layer, convTransLayer) { for (auto useGpu : {false, true}) { testConvTransLayer("exconvt", /* trans= */ false, /* useGpu= */ useGpu); } -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA testConvTransLayer("cudnn_convt", /* trans= */ false, /* useGpu= */ true); #endif } @@ -638,7 +637,7 @@ TEST(Layer, SelectiveFullyConnectedLayer) { /* trans= */ false, /* useGup= */ false, false); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA testLayerGrad(config, "selective_fc", 100, @@ -1210,7 +1209,7 @@ void testPoolLayer(const string& poolType, bool trans, bool useGpu) { testLayerGrad(config, "pool", 100, trans, useGpu); } -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA void testPoolLayer2(const string& poolType, bool trans, bool useGpu) { TestConfig config; config.inputDefs.push_back({INPUT_DATA, "layer_0", 3200, 0}); @@ -1236,7 +1235,7 @@ TEST(Layer, PoolLayer) { testPoolLayer("avg-projection", /* trans= */ false, /* useGpu= */ false); testPoolLayer("max-projection", /* trans= */ false, /* useGpu= */ false); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA testPoolLayer("avg-projection", /* trans= */ false, /* useGpu= */ true); testPoolLayer("max-projection", /* trans= */ false, /* useGpu= */ true); testPoolLayer("cudnn-max-pool", /* trans= */ false, /* useGpu= */ true); @@ -1309,7 +1308,7 @@ void testPool3DLayer(const string& poolType, bool trans, bool useGpu) { TEST(Layer, Pool3DLayer) { testPool3DLayer("avg", /* trans= */ false, /* useGpu= */ false); testPool3DLayer("max", /* trans= */ false, /* useGpu= */ false); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA testPool3DLayer("avg", /* trans= */ false, /* useGpu= */ true); testPool3DLayer("max", /* trans= */ false, /* useGpu= */ true); #endif @@ -1695,7 +1694,7 @@ void testBatchNormLayer(const string& type, bool trans, bool useGpu) { TEST(Layer, BatchNormalizationLayer) { testBatchNormLayer("batch_norm", false, false); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA testBatchNormLayer("batch_norm", false, true); if (hl_get_cudnn_lib_version() >= int(4000)) { testBatchNormLayer("cudnn_batch_norm", false, true); @@ -1744,7 +1743,7 @@ void testBatchNorm3DLayer(const string& type, bool trans, bool useGpu) { TEST(Layer, testBatchNorm3DLayer) { testBatchNorm3DLayer("batch_norm", false, false); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA testBatchNorm3DLayer("batch_norm", false, true); if (hl_get_cudnn_lib_version() >= int(4000)) { testBatchNorm3DLayer("cudnn_batch_norm", false, true); @@ -2262,7 +2261,7 @@ void test3DConvLayer(const string& type, bool trans, bool useGpu) { TEST(Layer, test3DConvLayer) { test3DConvLayer("conv3d", /* trans= */ false, /* useGpu= */ false); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA test3DConvLayer("conv3d", /* trans= */ false, /* useGpu= */ true); #endif } @@ -2339,7 +2338,7 @@ void test3DDeConvLayer(const string& type, bool trans, bool useGpu) { TEST(Layer, test3DDeConvLayer) { test3DDeConvLayer("deconv3d", /* trans= */ false, /* useGpu= */ false); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA test3DDeConvLayer("deconv3d", /* trans= */ false, /* useGpu= */ true); #endif } diff --git a/paddle/gserver/tests/test_NetworkCompare.cpp b/paddle/gserver/tests/test_NetworkCompare.cpp index e322fef9a468c60a2f7dd4842207cf1cac44935e..2b92211936aad1a034369bda0830bed3438cf401 100644 --- a/paddle/gserver/tests/test_NetworkCompare.cpp +++ b/paddle/gserver/tests/test_NetworkCompare.cpp @@ -243,7 +243,7 @@ TEST(Compare, concat_slice) { compareNetwork(config_file_a, config_file_b); } -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA TEST(Compare, img_pool) { std::string config_file_a = "./gserver/tests/img_pool_a.conf"; std::string config_file_b = "./gserver/tests/img_pool_b.conf"; diff --git a/paddle/gserver/tests/test_PriorBox.cpp b/paddle/gserver/tests/test_PriorBox.cpp index cbc0fff7b895d0b34b0af42e881aa68a1754eeea..8dc5568784295b5a2e7d4decd178d612432a1a18 100644 --- a/paddle/gserver/tests/test_PriorBox.cpp +++ b/paddle/gserver/tests/test_PriorBox.cpp @@ -151,7 +151,7 @@ TEST(Layer, priorBoxLayerFwd) { useGpu, result); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA // reset the input parameters variance[1] = 0.1; variance[3] = 0.2; diff --git a/paddle/gserver/tests/test_ProtoDataProvider.cpp b/paddle/gserver/tests/test_ProtoDataProvider.cpp index 988dbc2513d7d64f647036ed5a8b890143d0e606..af6472619d1840e82787974d265d601b4a406c09 100644 --- a/paddle/gserver/tests/test_ProtoDataProvider.cpp +++ b/paddle/gserver/tests/test_ProtoDataProvider.cpp @@ -485,7 +485,7 @@ TEST(ProtoDataProvider, test) { // Currently in async mode, useGpu is not supported continue; } -#ifndef PADDLE_WITH_GPU +#ifndef PADDLE_WITH_CUDA if (useGpu) { continue; } @@ -525,7 +525,7 @@ TEST(ProtoDataProvider, constant_slots) { for (int numConstantSlots : {1, 2}) { for (int useGpu : numTwoArray) { for (int dataCompression : numTwoArray) { -#ifndef PADDLE_WITH_GPU +#ifndef PADDLE_WITH_CUDA if (useGpu) { continue; } @@ -708,7 +708,7 @@ TEST(ProtoSequenceDataProvider, test) { // Currently in async mode, useGpu is not supported continue; } -#ifndef PADDLE_WITH_GPU +#ifndef PADDLE_WITH_CUDA if (useGpu) { continue; } diff --git a/paddle/gserver/tests/test_PyDataProvider.cpp b/paddle/gserver/tests/test_PyDataProvider.cpp index f6522febf8cae8be03e98564758a93eca73de9d8..fe54799259d86064c4fcaec0e53707247981a1b4 100644 --- a/paddle/gserver/tests/test_PyDataProvider.cpp +++ b/paddle/gserver/tests/test_PyDataProvider.cpp @@ -37,7 +37,7 @@ TEST(PyDataProvider, py_fill_slots) { config.clear_files(); std::string dataFile = "gserver/tests/pyDataProvider/pyDataProviderList"; config.set_files(dataFile); -#ifndef PADDLE_WITH_GPU +#ifndef PADDLE_WITH_CUDA bool useGpu = false; #else bool useGpu = true; @@ -71,7 +71,7 @@ TEST(PyDataProvider, py_fill_nest_slots) { std::string dataFile = "gserver/tests/pyDataProvider/pyDataProviderList"; config.set_files(dataFile); EXPECT_EQ(config.IsInitialized(), true); -#ifndef PADDLE_WITH_GPU +#ifndef PADDLE_WITH_CUDA bool useGpu = false; #else bool useGpu = true; diff --git a/paddle/gserver/tests/test_SelectiveFCLayer.cpp b/paddle/gserver/tests/test_SelectiveFCLayer.cpp index b25d32fb2c045758abf1b65e78adb68b705ee3e9..d164e382c4a804aef2417135b64cf709474d12f1 100644 --- a/paddle/gserver/tests/test_SelectiveFCLayer.cpp +++ b/paddle/gserver/tests/test_SelectiveFCLayer.cpp @@ -24,7 +24,6 @@ limitations under the License. */ #include "paddle/gserver/layers/Layer.h" #include "paddle/gserver/layers/SelectiveFullyConnectedLayer.h" #include "paddle/math/CpuSparseMatrix.h" -#include "paddle/trainer/Trainer.h" using namespace paddle; // NOLINT using namespace std; // NOLINT @@ -321,7 +320,7 @@ TEST(Layer, SelectiveFcLayer_train_dense_mul) { "filelist=gserver/tests/SelectiveFcTest/dense_mul_list"; for (auto useGpu : {false, true}) { -#ifndef PADDLE_WITH_GPU +#ifndef PADDLE_WITH_CUDA if (useGpu) { break; } @@ -388,7 +387,7 @@ void testSelectiveFcLayerTrainSparseMul(const LayerConfig& config, outMatSelfc->getWidth(), outMatSelfc->getElementCnt())); cpuOutMatSelfc->copyFrom(*outMatSelfc, HPPL_STREAM_DEFAULT); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA if (useGpu) { hl_stream_synchronize(HPPL_STREAM_DEFAULT); } @@ -418,7 +417,7 @@ void testSelectiveFcLayerTrainSparseMul(const LayerConfig& config, MatrixPtr cpuOutMatFc( new CpuMatrix(outMatFc->getHeight(), outMatFc->getWidth())); cpuOutMatFc->copyFrom(*outMatFc, HPPL_STREAM_DEFAULT); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA if (useGpu) { hl_stream_synchronize(HPPL_STREAM_DEFAULT); } @@ -443,7 +442,7 @@ TEST(Layer, SelectiveFcLayer_train_sparse_mul) { selLayerConfig.set_size(fcLayerWidth); testSelectiveFcLayerTrainSparseMul(selLayerConfig, false); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA testSelectiveFcLayerTrainSparseMul(selLayerConfig, true); #endif } diff --git a/paddle/gserver/tests/test_SeqSliceLayerGrad.cpp b/paddle/gserver/tests/test_SeqSliceLayerGrad.cpp index f28149081b11d52651747f8fccc6e9f13d672d87..3dbffc563462973bdc1da529d486b2a2d5a677d3 100644 --- a/paddle/gserver/tests/test_SeqSliceLayerGrad.cpp +++ b/paddle/gserver/tests/test_SeqSliceLayerGrad.cpp @@ -15,7 +15,6 @@ limitations under the License. */ #include #include "ModelConfig.pb.h" #include "paddle/gserver/layers/DataLayer.h" -#include "paddle/trainer/Trainer.h" #include "LayerGradUtil.h" #include "paddle/testing/TestUtil.h" @@ -195,7 +194,7 @@ TEST(Layer, SeqSliceLayer) { vector> ends; std::vector mode = {false}; -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA mode.push_back(true); #endif genSeqInfo(seqStartPos, subSeqStartPos); diff --git a/paddle/gserver/tests/test_WarpCTCLayer.cpp b/paddle/gserver/tests/test_WarpCTCLayer.cpp index ae5b64257fa06df696e0def76c67e21722f9bc97..da829460061d38f363317e33daeb65cfa705bb8e 100644 --- a/paddle/gserver/tests/test_WarpCTCLayer.cpp +++ b/paddle/gserver/tests/test_WarpCTCLayer.cpp @@ -199,7 +199,7 @@ TEST(Layer, WarpCTCLayer) { for (auto batchSize : {1, 10, 32}) { for (auto normByTimes : {false, true}) { for (auto useGpu : {false, true}) { -#ifndef PADDLE_WITH_GPU +#ifndef PADDLE_WITH_CUDA if (useGpu) continue; #endif LOG(INFO) << "layerSize=" << layerSize << " batchSize=" << batchSize diff --git a/paddle/math/Matrix.cpp b/paddle/math/Matrix.cpp index de02f9c0d57f591052f9c28ac3f9afe418fd5df4..c3e34d5309d9ca8a32d7b0a8043e668cdb5be54b 100644 --- a/paddle/math/Matrix.cpp +++ b/paddle/math/Matrix.cpp @@ -670,7 +670,7 @@ void GpuMatrix::leftMul(Matrix& a, real scaleAB, real scaleT) { } void GpuMatrix::selectRows(Matrix& table, IVector& ids) { -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA CHECK(dynamic_cast(&table)); CHECK(table.useGpu()); CHECK(ids.useGpu()); @@ -694,7 +694,7 @@ void GpuMatrix::selectRows(Matrix& table, IVector& ids) { } void GpuMatrix::addToRows(Matrix& table, IVector& ids) { -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA CHECK(dynamic_cast(&table)); CHECK(table.useGpu()); CHECK(ids.useGpu()); @@ -741,7 +741,7 @@ void GpuMatrix::rowMax(Matrix& max) { } void GpuMatrix::rowMax(IVector& maxIds, Matrix& maxVal) { -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA CHECK(maxIds.useGpu() && maxVal.useGpu()) << "Matrix type are not equal"; size_t numSamples = getHeight(); size_t beam = maxVal.getWidth(); diff --git a/paddle/math/SparseMatrix.cpp b/paddle/math/SparseMatrix.cpp index 1f31082ae8ea840ed2eeef33ac97791a1ca4e966..284b68d590ba655395c0186d8ea86d6855c6fc50 100644 --- a/paddle/math/SparseMatrix.cpp +++ b/paddle/math/SparseMatrix.cpp @@ -836,7 +836,7 @@ void GpuSparseMatrix::zeroMem() { } void GpuSparseMatrix::rowMax(IVector& maxIds, Matrix& maxVal) { -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA CHECK(maxIds.useGpu() && maxVal.useGpu()) << "Matrix type are not equal"; size_t numSamples = getHeight(); size_t beam = maxVal.getWidth(); diff --git a/paddle/math/Vector.cpp b/paddle/math/Vector.cpp index 54e57b255d3cf5e71618c15322e37e037c20210c..ff72672e3ab77212b309fcfea835839a916fa632 100644 --- a/paddle/math/Vector.cpp +++ b/paddle/math/Vector.cpp @@ -172,7 +172,7 @@ void GpuVectorT::isEqualTo(const VectorT& b, const T& value) { template void GpuVectorT::selectFrom(const VectorT& src, const VectorT& ids) { -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA hl_vector_select_from(this->getData(), this->getSize(), src.getData(), @@ -850,7 +850,7 @@ CpuGpuVectorT::CpuGpuVectorT(CpuGpuVectorT& src, size_t size) : sync_(nullptr) { CHECK_LE(offset + size, static_cast(src.getSize())); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA SyncedFlag* flag = src.getSync(); if (*flag == DATA_AT_CPU) { src.copyToGpu(); // will set synchronous data between CPU and GPU @@ -861,7 +861,7 @@ CpuGpuVectorT::CpuGpuVectorT(CpuGpuVectorT& src, auto cMemHandle = (src.getVector(false))->getMemoryHandle(); cpuVectorT_ = std::make_shared>( size, std::dynamic_pointer_cast(cMemHandle), offset); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA auto gMemHandle = (src.getVector(true))->getMemoryHandle(); gpuVectorT_ = std::make_shared>( size, std::dynamic_pointer_cast(gMemHandle), offset); diff --git a/paddle/math/tests/test_Allocator.cpp b/paddle/math/tests/test_Allocator.cpp index cf2f66aea153bab22220e4e5a8b580778cddd058..1fecf659e5080c7d25f5f76b92b15f75eaab6ce3 100644 --- a/paddle/math/tests/test_Allocator.cpp +++ b/paddle/math/tests/test_Allocator.cpp @@ -68,7 +68,7 @@ void testPoolAllocator() { TEST(Allocator, Pool) { testPoolAllocator(); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA testPoolAllocator(); #endif } @@ -92,7 +92,7 @@ TEST(MemoryHandle, Cpu) { EXPECT_EQ(ptr1, ptr2); } -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA TEST(MemoryHandle, Gpu) { int numGpu = hl_get_device_count(); diff --git a/paddle/math/tests/test_BaseMatrix.cpp b/paddle/math/tests/test_BaseMatrix.cpp index 730759f3dbfd4c43938c41f2bc30f3b703b3de77..1766257860b0b13e9f0ce898438e7c2d644f545e 100644 --- a/paddle/math/tests/test_BaseMatrix.cpp +++ b/paddle/math/tests/test_BaseMatrix.cpp @@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA /** * This test file use autotest::AutoCompare and cmpWithoutArg to compares the * implementation of CPU and GPU member function in diff --git a/paddle/math/tests/test_CpuGpuVector.cpp b/paddle/math/tests/test_CpuGpuVector.cpp index ccb4a902b0baf9e279857c760f0396433d187966..c72f89c8244b1209e490b09387c2ee6352426ce1 100644 --- a/paddle/math/tests/test_CpuGpuVector.cpp +++ b/paddle/math/tests/test_CpuGpuVector.cpp @@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA #include #include "paddle/math/Vector.h" diff --git a/paddle/math/tests/test_ExecViaCpu.cpp b/paddle/math/tests/test_ExecViaCpu.cpp index 2d439cd0600433989bb0150ad227c8e32741cfb0..25e0ba11ded96dd78aedc3c297507d0555d80d74 100644 --- a/paddle/math/tests/test_ExecViaCpu.cpp +++ b/paddle/math/tests/test_ExecViaCpu.cpp @@ -94,7 +94,7 @@ void testWrapper(F&& f) { } } -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA TEST(ExecViaCpu, test1) { testWrapper(f); testWrapper(&f); diff --git a/paddle/math/tests/test_GpuProfiler.cpp b/paddle/math/tests/test_GpuProfiler.cpp index 6dab187e3e0a9275c317775a15260d313e480415..9402bd3ec48fbed381ef1f676e8b179cabd4cb9f 100644 --- a/paddle/math/tests/test_GpuProfiler.cpp +++ b/paddle/math/tests/test_GpuProfiler.cpp @@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA #include #include "paddle/math/Matrix.h" diff --git a/paddle/math/tests/test_Matrix.cpp b/paddle/math/tests/test_Matrix.cpp index 7a145eae6a2e7bd221b0f33a1430bfd020d86931..2f99fa3581e14b91acc0b294856619f4ae2b3483 100644 --- a/paddle/math/tests/test_Matrix.cpp +++ b/paddle/math/tests/test_Matrix.cpp @@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA /** * This test file use autotest::AutoCompare and cmpWithArg to compares the * implementation of CPU and GPU member function in Matrix.cpp. diff --git a/paddle/math/tests/test_SparseMatrix.cpp b/paddle/math/tests/test_SparseMatrix.cpp index 8151dde106c9c824f785c0bcd5812bb84f2c75f8..8abbe8d82e02b7d1738fe7e6d0c8d494166e7892 100644 --- a/paddle/math/tests/test_SparseMatrix.cpp +++ b/paddle/math/tests/test_SparseMatrix.cpp @@ -47,7 +47,7 @@ struct MatrixPara { SparseFormat format; }; -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA void test_sparse_matrix_mul(MatrixPara paraA, MatrixPara paraB, MatrixPara paraC) { @@ -452,7 +452,7 @@ TEST(Matrix, SparseMatrixCSRFormatTrimFrom) { matB->trimFrom(*mat); checkSMatrixEqual2(matA, matB); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA GpuSparseMatrixPtr matC = std::make_shared( height, trimedWidth, height, FLOAT_VALUE, SPARSE_CSR, true); matC->trimFrom(*mat); @@ -546,7 +546,7 @@ TEST(Matrix, SparseMatrixCSCFormatTrimFrom) { matB->trimFrom(*mat); checkSMatrixEqual2(matA, matB); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA GpuSparseMatrixPtr matC = std::make_shared( height, trimedWidth, height, FLOAT_VALUE, SPARSE_CSC, true); matC->trimFrom(*mat); diff --git a/paddle/math/tests/test_TrainingAlgorithm.cpp b/paddle/math/tests/test_TrainingAlgorithm.cpp index 36ac0240076db80dd50a46cfeef0445e355762ca..5ae0aa036f6bfc1e5bd4e955277c4efff8c739ce 100644 --- a/paddle/math/tests/test_TrainingAlgorithm.cpp +++ b/paddle/math/tests/test_TrainingAlgorithm.cpp @@ -91,7 +91,7 @@ int VectorCheckErr(const VectorPtr& vector1, const VectorPtr& vector2) { typedef std::function testMatrixFunc; void testCase(testMatrixFunc matrixFunc) { -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA for (auto useGpu : {false, true}) { #else for (auto useGpu : {false}) { diff --git a/paddle/math/tests/test_batchTranspose.cpp b/paddle/math/tests/test_batchTranspose.cpp index 0189e534eb2c001298ee31f9e1b22e0b5d5b4ef4..b70a61976402fd0a7cfee8382fd926fcf28486d5 100644 --- a/paddle/math/tests/test_batchTranspose.cpp +++ b/paddle/math/tests/test_batchTranspose.cpp @@ -17,7 +17,7 @@ limitations under the License. */ using namespace paddle; // NOLINT -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA TEST(MatrixBatchTransTest, test_batch_matrix_transpose) { const int nx = 100; const int ny = 50; diff --git a/paddle/math/tests/test_matrixCompare.cpp b/paddle/math/tests/test_matrixCompare.cpp index 7735877ac89af2832df199c18bf42494b375212f..7e5a1db44a5302e3b4e5d2768755824666e880ba 100644 --- a/paddle/math/tests/test_matrixCompare.cpp +++ b/paddle/math/tests/test_matrixCompare.cpp @@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA /// This unittest checks GpuMatrix/CpuMatrix get same result, so disable when /// only cpu version. diff --git a/paddle/math/tests/test_perturbation.cpp b/paddle/math/tests/test_perturbation.cpp index dff18136ae54877671e2f80f7265021870efa6ec..c7c07c817a08d78ddcbf8218e8c4a9d22f4990bc 100644 --- a/paddle/math/tests/test_perturbation.cpp +++ b/paddle/math/tests/test_perturbation.cpp @@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA #include #include diff --git a/paddle/math/tests/test_sparseMatrixCompare.cpp b/paddle/math/tests/test_sparseMatrixCompare.cpp index e39cc0a2f64572a4594ee8f22ecf4f838c691696..2b2a391b9d04a9f7fa4986a6b6dd5cd8e5385f1f 100644 --- a/paddle/math/tests/test_sparseMatrixCompare.cpp +++ b/paddle/math/tests/test_sparseMatrixCompare.cpp @@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA /// This unittest checks GpuSparseMatrix/CpuSparseMatrix get same result, // so disable when /// only cpu version. diff --git a/paddle/memory/detail/buddy_allocator.cc b/paddle/memory/detail/buddy_allocator.cc index ed0c3374ff6645725c907947c43733b6a3d14eef..fdc5ed19dc2973e744676c3b795c8ab86da58590 100644 --- a/paddle/memory/detail/buddy_allocator.cc +++ b/paddle/memory/detail/buddy_allocator.cc @@ -175,7 +175,7 @@ void* BuddyAllocator::SystemAlloc(size_t size) { } BuddyAllocator::PoolSet::iterator BuddyAllocator::RefillPool() { -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA if (system_allocator_->UseGpu()) { if ((total_used_ + total_free_) == 0) { // Compute the maximum allocation size for the first allocation. diff --git a/paddle/memory/detail/system_allocator.cc b/paddle/memory/detail/system_allocator.cc index 64f8182b5cd9eb3e5b9fef5d0aaec700f6e3e17f..6c9a46dd09c15347fca1a30971e7e732d887bc8e 100644 --- a/paddle/memory/detail/system_allocator.cc +++ b/paddle/memory/detail/system_allocator.cc @@ -62,7 +62,7 @@ void CPUAllocator::Free(void* p, size_t size, size_t index) { bool CPUAllocator::UseGpu() const { return false; } -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA void* GPUAllocator::Alloc(size_t& index, size_t size) { // CUDA documentation doesn't explain if cudaMalloc returns nullptr diff --git a/paddle/memory/detail/system_allocator.h b/paddle/memory/detail/system_allocator.h index 6b1f40347b983b0a73d76919e5e6e8aa91f2794e..ee9b012f91a9647839cf465c4074082f2d3509a6 100644 --- a/paddle/memory/detail/system_allocator.h +++ b/paddle/memory/detail/system_allocator.h @@ -40,7 +40,7 @@ class CPUAllocator : public SystemAllocator { virtual bool UseGpu() const; }; -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA class GPUAllocator : public SystemAllocator { public: virtual void* Alloc(size_t& index, size_t size); diff --git a/paddle/memory/detail/system_allocator_test.cc b/paddle/memory/detail/system_allocator_test.cc index 57d5443d5098c78cb7a59670a94accec56e841bf..cd563844e7fa23241bb0bb56d1365ef34826c4a8 100644 --- a/paddle/memory/detail/system_allocator_test.cc +++ b/paddle/memory/detail/system_allocator_test.cc @@ -56,7 +56,7 @@ TEST(CPUAllocator, LockMem) { TestAllocator(a, 0); } -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA TEST(GPUAllocator, Alloc) { paddle::memory::detail::GPUAllocator a; TestAllocator(a, 2048); diff --git a/paddle/memory/memcpy.cc b/paddle/memory/memcpy.cc index 184d0f8fa72c436fbfa2c83e18a273a83504522e..790420a8ab41b1a61ee35dc086c8b95fa1a02019 100644 --- a/paddle/memory/memcpy.cc +++ b/paddle/memory/memcpy.cc @@ -26,7 +26,7 @@ void Copy(platform::CPUPlace, void* dst, std::memcpy(dst, src, num); } -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA template <> void Copy(platform::CPUPlace dst_place, void* dst, diff --git a/paddle/memory/memcpy.h b/paddle/memory/memcpy.h index 7142831d434a3e786620caea47b8715997288b9d..0bccee58c3a22379c75523467e0c717b98b08bcf 100644 --- a/paddle/memory/memcpy.h +++ b/paddle/memory/memcpy.h @@ -33,7 +33,7 @@ namespace memory { template void Copy(DstPlace, void* dst, SrcPlace, const void* src, size_t num); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA /** * \brief Copy memory from one place to another place. diff --git a/paddle/memory/memory.cc b/paddle/memory/memory.cc index f816962890e5790241f5f8ba81f85a73a51e9f6a..30ce8a82e16ed26a41b009ce5d52dd1a2a1b7c21 100644 --- a/paddle/memory/memory.cc +++ b/paddle/memory/memory.cc @@ -62,7 +62,7 @@ size_t Used(platform::CPUPlace place) { return GetCPUBuddyAllocator()->Used(); } -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA BuddyAllocator* GetGPUBuddyAllocator(int gpu_id) { using BuddyAllocVec = std::vector; diff --git a/paddle/memory/memory_test.cc b/paddle/memory/memory_test.cc index 7a617f04dc5447d4f1770b500a92e88c58355a6b..0d402038a06f4ad93fd15946fc44aaeac58ada40 100644 --- a/paddle/memory/memory_test.cc +++ b/paddle/memory/memory_test.cc @@ -80,7 +80,7 @@ TEST(BuddyAllocator, CPUMultAlloc) { } } -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA size_t align(size_t size, paddle::platform::GPUPlace place) { size += sizeof(paddle::memory::detail::Metadata); diff --git a/paddle/operators/accuracy_op.cc b/paddle/operators/accuracy_op.cc index 82010bfb53e58a0836c99c353590f4e32e25ac4a..c5fb113e0f4455ec852fd48542ea2917398df5f3 100644 --- a/paddle/operators/accuracy_op.cc +++ b/paddle/operators/accuracy_op.cc @@ -22,7 +22,7 @@ class AccuracyOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase *ctx) const override { + void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasInput("Inference"), "Input(Inference) of AccuracyOp should not be null."); PADDLE_ENFORCE(ctx->HasInput("Label"), diff --git a/paddle/operators/activation_op.cc b/paddle/operators/activation_op.cc index 7ae4d2f6b6c0b0f30c06adc34c811bfe34b59fa6..5e5df49b0788ce8422dfb0d82791ec8c0a7ee32d 100644 --- a/paddle/operators/activation_op.cc +++ b/paddle/operators/activation_op.cc @@ -22,7 +22,7 @@ class ActivationOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase *ctx) const override { + void InferShape(framework::InferShapeContext *ctx) const override { ctx->SetOutputDim("Y", ctx->GetInputDim("X")); ctx->ShareLoD("X", /*->*/ "Y"); } @@ -33,7 +33,7 @@ class ActivationOpGrad : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase *ctx) const override { + void InferShape(framework::InferShapeContext *ctx) const override { ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("Y")); } }; @@ -69,6 +69,22 @@ class ReluOpMaker : public framework::OpProtoAndCheckerMaker { } }; +template +class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker { + public: + LeakyReluOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "Input of LeakyRelu operator"); + AddOutput("Y", "Output of LeakyRelu operator"); + AddComment( + "LeakyRelu activation operator, " + "leaky_relu = max(x, alpha * x)"); + AddAttr("alpha", "The small negative slope") + .SetDefault(static_cast(0.02f)); + } +}; + class TanhOpMaker : public framework::OpProtoAndCheckerMaker { public: TanhOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) @@ -81,6 +97,17 @@ class TanhOpMaker : public framework::OpProtoAndCheckerMaker { } }; +class TanhShrinkOpMaker : public framework::OpProtoAndCheckerMaker { + public: + TanhShrinkOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "Input of TanhShrink operator"); + AddOutput("Y", "Output of TanhShrink operator"); + AddComment("TanhShrink activation operator, tanhshrink(x) = x - tanh(x)"); + } +}; + class SqrtOpMaker : public framework::OpProtoAndCheckerMaker { public: SqrtOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) @@ -174,6 +201,19 @@ class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker { } }; +template +class Relu6OpMaker : public framework::OpProtoAndCheckerMaker { + public: + Relu6OpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "Input of Relu6 operator"); + AddOutput("Y", "Output of Relu6 operator"); + AddComment("Relu6 activation operator, relu6 = min(max(0, x), 6)"); + AddAttr("threshold", "The threshold value of Relu6") + .SetDefault(static_cast(6)); + } +}; + template class PowOpMaker : public framework::OpProtoAndCheckerMaker { public: @@ -219,6 +259,9 @@ REGISTER_OP(relu, ops::ActivationOp, ops::ReluOpMaker, relu_grad, REGISTER_OP(tanh, ops::ActivationOp, ops::TanhOpMaker, tanh_grad, ops::ActivationOpGrad); +REGISTER_OP(tanh_shrink, ops::ActivationOp, ops::TanhShrinkOpMaker, + tanh_shrink_grad, ops::ActivationOpGrad); + REGISTER_OP(sqrt, ops::ActivationOp, ops::SqrtOpMaker, sqrt_grad, ops::ActivationOpGrad); @@ -240,9 +283,15 @@ REGISTER_OP(softsign, ops::ActivationOp, ops::SoftsignOpMaker, softsign_grad, REGISTER_OP(brelu, ops::ActivationOp, ops::BReluOpMaker, brelu_grad, ops::ActivationOpGrad); +REGISTER_OP(leaky_relu, ops::ActivationOp, ops::LeakyReluOpMaker, + leaky_relu_grad, ops::ActivationOpGrad); + REGISTER_OP(soft_relu, ops::ActivationOp, ops::SoftReluOpMaker, soft_relu_grad, ops::ActivationOpGrad); +REGISTER_OP(relu6, ops::ActivationOp, ops::Relu6OpMaker, relu6_grad, + ops::ActivationOpGrad); + REGISTER_OP(pow, ops::ActivationOp, ops::PowOpMaker, pow_grad, ops::ActivationOpGrad); @@ -252,11 +301,9 @@ REGISTER_OP(stanh, ops::ActivationOp, ops::STanhOpMaker, stanh_grad, #define REGISTER_ACTIVATION_CPU_KERNEL(act_type, functor, grad_functor) \ REGISTER_OP_CPU_KERNEL( \ act_type, \ - paddle::operators::ActivationKernel>); \ + ops::ActivationKernel>); \ REGISTER_OP_CPU_KERNEL(act_type##_grad, \ - paddle::operators::ActivationGradKernel< \ - paddle::platform::CPUPlace, \ - paddle::operators::grad_functor>); + ops::ActivationGradKernel>); FOR_EACH_KERNEL_FUNCTOR(REGISTER_ACTIVATION_CPU_KERNEL); diff --git a/paddle/operators/activation_op.cu b/paddle/operators/activation_op.cu index 93e9f1c694bacba48c4f8c46f90fb5b512bead99..7b7644519d4e9cadcc4ca62ccb599262feffa660 100644 --- a/paddle/operators/activation_op.cu +++ b/paddle/operators/activation_op.cu @@ -15,14 +15,14 @@ #define EIGEN_USE_GPU #include "paddle/operators/activation_op.h" +namespace ops = paddle::operators; + #define REGISTER_ACTIVATION_GPU_KERNEL(act_type, functor, grad_functor) \ REGISTER_OP_GPU_KERNEL( \ act_type, \ - paddle::operators::ActivationKernel>); \ + ops::ActivationKernel>); \ REGISTER_OP_GPU_KERNEL(act_type##_grad, \ - paddle::operators::ActivationGradKernel< \ - paddle::platform::GPUPlace, \ - paddle::operators::grad_functor>); + ops::ActivationGradKernel>); FOR_EACH_KERNEL_FUNCTOR(REGISTER_ACTIVATION_GPU_KERNEL); diff --git a/paddle/operators/activation_op.h b/paddle/operators/activation_op.h index ff35c2d97e856ab76581c74512a0b451ea6fe60c..f127468125c265e5be7aec1f55f83fa5ba9be65a 100644 --- a/paddle/operators/activation_op.h +++ b/paddle/operators/activation_op.h @@ -146,6 +146,24 @@ struct TanhGradFunctor : public BaseActivationFunctor { } }; +// tanhshrink(x) = x - tanh(x) +// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x)) +template +struct TanhShrinkFunctor : public BaseActivationFunctor { + template + void operator()(Device d, X x, Y y) const { + y.device(d) = x - x.tanh(); + } +}; + +template +struct TanhShrinkGradFunctor : public BaseActivationFunctor { + template + void operator()(Device d, X x, Y y, dY dy, dX dx) const { + dx.device(d) = dy * (x.tanh() * x.tanh()); + } +}; + // sqrt(x) = x^(1/2) template struct SqrtFunctor : public BaseActivationFunctor { @@ -262,6 +280,36 @@ struct BReluGradFunctor : public BaseActivationFunctor { } }; +// relu6(x) = min(max(0, x), 6) +template +struct Relu6Functor : public BaseActivationFunctor { + float threshold; + + // NOTE: Explicit hides the `BaseActivationFunctor::GetAttrs` + // not polymorphism for speed. + typename BaseActivationFunctor::AttrPair GetAttrs() { + return {{"threshold", &threshold}}; + } + + template + void operator()(Device d, X x, Y y) const { + y.device(d) = x.cwiseMax(static_cast(0)).cwiseMin(threshold); + } +}; + +template +struct Relu6GradFunctor : public BaseActivationFunctor { + float threshold; + typename BaseActivationFunctor::AttrPair GetAttrs() { + return {{"threshold", &threshold}}; + } + template + void operator()(Device d, X x, Y y, dY dy, dX dx) const { + dx.device(d) = + dy * ((x > static_cast(0)) * (x < threshold)).template cast(); + } +}; + // softsign(x) = x / (1 + |x|) template struct SoftsignFunctor : public BaseActivationFunctor { @@ -309,6 +357,33 @@ struct SoftReluGradFunctor : public BaseActivationFunctor { } }; +template +struct LeakyReluFunctor : public BaseActivationFunctor { + float alpha; + typename BaseActivationFunctor::AttrPair GetAttrs() { + return {{"alpha", &alpha}}; + } + + template + void operator()(Device d, X x, Y y) const { + y.device(d) = x.cwiseMax(alpha * x); + } +}; + +template +struct LeakyReluGradFunctor : public BaseActivationFunctor { + float alpha; + typename BaseActivationFunctor::AttrPair GetAttrs() { + return {{"alpha", &alpha}}; + } + template + void operator()(Device d, X x, Y y, dY dy, dX dx) const { + auto temp1 = alpha * (x < static_cast(0)).template cast().eval(); + auto temp2 = (x >= static_cast(0)).template cast().eval(); + dx.device(d) = dy * (temp1 + temp2).template cast(); + } +}; + template struct PowFunctor : public BaseActivationFunctor { float factor; @@ -379,4 +454,7 @@ struct STanhGradFunctor : public BaseActivationFunctor { __macro(soft_relu, SoftReluFunctor, SoftReluGradFunctor); \ __macro(pow, PowFunctor, PowGradFunctor); \ __macro(stanh, STanhFunctor, STanhGradFunctor); \ - __macro(softsign, SoftsignFunctor, SoftsignGradFunctor) + __macro(softsign, SoftsignFunctor, SoftsignGradFunctor); \ + __macro(relu6, Relu6Functor, Relu6GradFunctor); \ + __macro(leaky_relu, LeakyReluFunctor, LeakyReluGradFunctor); \ + __macro(tanh_shrink, TanhShrinkFunctor, TanhShrinkGradFunctor) diff --git a/paddle/operators/adadelta_op.cc b/paddle/operators/adadelta_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..cf1bca1658f3fb4cd14465791a0f94865871a120 --- /dev/null +++ b/paddle/operators/adadelta_op.cc @@ -0,0 +1,115 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/adadelta_op.h" + +namespace paddle { +namespace operators { + +class AdadeltaOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContext *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Param"), + "Input(Param) of AdadeltaOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Grad"), + "Input(Grad) of AdadeltaOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("AvgSquaredGrad"), + "Input(AvgSquaredGrad) of AdadeltaOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("AvgSquaredUpdate"), + "Input(AvgSquaredUpdate) of AdadeltaOp should not be null."); + + PADDLE_ENFORCE(ctx->HasOutput("ParamOut"), + "Output(ParamOut) of AdadeltaOp should not be null."); + PADDLE_ENFORCE( + ctx->HasOutput("AvgSquaredGradOut"), + "Output(AvgSquaredGradOut) of AdadeltaOp should not be null."); + PADDLE_ENFORCE( + ctx->HasOutput("AvgSquaredUpdateOut"), + "Output(AvgSquaredUpdateOut) of AdadeltaOp should not be null."); + + auto param_dim = ctx->GetInputDim("Param"); + PADDLE_ENFORCE_EQ( + param_dim, ctx->GetInputDim("Grad"), + "param and grad input of AdadeltaOp should have same dimension"); + PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("AvgSquaredGrad"), + "Param and AvgSquaredGrad input of AdadeltaOp " + "should have same dimension"); + PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("AvgSquaredUpdate"), + "Param and AvgSquaredUpdate input of AdadeltaOp " + "should have same dimension"); + + ctx->SetOutputDim("ParamOut", param_dim); + ctx->SetOutputDim("AvgSquaredGradOut", param_dim); + ctx->SetOutputDim("AvgSquaredUpdateOut", param_dim); + } +}; + +class AdadeltaOpMaker : public framework::OpProtoAndCheckerMaker { + public: + AdadeltaOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("Param", "(Tensor) Input parameter"); + AddInput("Grad", "(Tensor) Input gradient"); + AddInput("AvgSquaredGrad", + "(Tensor) Input expectation of squared gradient"); + AddInput("AvgSquaredUpdate", + "(Tensor) Input expectation of squared parameter updates"); + + AddOutput("ParamOut", "(Tensor) Output parameter"); + AddOutput("AvgSquaredGradOut", + "(Tensor) Output expectation of squared gradient"); + AddOutput("AvgSquaredUpdateOut", + "(Tensor) Output expectation of squared parameter updates"); + + AddAttr("rho", + "(float, default 0.95) Exponential decay rate " + "for squared gradients.") + .SetDefault(0.95f); + AddAttr("epsilon", + "(float, default 1.0e-6) Constant for " + "numerical stability") + .SetDefault(1.0e-6f); + AddComment(R"DOC( +Adadelta Updates Operator. + +This implements the Adadelta optimizer[1]. Adadelta is a per-dimension +adaptive learning rate method for gradient descent. + +Adadelta updates: + +avg_squared_grad_out = rho * avg_squared_grad + (1 - rho) * grad * grad +param_update = - sqrt((avg_squared_update + epsilon) / + (avg_squared_grad_out + epsilon)) * grad +avg_squared_update_out = rho * avg_squared_update + (1 - rho) * param_update**2 +param_out = param + param_update + +References: + [1] ADADELTA: An Adaptive Learning Rate Method + https://arxiv.org/abs/1212.5701 + +)DOC"); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_WITHOUT_GRADIENT(adadelta, ops::AdadeltaOp, ops::AdadeltaOpMaker); +REGISTER_OP_CPU_KERNEL( + adadelta, ops::AdadeltaOpKernel); diff --git a/paddle/operators/adadelta_op.cu b/paddle/operators/adadelta_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..3af1c8c8e9861138a33b3156818f704c3b20363f --- /dev/null +++ b/paddle/operators/adadelta_op.cu @@ -0,0 +1,20 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#define EIGEN_USE_GPU +#include "paddle/operators/adadelta_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL( + adadelta, ops::AdadeltaOpKernel); diff --git a/paddle/operators/adadelta_op.h b/paddle/operators/adadelta_op.h new file mode 100644 index 0000000000000000000000000000000000000000..d29e15c43583bd447fbacb548a326f303f7d1463 --- /dev/null +++ b/paddle/operators/adadelta_op.h @@ -0,0 +1,69 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +template +class AdadeltaOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto param_out_tensor = ctx.Output("ParamOut"); + auto avg_squared_grad_out_tensor = + ctx.Output("AvgSquaredGradOut"); + auto avg_squared_update_out_tensor = + ctx.Output("AvgSquaredUpdateOut"); + + param_out_tensor->mutable_data(ctx.GetPlace()); + avg_squared_grad_out_tensor->mutable_data(ctx.GetPlace()); + avg_squared_update_out_tensor->mutable_data(ctx.GetPlace()); + + float rho = ctx.Attr("rho"); + float epsilon = ctx.Attr("epsilon"); + + auto param = framework::EigenVector::Flatten( + *ctx.Input("Param")); + auto grad = framework::EigenVector::Flatten( + *ctx.Input("Grad")); + // Squared gradient accumulator + auto avg_squared_grad = framework::EigenVector::Flatten( + *ctx.Input("AvgSquaredGrad")); + // Squared updates accumulator + auto avg_squared_update = framework::EigenVector::Flatten( + *ctx.Input("AvgSquaredUpdate")); + auto param_out = framework::EigenVector::Flatten(*param_out_tensor); + auto avg_squared_grad_out = + framework::EigenVector::Flatten(*avg_squared_grad_out_tensor); + auto avg_squared_update_out = + framework::EigenVector::Flatten(*avg_squared_update_out_tensor); + auto place = ctx.GetEigenDevice(); + + avg_squared_grad_out.device(place) = + rho * avg_squared_grad + (1 - rho) * grad.square(); + auto update = + -((avg_squared_update + epsilon) / (avg_squared_grad_out + epsilon)) + .sqrt() * + grad; + avg_squared_update_out.device(place) = + rho * avg_squared_update + (1 - rho) * update.square(); + param_out.device(place) = param + update; + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/adagrad_op.cc b/paddle/operators/adagrad_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..a17747efb79d76a6beffb27bfc03ee1b62c5618d --- /dev/null +++ b/paddle/operators/adagrad_op.cc @@ -0,0 +1,93 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/adagrad_op.h" + +namespace paddle { +namespace operators { + +class AdagradOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContext *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Param"), + "Input(Param) of AdagradOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Grad"), + "Input(Grad) of AdagradOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Moment"), + "Input(Moment) of AdagradOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("LearningRate"), + "Input(LearningRate) of AdagradOp should not be null."); + + PADDLE_ENFORCE(ctx->HasOutput("ParamOut"), + "Output(ParamOut) of AdagradOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("MomentOut"), + "Output(MomentOut) of AdagradOp should not be null."); + + auto lr_dims = ctx->GetInputDim("LearningRate"); + PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1, + "LearningRate should have one element"); + auto param_dims = ctx->GetInputDim("Param"); + PADDLE_ENFORCE_EQ( + param_dims, ctx->GetInputDim("Grad"), + "Param and Grad input of AdagradOp should have the same dimension."); + PADDLE_ENFORCE_EQ( + param_dims, ctx->GetInputDim("Moment"), + "Param and Moment input of AdagradOp should have the same dimension."); + + ctx->SetOutputDim("ParamOut", param_dims); + ctx->SetOutputDim("MomentOut", param_dims); + } +}; + +class AdagradOpMaker : public framework::OpProtoAndCheckerMaker { + public: + AdagradOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("Param", "(Tensor) Input parameter"); + AddInput("Grad", "(Tensor) Input gradient"); + AddInput("Moment", "(Tensor) Second moment"); + AddInput("LearningRate", "(Tensor) Learning rate"); + + AddOutput("ParamOut", "(Tensor) Output parameter"); + AddOutput("MomentOut", "(Tensor) Output second moment"); + + AddAttr("epsilon", + "(float, default 1.0e-6) " + "Constant for numerical stability") + .SetDefault(1.0e-6f); + AddComment(R"DOC( + +Adaptive Gradient Algorithm (Adagrad). + +moment_out = moment + grad * grad +param_out = param - learning_rate * grad / (sqrt(moment_out) + epsilon) + +The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) +does not have the epsilon attribute. It is added here for numerical stability +by avoiding division by zero. + +)DOC"); + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_WITHOUT_GRADIENT(adagrad, ops::AdagradOp, ops::AdagradOpMaker); +REGISTER_OP_CPU_KERNEL(adagrad, + ops::AdagradOpKernel); diff --git a/paddle/operators/adagrad_op.cu b/paddle/operators/adagrad_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..a5b7951121360f78612f9008a522235104708112 --- /dev/null +++ b/paddle/operators/adagrad_op.cu @@ -0,0 +1,20 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#define EIGEN_USE_GPU +#include "paddle/operators/adagrad_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL(adagrad, + ops::AdagradOpKernel); diff --git a/paddle/operators/adagrad_op.h b/paddle/operators/adagrad_op.h new file mode 100644 index 0000000000000000000000000000000000000000..c5d8f751d3527f89b96d4274328ba0bb5f6efa44 --- /dev/null +++ b/paddle/operators/adagrad_op.h @@ -0,0 +1,55 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +template +class AdagradOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto param_out_tensor = ctx.Output("ParamOut"); + auto moment_out_tensor = ctx.Output("MomentOut"); + + param_out_tensor->mutable_data(ctx.GetPlace()); + moment_out_tensor->mutable_data(ctx.GetPlace()); + + float epsilon = ctx.Attr("epsilon"); + + auto param = framework::EigenVector::Flatten( + *ctx.Input("Param")); + auto grad = framework::EigenVector::Flatten( + *ctx.Input("Grad")); + auto moment = framework::EigenVector::Flatten( + *ctx.Input("Moment")); + auto lr = framework::EigenVector::Flatten( + *ctx.Input("LearningRate")); + + auto param_out = framework::EigenVector::Flatten(*param_out_tensor); + auto moment_out = framework::EigenVector::Flatten(*moment_out_tensor); + auto place = ctx.GetEigenDevice(); + + moment_out.device(place) = moment + grad * grad; + Eigen::DSizes m_dsize(moment_out_tensor->numel()); + param_out.device(place) = + param - lr.broadcast(m_dsize) * grad / (moment_out.sqrt() + epsilon); + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/adamax_op.cc b/paddle/operators/adamax_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..c348e0a0b2ba1a76be4ed3c54f3e6f91d1767794 --- /dev/null +++ b/paddle/operators/adamax_op.cc @@ -0,0 +1,139 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/adamax_op.h" + +namespace paddle { +namespace operators { + +class AdamaxOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Param"), + "Input(Param) of AdamaxOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Grad"), + "Input(Grad) of AdamaxOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Moment"), + "Input(Moment) of AdamaxOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("InfNorm"), + "Input(InfNorm) of AdamaxOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("LearningRate"), + "Input(LearningRate) of AdamaxOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Beta1Pow"), + "Input(Beta1Pow) of AdamaxOp should not be null."); + + PADDLE_ENFORCE(ctx->HasOutput("ParamOut"), + "Output(ParamOut) of AdamaxOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("MomentOut"), + "Output(MomentOut) of AdamaxOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("InfNormOut"), + "Output(InfNormOut) of AdamaxOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Beta1PowOut"), + "Output(Beta1PowOut) of AdamaxOp should not be null."); + + auto lr_dims = ctx->GetInputDim("LearningRate"); + PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1, + "Learning rate should have 1 dimension"); + auto beta1_pow_dims = ctx->GetInputDim("Beta1Pow"); + PADDLE_ENFORCE_EQ(framework::product(beta1_pow_dims), 1, + "Beta1 power accumulator should have 1 dimension"); + auto param_dims = ctx->GetInputDim("Param"); + PADDLE_ENFORCE_EQ( + param_dims, ctx->GetInputDim("Grad"), + "Param and Grad input of AdamaxOp should have same dimension"); + PADDLE_ENFORCE_EQ( + param_dims, ctx->GetInputDim("Moment"), + "Param and Moment input of AdamaxOp should have same dimension"); + PADDLE_ENFORCE_EQ( + param_dims, ctx->GetInputDim("InfNorm"), + "Param and InfNorm input of AdamaxOp should have same dimension"); + + ctx->SetOutputDim("ParamOut", param_dims); + ctx->SetOutputDim("MomentOut", param_dims); + ctx->SetOutputDim("InfNormOut", param_dims); + ctx->SetOutputDim("Beta1PowOut", beta1_pow_dims); + } +}; + +class AdamaxOpMaker : public framework::OpProtoAndCheckerMaker { + public: + AdamaxOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("Param", "(Tensor) Input parameter"); + AddInput("Grad", "(Tensor) Input gradient"); + AddInput("LearningRate", "(Tensor) Learning rate"); + AddInput("Moment", "(Tensor) First moment"); + AddInput("InfNorm", + "(Tensor) " + "Input exponentially weighted infinity norm"); + AddInput("Beta1Pow", "(Tensor) Input beta1 power accumulator"); + + AddOutput("ParamOut", "(Tensor) Output parameter"); + AddOutput("MomentOut", "(Tensor) Output first moment"); + AddOutput("InfNormOut", + "(Tensor) " + "Output exponentially weighted infinity norm"); + AddOutput("Beta1PowOut", "(Tensor) Output beta1 power accumulator"); + + AddAttr("beta1", + "(float, default 0.9) " + "Exponential decay rate for the " + "1st moment estimates.") + .SetDefault(0.9f); + AddAttr("beta2", + "(float, default 0.999) " + "exponential decay rate for the weighted " + "infinity norm estimates.") + .SetDefault(0.999f); + AddAttr("epsilon", + "(float, default 1.0e-8) " + "Constant for numerical stability") + .SetDefault(1.0e-8f); + AddComment(R"DOC( +Adamax Updates Operator. + +This implements the Adamax optimizer from Section 7 of the Adam +paper[1]. Adamax is a variant of the +Adam algorithm based on the infinity norm. + +Adamax updates: + +moment_out = beta1 * moment + (1 - beta1) * grad +inf_norm_out = max(beta2 * inf_norm + epsilon, abs(grad)) +beta1_pow_out = beta1_pow * beta1 +learning_rate_t = learning_rate/(1 - beta1_pow_out) +param_out = param - learning_rate_t * moment_out/inf_norm_out + +The original paper does not have an epsilon attribute. +However, it is added here for numerical stability +by preventing divide by 0. + +References: + [1] Adam: A Method for Stochastic Optimization + (https://arxiv.org/abs/1412.6980) + +)DOC"); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_WITHOUT_GRADIENT(adamax, ops::AdamaxOp, ops::AdamaxOpMaker); +REGISTER_OP_CPU_KERNEL(adamax, + ops::AdamaxOpKernel); diff --git a/paddle/operators/adamax_op.cu b/paddle/operators/adamax_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..fee3b6fc6b656917d79b84f48da8e63be7683890 --- /dev/null +++ b/paddle/operators/adamax_op.cu @@ -0,0 +1,20 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#define EIGEN_USE_GPU +#include "paddle/operators/adamax_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL(adamax, + ops::AdamaxOpKernel); diff --git a/paddle/operators/adamax_op.h b/paddle/operators/adamax_op.h new file mode 100644 index 0000000000000000000000000000000000000000..9677b1bb786002aadfaeb571b2ba2e6aa2481ca5 --- /dev/null +++ b/paddle/operators/adamax_op.h @@ -0,0 +1,72 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +template +class AdamaxOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto param_out_tensor = ctx.Output("ParamOut"); + auto moment_out_tensor = ctx.Output("MomentOut"); + auto inf_norm_out_tensor = ctx.Output("InfNormOut"); + auto beta1_pow_out_tensor = ctx.Output("Beta1PowOut"); + + param_out_tensor->mutable_data(ctx.GetPlace()); + moment_out_tensor->mutable_data(ctx.GetPlace()); + inf_norm_out_tensor->mutable_data(ctx.GetPlace()); + beta1_pow_out_tensor->mutable_data(ctx.GetPlace()); + + float beta1 = ctx.Attr("beta1"); + float beta2 = ctx.Attr("beta2"); + float epsilon = ctx.Attr("epsilon"); + + auto param = framework::EigenVector::Flatten( + *ctx.Input("Param")); + auto grad = framework::EigenVector::Flatten( + *ctx.Input("Grad")); + auto moment = framework::EigenVector::Flatten( + *ctx.Input("Moment")); + auto inf_norm = framework::EigenVector::Flatten( + *ctx.Input("InfNorm")); + auto lr = framework::EigenVector::Flatten( + *ctx.Input("LearningRate")); + auto beta1_pow = framework::EigenVector::Flatten( + *ctx.Input("Beta1Pow")); + auto param_out = framework::EigenVector::Flatten(*param_out_tensor); + auto moment_out = framework::EigenVector::Flatten(*moment_out_tensor); + auto inf_norm_out = + framework::EigenVector::Flatten(*inf_norm_out_tensor); + auto beta1_pow_out = + framework::EigenVector::Flatten(*beta1_pow_out_tensor); + auto place = ctx.GetEigenDevice(); + + moment_out.device(place) = beta1 * moment + (1 - beta1) * grad; + inf_norm_out.device(place) = + grad.abs().cwiseMax((beta2 * inf_norm) + epsilon); + beta1_pow_out.device(place) = beta1_pow * beta1; + auto lr_t = lr / (1 - beta1_pow_out); + Eigen::DSizes m_dsize(moment_out_tensor->numel()); + param_out.device(place) = + param - lr_t.broadcast(m_dsize) * (moment_out / inf_norm_out); + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/clip_op.cc b/paddle/operators/clip_op.cc index b3dd060fd725fc9056b25e4affd82fdb345e77f7..3e9b0d82ba06a918d52124e791715277640fd4ff 100644 --- a/paddle/operators/clip_op.cc +++ b/paddle/operators/clip_op.cc @@ -22,7 +22,7 @@ class ClipOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of ClipOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Out"), @@ -61,7 +61,7 @@ class ClipOpGrad : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null"); PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), "Input(Out@GRAD) should not be null"); diff --git a/paddle/operators/concat_op.cc b/paddle/operators/concat_op.cc index 1ffa02c8f94c01a385d3ba376c1fd0dc3c1bd372..235c4449ace79e87d209615199d6628f269961a9 100644 --- a/paddle/operators/concat_op.cc +++ b/paddle/operators/concat_op.cc @@ -24,7 +24,7 @@ class ConcatOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase *ctx) const override { + void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE_GE(ctx->Inputs("X").size(), 1UL, "Inputs(X) of ConcatOp should be empty.") PADDLE_ENFORCE(ctx->HasOutput("Out"), @@ -83,7 +83,7 @@ class ConcatOpGrad : public framework::OperatorWithKernel { : OperatorWithKernel(type, inputs, outputs, attrs) {} protected: - void InferShape(framework::InferShapeContextBase *ctx) const override { + void InferShape(framework::InferShapeContext *ctx) const override { ctx->SetOutputsDim(framework::GradVarName("X"), ctx->GetInputsDim("X")); } }; diff --git a/paddle/operators/conv2d_op.cc b/paddle/operators/conv2d_op.cc index 5cc82944bb6b9a4fc5cd94cf2233ab84fc105fe7..6325d4248f10ea8a12ae5398d9fe0e579db3f7ae 100644 --- a/paddle/operators/conv2d_op.cc +++ b/paddle/operators/conv2d_op.cc @@ -27,7 +27,7 @@ class Conv2DOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("Input"), "Input(Input) of Conv2DOp should not be null."); PADDLE_ENFORCE(ctx->HasInput("Filter"), @@ -106,7 +106,7 @@ class Conv2DOpGrad : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { auto in_dims = ctx->GetInputDim("Input"); auto filter_dims = ctx->GetInputDim("Filter"); if (ctx->HasOutput(framework::GradVarName("Input"))) { diff --git a/paddle/operators/cos_sim_op.cc b/paddle/operators/cos_sim_op.cc index 040546f1a6fe1af6d17a5e363a11d27de88d03c2..2b4c4b9c45d22e9d0b124145b55cfaeeaf1583d5 100644 --- a/paddle/operators/cos_sim_op.cc +++ b/paddle/operators/cos_sim_op.cc @@ -24,7 +24,7 @@ class CosSimOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { // notnull check PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of CosSimOp should not be null."); @@ -98,7 +98,7 @@ class CosSimOpGrad : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { // notnull check PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null."); PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) must not be null."); diff --git a/paddle/operators/crop_op.cc b/paddle/operators/crop_op.cc index 9b2305e90e85a6f39d4c584a3251b25f67e81aca..a1424993cc3076f2755164393c5429d79fc1ee78 100644 --- a/paddle/operators/crop_op.cc +++ b/paddle/operators/crop_op.cc @@ -25,7 +25,7 @@ class CropOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of CropOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Out"), @@ -115,7 +115,7 @@ class CropOpGrad : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null"); PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), "Input(Out@GRAD) should not be null"); diff --git a/paddle/operators/cross_entropy_op.cc b/paddle/operators/cross_entropy_op.cc index 4b67887f3638f32a89d1a4fd1316c0596b444629..708e80e96a0f007be1594d8b4781d1296d6b398d 100644 --- a/paddle/operators/cross_entropy_op.cc +++ b/paddle/operators/cross_entropy_op.cc @@ -22,7 +22,7 @@ class CrossEntropyOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null."); PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null."); PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) should be not null."); @@ -60,7 +60,7 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null."); PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null."); PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")), diff --git a/paddle/operators/detail/strided_memcpy.h b/paddle/operators/detail/strided_memcpy.h index 9f05a2632266a11f23d34162ee6fdc2260ec7cc3..068c82f399316a1587d7322d8dab75823656800e 100644 --- a/paddle/operators/detail/strided_memcpy.h +++ b/paddle/operators/detail/strided_memcpy.h @@ -34,7 +34,7 @@ struct StridedMemcpyFunctor { auto& cpu_place = boost::get(place); memory::Copy(cpu_place, dst, cpu_place, src, sizeof(T) * dst_dim.head); } else { -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA auto& gpu_place = boost::get(place); auto& cuda_ctx = reinterpret_cast(dev_ctx); diff --git a/paddle/operators/dropout_op.cc b/paddle/operators/dropout_op.cc index a669b5cf00f1f4ad351486e2977bf8a76aa5bf62..708ccfa0bfc163ea75fcd9dbcb5ef6140b4b5f36 100644 --- a/paddle/operators/dropout_op.cc +++ b/paddle/operators/dropout_op.cc @@ -24,7 +24,7 @@ class DropoutOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null."); PADDLE_ENFORCE_GE(ctx->Attrs().Get("dropout_prob"), 0); PADDLE_ENFORCE_LE(ctx->Attrs().Get("dropout_prob"), 1); @@ -70,7 +70,7 @@ class DropoutOpGrad : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE_EQ(ctx->Attrs().Get("is_training"), 1, "GradOp is only callable when is_training is true"); diff --git a/paddle/operators/elementwise_op.h b/paddle/operators/elementwise_op.h index 3082f37422faa990bbf03c8a1a87b025d481a290..66f1910a4738f737c7581e17729c201a7e3eaeae 100644 --- a/paddle/operators/elementwise_op.h +++ b/paddle/operators/elementwise_op.h @@ -25,7 +25,7 @@ class ElementwiseOp : public framework::OperatorWithKernel { protected: using Tensor = framework::Tensor; - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of elementwise op should not be null"); PADDLE_ENFORCE(ctx->HasInput("Y"), @@ -106,7 +106,7 @@ class ElementwiseOpGrad : public framework::OperatorWithKernel { using Tensor = framework::Tensor; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null"); PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null"); PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), diff --git a/paddle/operators/fill_zeros_like_op.cc b/paddle/operators/fill_zeros_like_op.cc index e164de6584e7350283781019cc74118c2d13646e..4c70b9a36bb8f3a2184a8f2ac738378e9d3271e2 100644 --- a/paddle/operators/fill_zeros_like_op.cc +++ b/paddle/operators/fill_zeros_like_op.cc @@ -22,7 +22,7 @@ class FillZerosLikeOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase *ctx) const override { + void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of FillZerosLikeOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Y"), diff --git a/paddle/operators/gather_op.cc b/paddle/operators/gather_op.cc index fe305337cbebd7c679ae1b8ee8aa2740472ee109..fb99c6c01670fcbacd012573b0679ac755638c57 100644 --- a/paddle/operators/gather_op.cc +++ b/paddle/operators/gather_op.cc @@ -23,7 +23,7 @@ class GatherOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of GatherOp should not be null."); PADDLE_ENFORCE(ctx->HasInput("Index"), @@ -51,7 +51,7 @@ class GatherGradOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); } diff --git a/paddle/operators/gaussian_random_op.cc b/paddle/operators/gaussian_random_op.cc index 5cd2c7d2c066cd31e2d38a3c0d682f02339b4d59..ca7fb385057dda4ee6f7dea7edc21d9ebbf6b48e 100644 --- a/paddle/operators/gaussian_random_op.cc +++ b/paddle/operators/gaussian_random_op.cc @@ -43,7 +43,7 @@ class GaussianRandomOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) of GaussianRandomOp should not be null."); auto dims = ctx->Attrs().Get>("dims"); diff --git a/paddle/operators/lookup_table_op.cc b/paddle/operators/lookup_table_op.cc index 929008fbcbe03bd6591b0a02252b343c46d00b8f..3f8d4ab85756ec007004e397a55ea60e2fa704ae 100644 --- a/paddle/operators/lookup_table_op.cc +++ b/paddle/operators/lookup_table_op.cc @@ -22,7 +22,7 @@ class LookupTableOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("W"), "Input(W) of LookupTableOp should not be null."); PADDLE_ENFORCE(ctx->HasInput("Ids"), @@ -70,7 +70,7 @@ class LookupTableOpGrad : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { auto table_dims = ctx->GetInputDim("W"); ctx->SetOutputDim(framework::GradVarName("W"), table_dims); } diff --git a/paddle/operators/lstm_unit_op.cc b/paddle/operators/lstm_unit_op.cc index dad56731de80518e3bf9d2ec1ffdac9cb6bc92f0..13a45ec246988558b0c090ab14e627b5b0e44532 100644 --- a/paddle/operators/lstm_unit_op.cc +++ b/paddle/operators/lstm_unit_op.cc @@ -22,7 +22,7 @@ class LstmUnitOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of LSTM should not be null."); PADDLE_ENFORCE(ctx->HasInput("C_prev"), "Input(C_prev) of LSTM should not be null."); @@ -77,7 +77,7 @@ class LstmUnitGradOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("C")), "Input(C@GRAD) should not be null"); PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("H")), diff --git a/paddle/operators/math/im2col_test.cc b/paddle/operators/math/im2col_test.cc index 3d040ca2b546ff66a4e8c35c3871fb6b1e92b210..40bdbfe73351a609a4ab9fdc27ac5ff6710df2a2 100644 --- a/paddle/operators/math/im2col_test.cc +++ b/paddle/operators/math/im2col_test.cc @@ -71,7 +71,7 @@ void testIm2col() { context = new paddle::platform::CPUDeviceContext(paddle::platform::CPUPlace()); } else { -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA context = new paddle::platform::CUDADeviceContext(paddle::platform::GPUPlace()); #else @@ -116,7 +116,7 @@ void testIm2col() { TEST(math, im2col) { testIm2col(); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA testIm2col(); #endif } diff --git a/paddle/operators/math/math_function_test.cc b/paddle/operators/math/math_function_test.cc index 2252268620ffc68bb1604596379a68416083918f..9945ba101d719848aa0c06fa65629d59f167c083 100644 --- a/paddle/operators/math/math_function_test.cc +++ b/paddle/operators/math/math_function_test.cc @@ -1,7 +1,7 @@ #include "paddle/operators/math/math_function.h" #include "gtest/gtest.h" -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA TEST(math_function, notrans_mul_trans) { paddle::framework::Tensor input1; paddle::framework::Tensor input1_gpu; diff --git a/paddle/operators/mean_op.cc b/paddle/operators/mean_op.cc index d799239d4ed6d230578c77921a1a454b476b63fa..441543049faf96c8fbc14e84448a348c3287c1e2 100644 --- a/paddle/operators/mean_op.cc +++ b/paddle/operators/mean_op.cc @@ -22,7 +22,7 @@ class MeanOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of MeanOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Out"), @@ -36,7 +36,7 @@ class MeanOpMaker : public framework::OpProtoAndCheckerMaker { MeanOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of mean op"); - AddOutput("Out", "The output of mean op").NotInGradient(); + AddOutput("Out", "The output of mean op"); AddComment(R"DOC( Mean Operator )DOC"); } @@ -47,16 +47,32 @@ class MeanGradOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); } }; +class MeanGradMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + protected: + std::unique_ptr Apply() const override { + auto* grad_op = new framework::OpDescBind(); + grad_op->SetType("mean_grad"); + grad_op->SetInput("X", Input("X")); + grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out")); + grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X")); + return std::unique_ptr(grad_op); + } +}; + } // namespace operators } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP(mean, ops::MeanOp, ops::MeanOpMaker, mean_grad, ops::MeanGradOp); +REGISTER_OPERATOR(mean, ops::MeanOp, ops::MeanOpMaker, ops::MeanGradMaker); +REGISTER_OPERATOR(mean_grad, ops::MeanGradOp); REGISTER_OP_CPU_KERNEL(mean, ops::MeanKernel); REGISTER_OP_CPU_KERNEL(mean_grad, diff --git a/paddle/operators/minus_op.cc b/paddle/operators/minus_op.cc index ce049d4d7bd96a6758d71b381e6e6b4edbcc8b5c..d7fd2f901b766c3105a5ea8847fb8a3fe456a945 100644 --- a/paddle/operators/minus_op.cc +++ b/paddle/operators/minus_op.cc @@ -26,7 +26,7 @@ class MinusOp : public framework::OperatorWithKernel { : OperatorWithKernel(type, inputs, outputs, attrs) {} protected: - void InferShape(framework::InferShapeContextBase *ctx) const override { + void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of MinusOp should not be null."); PADDLE_ENFORCE(ctx->HasInput("Y"), @@ -49,9 +49,9 @@ class MinusOpMaker : public framework::OpProtoAndCheckerMaker { public: MinusOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "The left tensor of minus operator.").NotInGradient(); - AddInput("Y", "The right tensor of minus operator.").NotInGradient(); - AddOutput("Out", "The output tensor of minus operator.").NotInGradient(); + AddInput("X", "The left tensor of minus operator."); + AddInput("Y", "The right tensor of minus operator."); + AddOutput("Out", "The output tensor of minus operator."); AddComment(R"DOC(Minus Operator @@ -64,26 +64,35 @@ or not. But the output only shares the LoD with input `X`. )DOC"); } }; -template -class MinusGradOp : public NetOp { + +class MinusGradMaker : public framework::GradOpDescMakerBase { public: - MinusGradOp(const std::string &type, const framework::VariableNameMap &inputs, - const framework::VariableNameMap &outputs, - const framework::AttributeMap &attrs) - : NetOp(type, inputs, outputs, attrs) { - auto out_grad = Input(framework::GradVarName("Out")); - auto x_grad = Output(framework::GradVarName("X")); - auto y_grad = Output(framework::GradVarName("Y")); - - // x_grad = out_grad - AppendOp(framework::OpRegistry::CreateOp("identity", {{"X", {out_grad}}}, - {{"Y", {x_grad}}}, {})); - - framework::AttributeMap scale_attr; - scale_attr["scale"] = static_cast(-1); - AppendOp(framework::OpRegistry::CreateOp("scale", {{"X", {out_grad}}}, - {{"Out", {y_grad}}}, scale_attr)); - CompleteAddOp(false); + using framework::GradOpDescMakerBase::GradOpDescMakerBase; + + std::vector> operator()() + const override { + std::vector> ops; + auto x_g = InputGrad("X"); + if (!x_g.empty()) { + auto *x_g_op = new framework::OpDescBind(); + x_g_op->SetType("scale"); + x_g_op->SetInput("X", OutputGrad("Out")); + x_g_op->SetOutput("Out", x_g); + x_g_op->SetAttr("scale", 1.0f); + ops.emplace_back(x_g_op); + } + + auto y_g = InputGrad("Y"); + if (!y_g.empty()) { + auto *y_g_op = new framework::OpDescBind(); + y_g_op->SetType("scale"); + y_g_op->SetInput("X", OutputGrad("Out")); + y_g_op->SetOutput("Out", y_g); + y_g_op->SetAttr("scale", -1.0f); + ops.emplace_back(y_g_op); + } + + return ops; } }; @@ -91,7 +100,6 @@ class MinusGradOp : public NetOp { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP(minus, ops::MinusOp, ops::MinusOpMaker, minus_grad, - ops::MinusGradOp); +REGISTER_OPERATOR(minus, ops::MinusOp, ops::MinusOpMaker, ops::MinusGradMaker); REGISTER_OP_CPU_KERNEL(minus, ops::MinusKernel); diff --git a/paddle/operators/modified_huber_loss_op.cc b/paddle/operators/modified_huber_loss_op.cc index 84212a2b3be1ac3664ebd77c7a0ae4d86abad3a0..6522327fdcf646a60df76909d049341b5a9021c9 100644 --- a/paddle/operators/modified_huber_loss_op.cc +++ b/paddle/operators/modified_huber_loss_op.cc @@ -22,7 +22,7 @@ class ModifiedHuberLossOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "X must be initialized."); PADDLE_ENFORCE(ctx->HasInput("Y"), "Y must be initialized."); @@ -74,7 +74,7 @@ class ModifiedHuberLossGradOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "X must be initialized."); PADDLE_ENFORCE(ctx->HasInput("Y"), "Y must be initialized."); PADDLE_ENFORCE(ctx->HasInput("IntermediateVal"), diff --git a/paddle/operators/mul_op.cc b/paddle/operators/mul_op.cc index 3c8fe04d2edeccc0e0d55aa2a28d71085ccf5145..ec0683d8875a945746b676a1f859e614af557441 100644 --- a/paddle/operators/mul_op.cc +++ b/paddle/operators/mul_op.cc @@ -24,7 +24,7 @@ class MulOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of MulOp should not be null."); PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) of MulOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Out"), @@ -97,7 +97,7 @@ class MulOpGrad : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null"); PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null"); PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), diff --git a/paddle/operators/multiplex_op.cc b/paddle/operators/multiplex_op.cc index a069127a19a1d0ba4eaa2b3450a1c46262ace3ed..a86685b6dde4761cf74f9521bd9609b0864b9bdf 100644 --- a/paddle/operators/multiplex_op.cc +++ b/paddle/operators/multiplex_op.cc @@ -24,7 +24,7 @@ class MultiplexOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("Ids"), "Input(Ids) shouldn't be null."); PADDLE_ENFORCE(!ctx->Inputs("X").empty(), "MultiInput(X) shouldn't be empty."); @@ -90,7 +90,7 @@ class MultiplexGradOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(!ctx->Inputs("X").empty(), "Input(X) should not be null."); PADDLE_ENFORCE(!ctx->Outputs(framework::GradVarName("X")).empty(), "Output(X@Grad) should not be null."); diff --git a/paddle/operators/pad_op.cc b/paddle/operators/pad_op.cc index 04ebb14f6ee6c73f48aa2f75811a22f9b8a25006..2f26ada85e477a6e5cd24c881f6369548331e8d0 100644 --- a/paddle/operators/pad_op.cc +++ b/paddle/operators/pad_op.cc @@ -24,7 +24,7 @@ class PadOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of PadOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) of PadOp should not be null."); @@ -56,8 +56,7 @@ class PadOpMaker : public framework::OpProtoAndCheckerMaker { "The input should be a k-D tensor(k > 0 and k < 7)"); AddOutput("Out", "The output of pad op." - "A tensor with the same shape as X.") - .NotInGradient(); + "A tensor with the same shape as X."); AddComment(R"DOC( Pad input into output, as specified by paddings and pad_value. The input should be a k-D tensor(k > 0 and k < 7). As an example: @@ -99,7 +98,7 @@ class PadOpGrad : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null"); PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), "Input(Out@GRAD) should not be null"); @@ -111,11 +110,29 @@ class PadOpGrad : public framework::OperatorWithKernel { } }; +class PadOpGradMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + protected: + std::unique_ptr Apply() const override { + auto* bind = new framework::OpDescBind(); + bind->SetInput("X", Input("X")); + bind->SetInput(framework::GradVarName("Out"), OutputGrad("Out")); + bind->SetOutput(framework::GradVarName("X"), InputGrad("X")); + bind->SetAttrMap(Attrs()); + bind->SetType("pad_grad"); + return std::unique_ptr(bind); + } +}; + } // namespace operators } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP(pad, ops::PadOp, ops::PadOpMaker, pad_grad, ops::PadOpGrad); + +REGISTER_OPERATOR(pad, ops::PadOp, ops::PadOpMaker, ops::PadOpGradMaker); +REGISTER_OPERATOR(pad_grad, ops::PadOpGrad); REGISTER_OP_CPU_KERNEL(pad, ops::PadKernel); REGISTER_OP_CPU_KERNEL(pad_grad, ops::PadGradKernel); diff --git a/paddle/operators/pool_op.cc b/paddle/operators/pool_op.cc index c29f51f05613832c838400eb114465c81290ea58..ba3b5ed2075ceca284b49ecddb90ba5950b820c3 100644 --- a/paddle/operators/pool_op.cc +++ b/paddle/operators/pool_op.cc @@ -27,7 +27,7 @@ class PoolOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase *ctx) const override { + void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) of Pooling should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Out"), @@ -74,7 +74,7 @@ class PoolOpGrad : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase *ctx) const override { + void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) of Pooling should not be null."); PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), diff --git a/paddle/operators/prelu_op.cc b/paddle/operators/prelu_op.cc index 1692464f2833a59243ccc1598422180262a59282..166fe2682422c61a264c88b8683752ee323e940e 100644 --- a/paddle/operators/prelu_op.cc +++ b/paddle/operators/prelu_op.cc @@ -26,7 +26,7 @@ class PReluOp : public framework::OperatorWithKernel { : OperatorWithKernel(type, inputs, outputs, attrs) {} protected: - void InferShape(framework::InferShapeContextBase *ctx) const override { + void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null"); PADDLE_ENFORCE(ctx->HasInput("Alpha"), "Input(Alpha) should not be null"); PADDLE_ENFORCE(product(ctx->GetInputDim("Alpha")) == 1, @@ -63,7 +63,7 @@ class PReluGradOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase *ctx) const override { + void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null."); PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), "Input(Out@GRAD) should not be null"); diff --git a/paddle/operators/rank_loss_op.cc b/paddle/operators/rank_loss_op.cc index 1ba22006f27abc963e7f161636a964863513a40c..e0abbc4db1723e297c313d50fc1f9cbb77acb9f3 100644 --- a/paddle/operators/rank_loss_op.cc +++ b/paddle/operators/rank_loss_op.cc @@ -25,7 +25,7 @@ class RankLossOp : public framework::OperatorWithKernel { : OperatorWithKernel(type, inputs, outputs, attrs) {} protected: - void InferShape(framework::InferShapeContextBase *ctx) const override { + void InferShape(framework::InferShapeContext *ctx) const override { // input check PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null"); PADDLE_ENFORCE(ctx->HasInput("Left"), "Input(Left) shouldn't be null"); @@ -90,7 +90,7 @@ class RankLossGradOp : public framework::OperatorWithKernel { : OperatorWithKernel(type, inputs, outputs, attrs) {} protected: - void InferShape(framework::InferShapeContextBase *ctx) const override { + void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null."); PADDLE_ENFORCE(ctx->HasInput("Left"), "Input(Left) shouldn't be null."); PADDLE_ENFORCE(ctx->HasInput("Right"), "Input(Right) shouldn't be null."); diff --git a/paddle/operators/reduce_op.cc b/paddle/operators/reduce_op.cc index 3ef443d1c7f475cbd578078db02fb5e0d500d060..005f88b57cb47b2c00f9a81da8afa49439665a22 100644 --- a/paddle/operators/reduce_op.cc +++ b/paddle/operators/reduce_op.cc @@ -24,7 +24,7 @@ class ReduceOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase *ctx) const override { + void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of ReduceOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Out"), @@ -58,7 +58,7 @@ class ReduceGradOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase *ctx) const override { + void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null."); PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), "Input(Out@GRAD) should not be null."); @@ -168,36 +168,22 @@ namespace ops = paddle::operators; REGISTER_OP(reduce_sum, ops::ReduceOp, ops::ReduceSumOpMaker, reduce_sum_grad, ops::ReduceGradOp); -REGISTER_OP_CPU_KERNEL( - reduce_sum, - ops::ReduceKernel); -REGISTER_OP_CPU_KERNEL(reduce_sum_grad, - ops::ReduceGradKernel); REGISTER_OP(reduce_mean, ops::ReduceOp, ops::ReduceMeanOpMaker, reduce_mean_grad, ops::ReduceGradOp); -REGISTER_OP_CPU_KERNEL( - reduce_mean, - ops::ReduceKernel); -REGISTER_OP_CPU_KERNEL(reduce_mean_grad, - ops::ReduceGradKernel); REGISTER_OP(reduce_max, ops::ReduceOp, ops::ReduceMaxOpMaker, reduce_max_grad, ops::ReduceGradOp); -REGISTER_OP_CPU_KERNEL( - reduce_max, - ops::ReduceKernel); -REGISTER_OP_CPU_KERNEL(reduce_max_grad, - ops::ReduceGradKernel); - -REGISTER_OP(reduce_min, ops::ReduceOp, ops::ReduceMaxOpMaker, reduce_min_grad, + +REGISTER_OP(reduce_min, ops::ReduceOp, ops::ReduceMinOpMaker, reduce_min_grad, ops::ReduceGradOp); -REGISTER_OP_CPU_KERNEL( - reduce_min, - ops::ReduceKernel); -REGISTER_OP_CPU_KERNEL(reduce_min_grad, - ops::ReduceGradKernel); + +#define REGISTER_REDUCE_CPU_KERNEL(reduce_type, functor, grad_functor) \ + REGISTER_OP_CPU_KERNEL( \ + reduce_type, \ + ops::ReduceKernel); \ + REGISTER_OP_CPU_KERNEL(reduce_type##_grad, \ + ops::ReduceGradKernel); + +FOR_EACH_KERNEL_FUNCTOR(REGISTER_REDUCE_CPU_KERNEL); diff --git a/paddle/operators/reduce_op.cu b/paddle/operators/reduce_op.cu index 595127b858ea8eb41281f92e92c6467e4d90ff1a..d306e1a24096d737438d71d4d4abc35328d160cb 100644 --- a/paddle/operators/reduce_op.cu +++ b/paddle/operators/reduce_op.cu @@ -17,30 +17,12 @@ namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( - reduce_sum, - ops::ReduceKernel); -REGISTER_OP_GPU_KERNEL(reduce_sum_grad, - ops::ReduceGradKernel); - -REGISTER_OP_GPU_KERNEL( - reduce_mean, - ops::ReduceKernel); -REGISTER_OP_GPU_KERNEL(reduce_mean_grad, - ops::ReduceGradKernel); - -REGISTER_OP_GPU_KERNEL( - reduce_max, - ops::ReduceKernel); -REGISTER_OP_GPU_KERNEL(reduce_max_grad, - ops::ReduceGradKernel); - -REGISTER_OP_GPU_KERNEL( - reduce_min, - ops::ReduceKernel); -REGISTER_OP_GPU_KERNEL(reduce_min_grad, - ops::ReduceGradKernel); +#define REGISTER_REDUCE_GPU_KERNEL(reduce_type, functor, grad_functor) \ + REGISTER_OP_GPU_KERNEL( \ + reduce_type, \ + ops::ReduceKernel); \ + REGISTER_OP_GPU_KERNEL(reduce_type##_grad, \ + ops::ReduceGradKernel); + +FOR_EACH_KERNEL_FUNCTOR(REGISTER_REDUCE_GPU_KERNEL); diff --git a/paddle/operators/reduce_op.h b/paddle/operators/reduce_op.h index ba3f3db81dc6251a063d27e597fd7e486e7b6c14..45043c440bc8017e97f8be00d08f1cb60d201e20 100644 --- a/paddle/operators/reduce_op.h +++ b/paddle/operators/reduce_op.h @@ -198,3 +198,9 @@ class ReduceGradKernel : public framework::OpKernel { } // namespace operators } // namespace paddle + +#define FOR_EACH_KERNEL_FUNCTOR(__macro) \ + __macro(reduce_sum, SumFunctor, SumGradFunctor); \ + __macro(reduce_mean, MeanFunctor, MeanGradFunctor); \ + __macro(reduce_max, MaxFunctor, MaxOrMinGradFunctor); \ + __macro(reduce_min, MinFunctor, MaxOrMinGradFunctor); diff --git a/paddle/operators/reshape_op.cc b/paddle/operators/reshape_op.cc index a3c3fa2716ad9f6487e3eff2d98b2c76d964ddef..3cd54930a0919b7c6aad624b442eb15167b4c354 100644 --- a/paddle/operators/reshape_op.cc +++ b/paddle/operators/reshape_op.cc @@ -26,7 +26,7 @@ class ReshapeOp : public framework::OperatorWithKernel { : OperatorWithKernel(type, inputs, outputs, attrs) {} protected: - void InferShape(framework::InferShapeContextBase *ctx) const override { + void InferShape(framework::InferShapeContext *ctx) const override { // input check PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of ReshapeOp should not be null."); @@ -94,7 +94,7 @@ class ReshapeGradOp : public framework::OperatorWithKernel { : OperatorWithKernel(type, inputs, outputs, attrs) {} protected: - void InferShape(framework::InferShapeContextBase *ctx) const override { + void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) shouldn't be null."); PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), "Input(Out@GRAD) shouldn't be null."); diff --git a/paddle/operators/rmsprop_op.cc b/paddle/operators/rmsprop_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..ada6f2bc3cd5de0424139144d8c0696158c319d9 --- /dev/null +++ b/paddle/operators/rmsprop_op.cc @@ -0,0 +1,120 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/rmsprop_op.h" + +namespace paddle { +namespace operators { + +class RmspropOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContext *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Param"), + "Input(Param) of RmspropOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("MeanSquare"), + "Input(MeanSquare) of RmspropOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("LearningRate"), + "Input(LearningRate) of RmspropOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Grad"), + "Input(Grad) of RmspropOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Moment"), + "Input(Moment) of RmspropOp should not be null."); + + PADDLE_ENFORCE(ctx->HasOutput("ParamOut"), + "Output(param_out) of RmspropOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("MomentOut"), + "Output(Momentum_out) of RmspropOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("MeanSquareOut"), + "Output(MeanSquareOut) of RmspropOp should not be null."); + + auto param_dim = ctx->GetInputDim("Param"); + PADDLE_ENFORCE_EQ( + param_dim, ctx->GetInputDim("Grad"), + "Param and grad input of RmspropOp should have the same dimension."); + PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("Moment"), + "Param and Momentum input of RmspropOp " + "should have the same dimension."); + PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("MeanSquare"), + "Param and Momentum input of RmspropOp " + "should have the same dimension."); + + auto lr_dim = ctx->GetInputDim("LearningRate"); + PADDLE_ENFORCE_EQ(framework::product(lr_dim), 1, + "Learning Rate should be a scalar."); + + ctx->SetOutputDim("ParamOut", param_dim); + ctx->SetOutputDim("MomentOut", param_dim); + ctx->SetOutputDim("MeanSquareOut", param_dim); + } +}; + +class RmspropOpMaker : public framework::OpProtoAndCheckerMaker { + public: + RmspropOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("Param", + "(Tensor, default Tensor) " + "Input parameter value that has to be updated"); + AddInput("MeanSquare", + "(Tensor, default Tensor)" + " The mean square value that gets updated"); + AddInput("LearningRate", + "(Tensor, default Tensor) " + "The learning rate should be a tensor of size 1"); + AddInput("Grad", + "(Tensor, default Tensor) " + "Input gradient of the parameter"); + AddInput("Moment", + "(Tensor, default Tensor) The moment that gets updated"); + + AddOutput("ParamOut", "(Tensor) Output updated parameter value"); + AddOutput("MomentOut", "(Tensor) Output updated moment"); + AddOutput("MeanSquareOut", "(Tensor) Output Mean squared updated value"); + + AddAttr("epsilon", + "(float, default 1e-10) Constant " + "for numerical stability.") + .SetDefault(1.0e-10f); + AddAttr("decay", + "(float, default 0.9) " + "Discounting factor for coming gradient.") + .SetDefault(0.9f); + AddAttr("momentum", "(float, default 0.0) Constant value") + .SetDefault(0.0f); + AddComment(R"DOC( + +RMSprop + +MeanSquareOut = decay * MeanSquare + (1 - decay) * Grad * Grad +MomentOut = momentum * Moment + + LearningRate * Grad / sqrt(MeanSquareOut + epsilon) +ParamOut = Param - MomentOut + +The original slides that proposed RMSprop: Slide 29 of +http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf) + +)DOC"); + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_WITHOUT_GRADIENT(rmsprop, ops::RmspropOp, ops::RmspropOpMaker); +REGISTER_OP_CPU_KERNEL(rmsprop, + ops::RmspropOpKernel); diff --git a/paddle/operators/rmsprop_op.cu b/paddle/operators/rmsprop_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..52634a54816bcd5ad0ba82a56f1df95110112265 --- /dev/null +++ b/paddle/operators/rmsprop_op.cu @@ -0,0 +1,20 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#define EIGEN_USE_GPU +#include "paddle/operators/rmsprop_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL(rmsprop, + ops::RmspropOpKernel); diff --git a/paddle/operators/rmsprop_op.h b/paddle/operators/rmsprop_op.h new file mode 100644 index 0000000000000000000000000000000000000000..7bf2129010f994966d79ef11d5cec30159b47068 --- /dev/null +++ b/paddle/operators/rmsprop_op.h @@ -0,0 +1,67 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; +template +using EigenVector = framework::EigenVector; + +template +class RmspropOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* param_out = ctx.Output("ParamOut"); + auto* moment_out = ctx.Output("MomentOut"); + auto* mean_square_out = ctx.Output("MeanSquareOut"); + + auto grad = ctx.Input("Grad"); + + param_out->mutable_data(ctx.GetPlace()); + moment_out->mutable_data(ctx.GetPlace()); + mean_square_out->mutable_data(ctx.GetPlace()); + + float epsilon = ctx.Attr("epsilon"); + float rho = ctx.Attr("decay"); + float momentum = ctx.Attr("momentum"); + + auto p = EigenVector::Flatten(*ctx.Input("Param")); + auto ms = EigenVector::Flatten(*ctx.Input("MeanSquare")); + auto lr = EigenVector::Flatten(*ctx.Input("LearningRate")); + auto g = EigenVector::Flatten(*grad); + auto mom = EigenVector::Flatten(*ctx.Input("Moment")); + + auto p_out = EigenVector::Flatten(*param_out); + auto mom_out = EigenVector::Flatten(*moment_out); + auto ms_out = EigenVector::Flatten(*mean_square_out); + auto place = ctx.GetEigenDevice(); + + Eigen::DSizes grad_dsize(grad->numel()); + + ms_out.device(place) = rho * ms + (1 - rho) * g * g; + mom_out.device(place) = + momentum * mom + + lr.broadcast(grad_dsize) * g / (ms_out + epsilon).sqrt(); + p_out.device(place) = p - mom_out; + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/scale_op.cc b/paddle/operators/scale_op.cc index e92501e12834b92875f494de401672344f50e3b5..ac297da6b72250eaa5eb6ea2177fbcc7a6c1ec56 100644 --- a/paddle/operators/scale_op.cc +++ b/paddle/operators/scale_op.cc @@ -26,7 +26,7 @@ class ScaleOp : public framework::OperatorWithKernel { : OperatorWithKernel(type, inputs, outputs, attrs) {} protected: - void InferShape(framework::InferShapeContextBase *ctx) const override { + void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of ScaleOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Out"), @@ -41,8 +41,8 @@ class ScaleOpMaker : public framework::OpProtoAndCheckerMaker { public: ScaleOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "The input tensor of scale operator.").NotInGradient(); - AddOutput("Out", "The output tensor of scale operator.").NotInGradient(); + AddInput("X", "The input tensor of scale operator."); + AddOutput("Out", "The output tensor of scale operator."); AddComment(R"DOC(Scale operator The equation is: Out = scale*X @@ -52,21 +52,18 @@ The equation is: Out = scale*X } }; -// The operator to calculate gradients of a scale operator is just the scale -// operator itself. -// Grad(Out=scale(X)) => Grad(X) = scale(Grad(Out)) -template -class ScaleGradOp : public NetOp { +class ScaleGradMaker : public framework::SingleGradOpDescMaker { public: - ScaleGradOp(const std::string &type, const framework::VariableNameMap &inputs, - const framework::VariableNameMap &outputs, - const framework::AttributeMap &attrs) - : NetOp(type, inputs, outputs, attrs) { - AppendOp(framework::OpRegistry::CreateOp( - "scale", {{"X", {Input(framework::GradVarName("Out"))}}}, - {{"Out", {Output(framework::GradVarName("X"))}}}, - {{"scale", Attr("scale")}})); - CompleteAddOp(false); + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + protected: + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDescBind(); + grad_op->SetType("scale"); + grad_op->SetInput("X", OutputGrad("Out")); + grad_op->SetOutput("Out", InputGrad("X")); + grad_op->SetAttr("scale", GetAttr("scale")); + return std::unique_ptr(grad_op); } }; @@ -75,7 +72,7 @@ class ScaleGradOp : public NetOp { namespace ops = paddle::operators; -REGISTER_OP(scale, ops::ScaleOp, ops::ScaleOpMaker, scale_grad, - ops::ScaleGradOp); +REGISTER_OPERATOR(scale, ops::ScaleOp, ops::ScaleOpMaker, + ops::ScaleGradMaker); REGISTER_OP_CPU_KERNEL(scale, ops::ScaleKernel); diff --git a/paddle/operators/scatter_op.cc b/paddle/operators/scatter_op.cc index d15ba151539987c133ac57e102df53551483c6dd..fbea01a8db007a5b8cfe17f545f1cce6ecff3afb 100644 --- a/paddle/operators/scatter_op.cc +++ b/paddle/operators/scatter_op.cc @@ -23,7 +23,7 @@ class ScatterOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("Ref"), "Input(Ref) of ScatterOp should not be null."); PADDLE_ENFORCE(ctx->HasInput("Index"), @@ -60,7 +60,7 @@ class ScatterGradOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { ctx->SetOutputDim(framework::GradVarName("Updates"), ctx->GetInputDim("Updates")); ctx->SetOutputDim(framework::GradVarName("Ref"), ctx->GetInputDim("Ref")); diff --git a/paddle/operators/sequence_pool_op.cc b/paddle/operators/sequence_pool_op.cc index bc4af2f70427e684dfb531b8c61d68f28ae20794..06c00d31eac9ff09084db951ce2929850f9d14c2 100644 --- a/paddle/operators/sequence_pool_op.cc +++ b/paddle/operators/sequence_pool_op.cc @@ -22,7 +22,7 @@ class SequencePoolOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of SequencePoolOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Out"), @@ -74,7 +74,7 @@ class SequencePoolGradOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), "Gradient of Out should not be null."); PADDLE_ENFORCE(ctx->HasInput("X"), "The input X should not be null."); diff --git a/paddle/operators/sequence_softmax_op.cc b/paddle/operators/sequence_softmax_op.cc index 621779ab6133f56a43fb2d20c814ebed8762ea7d..ea217ba4597c24ec323c6509f097874d977fcf81 100644 --- a/paddle/operators/sequence_softmax_op.cc +++ b/paddle/operators/sequence_softmax_op.cc @@ -22,7 +22,7 @@ class SequenceSoftmaxOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of SequenceSoftmaxOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Out"), @@ -67,7 +67,7 @@ class SequenceSoftmaxGradOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("Out"), "Input(Out) of SequenceSoftmaxGradOp should not be null."); PADDLE_ENFORCE( diff --git a/paddle/operators/sgd_op.cc b/paddle/operators/sgd_op.cc index 31d491f130e36289f7dd3dc18710d35d5ba6ab34..2a6a162a02507fa42c5ecbba59384f9c32aba7a9 100644 --- a/paddle/operators/sgd_op.cc +++ b/paddle/operators/sgd_op.cc @@ -22,7 +22,7 @@ class SGDOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase *ctx) const override { + void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasInput("Param"), "Input(Param) of SGDOp should not be null."); PADDLE_ENFORCE(ctx->HasInput("Grad"), diff --git a/paddle/operators/sgd_op.h b/paddle/operators/sgd_op.h index d72d333a9a03df17b34356090ca420cbe75fa58f..26f4012f258771794c736dbfad4af174b017f410 100644 --- a/paddle/operators/sgd_op.h +++ b/paddle/operators/sgd_op.h @@ -19,28 +19,25 @@ limitations under the License. */ namespace paddle { namespace operators { -using Tensor = framework::Tensor; -template -using EigenVector = framework::EigenVector; - template class SGDOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - auto param = ctx.Input("Param"); - auto grad = ctx.Input("Grad"); - auto param_out = ctx.Output("ParamOut"); - float lr = ctx.Input("LearningRate")->data()[0]; + auto param = ctx.Input("Param"); + auto grad = ctx.Input("Grad"); + auto param_out = ctx.Output("ParamOut"); + auto learning_rate = ctx.Input("LearningRate"); param_out->mutable_data(ctx.GetPlace()); - auto p = EigenVector::Flatten(*param); - auto g = EigenVector::Flatten(*grad); - auto o = EigenVector::Flatten(*param_out); + auto p = framework::EigenVector::Flatten(*param); + auto g = framework::EigenVector::Flatten(*grad); + auto o = framework::EigenVector::Flatten(*param_out); + auto lr = framework::EigenVector::Flatten(*learning_rate); auto place = ctx.GetEigenDevice(); - o.device(place) = p - lr * g; + Eigen::DSizes grad_dsize(grad->numel()); + o.device(place) = p - lr.broadcast(grad_dsize) * g; } }; diff --git a/paddle/operators/sigmoid_cross_entropy_with_logits_op.cc b/paddle/operators/sigmoid_cross_entropy_with_logits_op.cc index ede458e01147ab70444c4d158973cfb0818b9bdd..b6653e1cc754bd626f04c28c42ce59f83c2fc87f 100644 --- a/paddle/operators/sigmoid_cross_entropy_with_logits_op.cc +++ b/paddle/operators/sigmoid_cross_entropy_with_logits_op.cc @@ -24,7 +24,7 @@ class SigmoidCrossEntropyWithLogitsOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null."); PADDLE_ENFORCE(ctx->HasInput("Labels"), "Input(Labels) should be not null."); @@ -53,7 +53,7 @@ class SigmoidCrossEntropyWithLogitsGradOp using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null."); PADDLE_ENFORCE(ctx->HasInput("Labels"), "Input(Labels) should be not null."); diff --git a/paddle/operators/smooth_l1_loss_op.cc b/paddle/operators/smooth_l1_loss_op.cc index 2d197e3b1b763fa87939623d47728aab3bff7cd1..91391dc945be3d3d94966339bf9232eb21dcc38f 100644 --- a/paddle/operators/smooth_l1_loss_op.cc +++ b/paddle/operators/smooth_l1_loss_op.cc @@ -22,7 +22,7 @@ class SmoothL1LossOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "X must be initialized."); PADDLE_ENFORCE(ctx->HasInput("Y"), "Y must be initialized."); @@ -94,7 +94,7 @@ class SmoothL1LossGradOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { auto in_dims = ctx->GetInputDim("X"); auto out_dims = ctx->GetInputDim(framework::GradVarName("Out")); diff --git a/paddle/operators/softmax_op.cc b/paddle/operators/softmax_op.cc index e353afee3e10247fbd5c7f4282c366cd1bc39552..4c131ed44de1c1567193c7cabff6ddf2dc63d9be 100644 --- a/paddle/operators/softmax_op.cc +++ b/paddle/operators/softmax_op.cc @@ -22,7 +22,7 @@ class SoftmaxOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of SoftmaxOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Y"), @@ -69,7 +69,7 @@ class SoftmaxOpGrad : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should be not null."); PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")), "Input(Y@GRAD) should be not null."); diff --git a/paddle/operators/softmax_with_cross_entropy_op.cc b/paddle/operators/softmax_with_cross_entropy_op.cc index a76489871f30dc8d852b6a783efeff41704fd4a4..5431a1657c300d9c60100616ca7ea2e1196824ec 100644 --- a/paddle/operators/softmax_with_cross_entropy_op.cc +++ b/paddle/operators/softmax_with_cross_entropy_op.cc @@ -14,6 +14,7 @@ #include "paddle/operators/softmax_with_cross_entropy_op.h" #include +#include namespace paddle { namespace operators { @@ -27,15 +28,14 @@ class SoftmaxWithCrossEntropyOpMaker AddInput("Logits", "(Tensor, default: Tensor), The unscaled log probabilities " "which is a 2-D tensor with shape [N x K]. N is the batch_size, " - "and K is the class number.") - .NotInGradient(); - AddInput( - "Label", - "(Tensor, default: Tensor), The ground truth which is a 2-D " - "tensor. " - "If softLable is set to 0, Label is a Tensor with shape [N x 1]. " - "If softLable is set to 1, Label is a Tensor " - "with shape [N x K]."); + "and K is the class number."); + AddInput("Label", + "(Tensor, default: Tensor), The ground truth which is a 2-D " + "tensor. " + "If softLable is set to 0, Label is a Tensor with shape [N x " + "1]. " + "If softLable is set to 1, Label is a Tensor " + "with shape [N x K]."); AddOutput( "Softmax", "(Tensor, default: Tensor), A 2-D tensor with shape [N x K]. " @@ -83,7 +83,7 @@ class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("Logits"), "Input(Logits) should be not null."); PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null."); @@ -128,7 +128,7 @@ class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")), "Input(Loss@Grad) should not be null."); PADDLE_ENFORCE(ctx->HasInput("Softmax"), @@ -163,15 +163,34 @@ class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel { } }; +class SoftmaxGradMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + protected: + std::unique_ptr Apply() const override { + auto* grad_op = new framework::OpDescBind(); + grad_op->SetType("softmax_with_cross_entropy_grad"); + grad_op->SetInput("Label", Input("Label")); + grad_op->SetInput("Softmax", Output("Softmax")); + grad_op->SetInput("Loss", Output("Loss")); + grad_op->SetInput(framework::GradVarName("Softmax"), OutputGrad("Softmax")); + grad_op->SetInput(framework::GradVarName("Loss"), OutputGrad("Loss")); + grad_op->SetOutput(framework::GradVarName("Logits"), InputGrad("Logits")); + grad_op->SetAttrMap(Attrs()); + return std::unique_ptr(grad_op); + } +}; + } // namespace operators } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP(softmax_with_cross_entropy, ops::SoftmaxWithCrossEntropyOp, - ops::SoftmaxWithCrossEntropyOpMaker, - softmax_with_cross_entropy_grad, - ops::SoftmaxWithCrossEntropyOpGrad); +REGISTER_OPERATOR(softmax_with_cross_entropy, ops::SoftmaxWithCrossEntropyOp, + ops::SoftmaxWithCrossEntropyOpMaker, ops::SoftmaxGradMaker); +REGISTER_OPERATOR(softmax_with_cross_entropy_grad, + ops::SoftmaxWithCrossEntropyOpGrad); REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy, ops::SoftmaxWithCrossEntropyKernel); REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy_grad, diff --git a/paddle/operators/split_op.cc b/paddle/operators/split_op.cc index 5f4b5539affef6fe1d3c4d15fff77d983b5e107f..d5dd4df2a2a6f424421ae7f117c26acff08d37d0 100644 --- a/paddle/operators/split_op.cc +++ b/paddle/operators/split_op.cc @@ -24,7 +24,7 @@ class SplitOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase *ctx) const override { + void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of SplitOp should not be null."); PADDLE_ENFORCE_GE(ctx->Outputs("Out").size(), 1UL, diff --git a/paddle/operators/squared_l2_distance_op.cc b/paddle/operators/squared_l2_distance_op.cc index 5a0cb596008a98aacf5e7b5ff70307ea1b8508e6..cce4e527c36bc0f4735165ff88ebba85b00eb898 100644 --- a/paddle/operators/squared_l2_distance_op.cc +++ b/paddle/operators/squared_l2_distance_op.cc @@ -22,7 +22,7 @@ class SquaredL2DistanceOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of SquaredL2DistanceOp should not be null."); PADDLE_ENFORCE(ctx->HasInput("Y"), @@ -86,7 +86,7 @@ class SquaredL2DistanceGradOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), "Gradient of Out should not be null"); auto out_dims = ctx->GetInputDim(framework::GradVarName("Out")); diff --git a/paddle/operators/strided_memcpy_test.cc b/paddle/operators/strided_memcpy_test.cc index e0dd7b19f14f04cb1ef6f3e9b06fcb20d6aebc6b..68f064eaee5851333ddf9767b7138da83a28503d 100644 --- a/paddle/operators/strided_memcpy_test.cc +++ b/paddle/operators/strided_memcpy_test.cc @@ -72,7 +72,7 @@ TEST(StridedMemcpy, CPUConcat) { } } -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA TEST(StridedMemcpy, GPUCrop) { // clang-format off int src[] = { @@ -157,4 +157,4 @@ TEST(StridedMemcpy, GPUConcat) { #endif } // namespace operators -} // namespace paddle \ No newline at end of file +} // namespace paddle diff --git a/paddle/operators/sum_op.cc b/paddle/operators/sum_op.cc index 7c422b477083fba4661aeb427422abb623b172bb..ffb0cb92111bfb8490d35e4f5cfc9e405b0e3250 100644 --- a/paddle/operators/sum_op.cc +++ b/paddle/operators/sum_op.cc @@ -22,7 +22,7 @@ class SumOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInputs("X"), "Inputs(X) should not be null"); auto x_dims = ctx->GetInputsDim("X"); PADDLE_ENFORCE(ctx->HasOutput("Out"), @@ -45,10 +45,8 @@ class SumOpMaker : public framework::OpProtoAndCheckerMaker { public: SumOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "the input tensors of sum operator.") - .AsDuplicable() - .NotInGradient(); - AddOutput("Out", "the output tensor of sum operator.").NotInGradient(); + AddInput("X", "the input tensors of sum operator.").AsDuplicable(); + AddOutput("Out", "the output tensor of sum operator."); AddComment(R"DOC( Sum the input tensors. @@ -58,23 +56,26 @@ or not. But the output only shares the LoD with the first input. } }; -class SumGradOp : public NetOp { +class SumGradMaker : public framework::GradOpDescMakerBase { public: - SumGradOp(const std::string& type, const framework::VariableNameMap& inputs, - const framework::VariableNameMap& outputs, - const framework::AttributeMap& attrs) - : NetOp(type, inputs, outputs, attrs) { - auto& x_grad_names = Outputs(framework::GradVarName("X")); - auto out_grad_name = this->Input(framework::GradVarName("Out")); + using framework::GradOpDescMakerBase::GradOpDescMakerBase; - framework::AttributeMap grad_attrs; - grad_attrs["scale"] = 1.0f; - for (auto& x_grad_name : x_grad_names) { - AppendOp(framework::OpRegistry::CreateOp( - "scale", {{"X", {out_grad_name}}}, {{"Out", {x_grad_name}}}, - grad_attrs)); - } - CompleteAddOp(false); + std::vector> operator()() + const override { + auto x_grads = InputGrad("X"); + std::vector> grad_ops; + grad_ops.reserve(x_grads.size()); + auto og = OutputGrad("Out"); + std::transform(x_grads.begin(), x_grads.end(), std::back_inserter(grad_ops), + [&og](const std::string& x_grad) { + auto* grad_op = new framework::OpDescBind(); + grad_op->SetType("scale"); + grad_op->SetInput("X", og); + grad_op->SetOutput("Out", {x_grad}); + grad_op->SetAttr("scale", 1.0f); + return std::unique_ptr(grad_op); + }); + return grad_ops; } }; @@ -82,5 +83,6 @@ class SumGradOp : public NetOp { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP(sum, ops::SumOp, ops::SumOpMaker, sum_grad, ops::SumGradOp); + +REGISTER_OPERATOR(sum, ops::SumOp, ops::SumOpMaker, ops::SumGradMaker); REGISTER_OP_CPU_KERNEL(sum, ops::SumKernel); diff --git a/paddle/operators/top_k_op.cc b/paddle/operators/top_k_op.cc index 5f22bf1df8720b60aba7cd75896d88cd1ad77635..c95481991229dd40e162094ccbf15de8ab627c8b 100644 --- a/paddle/operators/top_k_op.cc +++ b/paddle/operators/top_k_op.cc @@ -22,7 +22,7 @@ class TopkOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase *ctx) const override { + void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of TopkOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Out"), diff --git a/paddle/operators/transpose_op.cc b/paddle/operators/transpose_op.cc index 0672f9342dac00ecc3f358450a9a203327cbb51f..1101bbe3efe3d313400663ade561063da4e34dfd 100644 --- a/paddle/operators/transpose_op.cc +++ b/paddle/operators/transpose_op.cc @@ -24,7 +24,7 @@ class TransposeOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null"); PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null"); auto x_dims = ctx->GetInputDim("X"); @@ -93,7 +93,7 @@ class TransposeOpGrad : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null"); PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), "Input(Out@GRAD) should not be null"); diff --git a/paddle/operators/uniform_random_op.cc b/paddle/operators/uniform_random_op.cc index 97b1d0bed4595cb750e4d2122f294f10edfbe0ff..e330877fc4283b796dcb5c5d745881884ae491ae 100644 --- a/paddle/operators/uniform_random_op.cc +++ b/paddle/operators/uniform_random_op.cc @@ -47,7 +47,7 @@ class UniformRandomOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) of UniformRandomOp should not be null."); diff --git a/paddle/platform/device_context.cc b/paddle/platform/device_context.cc index 8dcc357a16a057416b7e86a9de8ee5fee8cfcfc3..a9b6b799036a4f2ba93ef52398131db4fcb599f5 100644 --- a/paddle/platform/device_context.cc +++ b/paddle/platform/device_context.cc @@ -35,7 +35,7 @@ Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const { Place CPUDeviceContext::GetPlace() const { return CPUPlace(); } -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA template <> Eigen::GpuDevice* diff --git a/paddle/platform/device_context.h b/paddle/platform/device_context.h index c1c4c7f7600b7e404c5b8db42172d87dc7cf7342..ef5f19214d9ccb23b9c946bee28cb764122bd7cd 100644 --- a/paddle/platform/device_context.h +++ b/paddle/platform/device_context.h @@ -14,7 +14,7 @@ limitations under the License. */ #include "paddle/platform/enforce.h" #include "paddle/platform/place.h" -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA #include "paddle/platform/dynload/cublas.h" #include "paddle/platform/dynload/cudnn.h" #include "paddle/platform/gpu_info.h" @@ -61,7 +61,7 @@ class CPUDeviceContext : public DeviceContext { std::unique_ptr eigen_device_; }; -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA template <> struct EigenDeviceConverter { using EigenDeviceType = Eigen::GpuDevice; diff --git a/paddle/platform/enforce.h b/paddle/platform/enforce.h index f9fe521d50729fdb20d8be45a89b81fd8f0f4564..15d8446cd8dceb2fdc03536e1f7bbcde73403a23 100644 --- a/paddle/platform/enforce.h +++ b/paddle/platform/enforce.h @@ -29,7 +29,7 @@ limitations under the License. */ #include // for __cxa_demangle #endif -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA #include "paddle/platform/dynload/cublas.h" #include "paddle/platform/dynload/cudnn.h" @@ -113,7 +113,7 @@ inline typename std::enable_if::type throw_on_error( } } -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA template inline typename std::enable_if::type throw_on_error( diff --git a/paddle/platform/enforce_test.cc b/paddle/platform/enforce_test.cc index 80bdee3d9dfbe38ef707a6ba60cdb7f7b99714de..8206a055eabf4abf584962e921610d5029e2f571 100644 --- a/paddle/platform/enforce_test.cc +++ b/paddle/platform/enforce_test.cc @@ -213,4 +213,4 @@ TEST(ENFORCE_USER_DEFINED_CLASS, EQ) { TEST(ENFORCE_USER_DEFINED_CLASS, NE) { Dims a{{1, 2, 3, 4}}, b{{5, 6, 7, 8}}; ASSERT_THROW(PADDLE_ENFORCE_EQ(a, b), paddle::platform::EnforceNotMet); -} \ No newline at end of file +} diff --git a/paddle/platform/gpu_info.h b/paddle/platform/gpu_info.h index 276783bbe41af31437d7400ca22b835dd7469fed..fb33db07bd54d37dec2e5d687ecefb01cc330e44 100644 --- a/paddle/platform/gpu_info.h +++ b/paddle/platform/gpu_info.h @@ -14,7 +14,7 @@ limitations under the License. */ #pragma once -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA #include #include diff --git a/paddle/platform/variant.h b/paddle/platform/variant.h index 8145799dfdc6d88959c65904621e4820f5e06c9b..619897ca19eb2e6f4dbfd9160edf8c4bc58c89a9 100644 --- a/paddle/platform/variant.h +++ b/paddle/platform/variant.h @@ -16,7 +16,7 @@ #include -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA // Because boost's variadic templates has bug on nvcc, boost will disable // variadic template support when GPU enabled on nvcc. diff --git a/paddle/pserver/test/SocketTest.cpp b/paddle/pserver/test/SocketTest.cpp index 96724530f5e1adb3135d9931d4b258d0ccf1c30d..b43461d61bab21747e85090bbf7af21a87a670c6 100644 --- a/paddle/pserver/test/SocketTest.cpp +++ b/paddle/pserver/test/SocketTest.cpp @@ -215,7 +215,7 @@ int main(int argc, char** argv) { uint64_t dataSize = FLAGS_dim * sizeof(real); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA GpuVector gpuParam(FLAGS_dim); GpuVector gpuGrad(FLAGS_dim); #else diff --git a/paddle/pserver/test/test_ProtoServer.cpp b/paddle/pserver/test/test_ProtoServer.cpp index 74ab1f2f77ec503c23ac81b9e2aaf60d21342b0b..ad8ffed9c1c8e4bdef27689ab21950db6b5cf0a2 100644 --- a/paddle/pserver/test/test_ProtoServer.cpp +++ b/paddle/pserver/test/test_ProtoServer.cpp @@ -99,7 +99,7 @@ TEST(ProtoServer, regular) { } TEST(ProtoServer, extended) { -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA ProtoClient* client; if (FLAGS_rdma_tcp == "rdma") client = new ProtoClient(FLAGS_server_addr, FLAGS_port, F_RDMA); diff --git a/paddle/pybind/CMakeLists.txt b/paddle/pybind/CMakeLists.txt index 18ecbd1aa34c82d63ae7f8ec1bd8f81b35eee30b..97364f2db9523c0629616692631d8372657a2128 100644 --- a/paddle/pybind/CMakeLists.txt +++ b/paddle/pybind/CMakeLists.txt @@ -1,6 +1,6 @@ if(WITH_PYTHON) cc_library(paddle_pybind SHARED SRCS pybind.cc exception.cc protobuf.cc - DEPS pybind python backward proto_desc + DEPS pybind python backward proto_desc tensor_array ${GLOB_OP_LIB}) endif(WITH_PYTHON) diff --git a/paddle/pybind/pybind.cc b/paddle/pybind/pybind.cc index 761d82fc4d0c5bbc8ebc8a88e1a4d6745fb564bd..356c4986e2e182e904215f7ebb8cac5146364f8b 100644 --- a/paddle/pybind/pybind.cc +++ b/paddle/pybind/pybind.cc @@ -16,6 +16,7 @@ limitations under the License. */ #include "paddle/framework/backward.h" #include "paddle/framework/lod_tensor.h" +#include "paddle/framework/tensor_array.h" #include "paddle/operators/cond_op.h" #include "paddle/operators/net_op.h" #include "paddle/operators/recurrent_op.h" @@ -34,7 +35,7 @@ static size_t UniqueIntegerGenerator() { } bool IsCompileGPU() { -#ifndef PADDLE_WITH_GPU +#ifndef PADDLE_WITH_CUDA return false; #else return true; @@ -78,7 +79,7 @@ PYBIND11_PLUGIN(core) { .def("set", PyCPUTensorSetFromArray) .def("set", PyCPUTensorSetFromArray) .def("set", PyCPUTensorSetFromArray) -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA .def("set", PyCUDATensorSetFromArray) .def("set", PyCUDATensorSetFromArray) .def("set", PyCUDATensorSetFromArray) @@ -96,7 +97,7 @@ PYBIND11_PLUGIN(core) { .def( "__init__", [](LoDTensor &instance, const std::vector> &lod) { -#ifndef PADDLE_WITH_GPU +#ifndef PADDLE_WITH_CUDA new (&instance) LoDTensor(lod); #else LoD new_lod; @@ -107,7 +108,7 @@ PYBIND11_PLUGIN(core) { }) .def("set_lod", [](LoDTensor &self, const std::vector> &lod) { -#ifndef PADDLE_WITH_GPU +#ifndef PADDLE_WITH_CUDA self.set_lod(lod); #else LoD new_lod; @@ -117,7 +118,7 @@ PYBIND11_PLUGIN(core) { #endif }) .def("lod", [](LoDTensor &self) -> std::vector> { -#ifndef PADDLE_WITH_GPU +#ifndef PADDLE_WITH_CUDA return self.lod(); #else auto lod = self.lod(); @@ -203,7 +204,7 @@ All parameter, weight, gradient are variables in Paddle. .def_static("create", [](paddle::platform::GPUPlace& place) -> paddle::platform::DeviceContext* { -#ifndef PADDLE_WITH_GPU +#ifndef PADDLE_WITH_CUDA PADDLE_THROW("GPUPlace is not supported in CPU device."); #else return new paddle::platform::CUDADeviceContext(place); @@ -230,6 +231,21 @@ All parameter, weight, gradient are variables in Paddle. desc.InitializationErrorString()); return OpRegistry::CreateOp(desc); }) + .def_static("infer_shape", + [](OpDescBind &op_desc, BlockDescBind &block) { + auto op = OpRegistry::CreateOp(*op_desc.Proto()); + auto *op_with_kernel = + dynamic_cast(op.get()); + if (op_with_kernel != nullptr) { + auto ctx = CompileTimeInferShapeContext(op_desc, block); + op_with_kernel->InferShape(&ctx); + } else { + PADDLE_THROW( + "OP(%s) is not type of OperatorWithKernel, " + "should not call this function", + op_desc.Type()); + } + }) .def("backward", [](const OperatorBase &forwardOp, const std::unordered_set &no_grad_vars) { @@ -271,6 +287,56 @@ All parameter, weight, gradient are variables in Paddle. self->CompleteAddOp(); }); + py::class_(m, "TensorArray") + .def("__init__", + [](TensorArray &instance) { new (&instance) TensorArray(); }) + .def("read", + [](TensorArray &self, size_t index) { return self.Read(index); }) + .def("write", [](TensorArray &self, size_t index, + LoDTensor &value) { self.Write(index, value); }) + .def("write_shared", + [](TensorArray &self, size_t index, const LoDTensor &value) { + self.WriteShared(index, value); + }) + .def("size", [](TensorArray &self) { return self.size(); }) + .def("pack", + [](TensorArray &self, size_t level, + const std::vector> &meta_info, + const std::vector> &lod) { + std::vector meta; + for (auto &info : meta_info) { + PADDLE_ENFORCE_EQ(info.size(), 3UL); + meta.emplace_back(info[0], info[1], info[2]); + } +#ifndef PADDLE_WITH_CUDA + return self.Pack(level, meta, lod); +#else + LoD new_lod; + new_lod.reserve(lod.size()); + std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod)); + return self.Pack(level, meta, new_lod); +#endif + }) + .def("unpack", + [](TensorArray &self, const LoDTensor &source, int level, + bool length_descend) { + auto metas = self.Unpack(source, level, length_descend); + std::vector> meta_info; + for (auto meta : metas) { + meta_info.emplace_back( + std::vector({meta.begin, meta.end, meta.ori_idx})); + } + return meta_info; + }) + .def("stack", [](TensorArray &self) { return self.Stack(); }) + .def("unstack", + [](TensorArray &self, const LoDTensor &source) { + return self.Unstack(source); + }) + .def("unstack_shared", [](TensorArray &self, const LoDTensor &source) { + return self.UnstackShared(source); + }); + // recurrent_op py::class_(m, "RecurrentOp") .def_static( diff --git a/paddle/pybind/tensor_py.h b/paddle/pybind/tensor_py.h index 62e85fa54fba7ddbd017f3b12f7abdfae8a7c48c..9e73f79cbdd545db558bd8641bc52e4bf3b0664f 100644 --- a/paddle/pybind/tensor_py.h +++ b/paddle/pybind/tensor_py.h @@ -106,7 +106,7 @@ void PyCPUTensorSetFromArray( std::memcpy(dst, array.data(), sizeof(T) * array.size()); } -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA template void PyCUDATensorSetFromArray( framework::Tensor &self, diff --git a/paddle/string/to_string_test.cc b/paddle/string/to_string_test.cc index 542c771a98ec8ae187cd4f821ed1ee4373427041..971484dd0c073762e99f3926576eb21b96197769 100644 --- a/paddle/string/to_string_test.cc +++ b/paddle/string/to_string_test.cc @@ -36,4 +36,4 @@ TEST(to_string, user_defined) { using namespace paddle::string; UserDefinedClass instance; ASSERT_EQ(kOutputString, to_string(instance)); -} \ No newline at end of file +} diff --git a/paddle/trainer/MergeModel.cpp b/paddle/trainer/MergeModel.cpp index a37d53bc724777a537b7706892ca84fd354c3b33..6c52eaf4494bb247324b29981d94d7e97e0f212a 100644 --- a/paddle/trainer/MergeModel.cpp +++ b/paddle/trainer/MergeModel.cpp @@ -29,7 +29,7 @@ int main(int argc, char** argv) { initMain(argc, argv); initPython(argc, argv); string confFile = TrainerConfigHelper::getConfigNameFromPath(FLAGS_model_dir); -#ifndef PADDLE_WITH_GPU +#ifndef PADDLE_WITH_CUDA FLAGS_use_gpu = false; #endif auto config = std::make_shared(confFile); diff --git a/paddle/trainer/tests/test_Compare.cpp b/paddle/trainer/tests/test_Compare.cpp index b5d29da45af2a40962d6a2800243a980bd29d28d..f3a964acb69be059a43470f7b68910a3b6cecaab 100644 --- a/paddle/trainer/tests/test_Compare.cpp +++ b/paddle/trainer/tests/test_Compare.cpp @@ -146,7 +146,7 @@ void compareGradient(comData& comDataCpu, comData& comDataGpu) { } int main(int argc, char** argv) { -#ifndef PADDLE_WITH_GPU +#ifndef PADDLE_WITH_CUDA exit(0); #endif paddle::initMain(argc, argv); diff --git a/paddle/trainer/tests/test_CompareSparse.cpp b/paddle/trainer/tests/test_CompareSparse.cpp index 4da9ce20fb3f91b4763c3e9f651f93364d84233e..5f1834bd730375fc10762fc19788d0c693f8e752 100644 --- a/paddle/trainer/tests/test_CompareSparse.cpp +++ b/paddle/trainer/tests/test_CompareSparse.cpp @@ -174,7 +174,7 @@ TEST(compareSparse, multiGradientMachine) { FLAGS_local = local; FLAGS_ports_num_for_sparse = 5; for (bool useGpu : {false, true}) { -#ifndef PADDLE_WITH_GPU +#ifndef PADDLE_WITH_CUDA if (useGpu) continue; #endif FLAGS_parallel_nn = useGpu; @@ -198,7 +198,7 @@ TEST(compareSparse, NeuralNetwork) { FLAGS_local = local; FLAGS_ports_num_for_sparse = 5; for (bool useGpu : {false, true}) { -#ifndef PADDLE_WITH_GPU +#ifndef PADDLE_WITH_CUDA if (useGpu) continue; #endif FLAGS_parallel_nn = useGpu; diff --git a/paddle/trainer/tests/test_Trainer.cpp b/paddle/trainer/tests/test_Trainer.cpp index f69e1aafeeebbdfc847585dfe071a44689a5b019..425b3d10a38086463784ba2a18db1293efe96e92 100644 --- a/paddle/trainer/tests/test_Trainer.cpp +++ b/paddle/trainer/tests/test_Trainer.cpp @@ -51,7 +51,7 @@ void checkGradientTest(const string& configFile, TEST(checkGradient, cpu) { checkGradientTest(configFile1, false, false); } -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA TEST(checkGradient, gpu) { checkGradientTest(configFile1, true, false); } TEST(checkGradient, multiGpu) { @@ -97,7 +97,7 @@ TEST(checkGradient, hsigmoid) { checkGradientTest(configFile2, false, false); } TEST(checkGradient, chunk) { checkGradientTest(configFile3, false, false); -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA checkGradientTest(configFile3, true, true); #endif } diff --git a/paddle/trainer/tests/test_TrainerOnePass.cpp b/paddle/trainer/tests/test_TrainerOnePass.cpp index 4c4d124fa9d95bc3def0700b97e30cd2558a009c..b2a93d4d5eea37ad716b59427f2aa4409d2f537d 100644 --- a/paddle/trainer/tests/test_TrainerOnePass.cpp +++ b/paddle/trainer/tests/test_TrainerOnePass.cpp @@ -79,7 +79,7 @@ void trainerOnePassTest(const string& configFile, // 1. test trainer (cpu, gpu). TEST(trainerOnePass, cpu) { trainerOnePassTest(configFile1, false, false); } -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA TEST(trainerOnePass, gpu) { trainerOnePassTest(configFile1, true, false); } TEST(trainerOnePass, gpu2) { trainerOnePassTest(configFile1, true, false, 2); } @@ -94,7 +94,7 @@ TEST(trainerOnePass, parallel) { #endif // 2. test average_window. -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA TEST(average_window, gpu) { trainerOnePassTest(configFile1, true, false, 4, 0.01); } @@ -266,7 +266,7 @@ TEST(checkRemoteUpdater, cpuTrainerOldUpdater) { checkRemoteParameterUpdaterTest(configFile1, false, false, 1, true); } -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA TEST(checkRemoteUpdater, gpuTrainer) { checkRemoteParameterUpdaterTest(configFile1, true, false); } diff --git a/paddle/trainer/tests/test_recurrent_machine_generation.cpp b/paddle/trainer/tests/test_recurrent_machine_generation.cpp index 74b4fed7edd62ff24282f614b3886ee4cafea630..a8fbe31c2b1e228107dfc19483444409bfcbf788 100644 --- a/paddle/trainer/tests/test_recurrent_machine_generation.cpp +++ b/paddle/trainer/tests/test_recurrent_machine_generation.cpp @@ -113,7 +113,7 @@ void testGeneration(const string& configFile, #ifndef PADDLE_TYPE_DOUBLE TEST(RecurrentGradientMachine, test_generation) { -#ifndef PADDLE_WITH_GPU +#ifndef PADDLE_WITH_CUDA const auto useGpuConfs = {false}; #else const auto useGpuConfs = {true, false}; diff --git a/paddle/utils/Flags.cpp b/paddle/utils/Flags.cpp index 32155ded3574dae2ff4fc5a3ff327927435ef296..8f100f02e90bcbc7fdcf6f053aec6f95cfb09c1a 100644 --- a/paddle/utils/Flags.cpp +++ b/paddle/utils/Flags.cpp @@ -14,7 +14,7 @@ limitations under the License. */ #include "Flags.h" -#ifndef PADDLE_WITH_GPU +#ifndef PADDLE_WITH_CUDA DEFINE_bool(use_gpu, false, "Only support CPU training"); #else DEFINE_bool(use_gpu, true, "Whether to use GPU for training"); diff --git a/paddle/utils/Util.h b/paddle/utils/Util.h index 904d0f506150d8279945b5942de27d1736b7c992..9579881ea3b92abab0189631184bab515afb67a3 100644 --- a/paddle/utils/Util.h +++ b/paddle/utils/Util.h @@ -218,7 +218,7 @@ protected: * *d2* is peer device to enable direct access to by the d1 device. */ inline void enablePeerAccess(int d1, int d2) { -#ifdef PADDLE_WITH_GPU +#ifdef PADDLE_WITH_CUDA if (hl_device_can_access_peer(d1, d2)) { SetDevice dev(d1); hl_device_enable_peer_access(d2); diff --git a/paddle/utils/Version.h b/paddle/utils/Version.h index 611fda83d98fd22f81aff5c5d588841ad490eff7..004d62451cddfee8fbd687938086e04ecb2332a9 100644 --- a/paddle/utils/Version.h +++ b/paddle/utils/Version.h @@ -48,7 +48,7 @@ void printVersion(std::ostream& os); * @return return true if paddle compiled with GPU */ constexpr bool isWithGpu() { -#ifndef PADDLE_WITH_GPU +#ifndef PADDLE_WITH_CUDA return false; #else return true; diff --git a/python/paddle/v2/event.py b/python/paddle/v2/event.py index e66bf67d7949057486eb54c46f39128fad5dae55..a0ffd31c545eb10dd8c2f14746ee90df58700e61 100644 --- a/python/paddle/v2/event.py +++ b/python/paddle/v2/event.py @@ -10,7 +10,8 @@ There are: * EndPass """ __all__ = [ - 'EndIteration', 'BeginIteration', 'BeginPass', 'EndPass', 'TestResult' + 'EndIteration', 'BeginIteration', 'BeginPass', 'EndPass', 'TestResult', + 'EndForwardBackward' ] @@ -73,6 +74,17 @@ class BeginIteration(object): self.batch_id = batch_id +class EndForwardBackward(object): + """ + Event On One Batch ForwardBackward Complete. + """ + + def __init__(self, pass_id, batch_id, gm): + self.pass_id = pass_id + self.batch_id = batch_id + self.gm = gm + + class EndIteration(WithMetric): """ Event On One Batch Training Complete. diff --git a/python/paddle/v2/framework/tests/test_activation_op.py b/python/paddle/v2/framework/tests/test_activation_op.py index c44eb849063592fbda417ec1516d195dd4358612..8b76decaecdcb23d8292490b2988d2df043b5581 100644 --- a/python/paddle/v2/framework/tests/test_activation_op.py +++ b/python/paddle/v2/framework/tests/test_activation_op.py @@ -48,6 +48,21 @@ class TestTanh(OpTest): self.check_grad(['X'], 'Y', max_relative_error=0.007) +class TestTanhShrink(OpTest): + def setUp(self): + self.op_type = "tanh_shrink" + self.inputs = { + 'X': np.random.uniform(0.1, 1, [10, 17]).astype("float32") + } + self.outputs = {'Y': self.inputs['X'] - np.tanh(self.inputs['X'])} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(['X'], 'Y', max_relative_error=0.008) + + class TestSqrt(OpTest): def setUp(self): self.op_type = "sqrt" @@ -122,6 +137,28 @@ class TestBRelu(OpTest): self.check_grad(['X'], 'Y', max_relative_error=0.02) +class TestRelu6(OpTest): + def setUp(self): + self.op_type = "relu6" + x = np.random.uniform(-1, 1, [4, 10]).astype("float32") + threshold = 6.0 + # The same with TestAbs + x[np.abs(x) < 0.005] = 0.02 + x[np.abs(x - threshold) < 0.005] = threshold + 0.02 + + self.inputs = {'X': x} + self.attrs = {'threshold': threshold} + self.outputs = { + 'Y': np.minimum(np.maximum(self.inputs['X'], 0), threshold) + } + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(['X'], 'Y', max_relative_error=0.02) + + class TestSoftRelu(OpTest): def setUp(self): self.op_type = "soft_relu" diff --git a/python/paddle/v2/framework/tests/test_adadelta_op.py b/python/paddle/v2/framework/tests/test_adadelta_op.py new file mode 100644 index 0000000000000000000000000000000000000000..7105593a98aee9885ba16e3ee0649a6024033ee7 --- /dev/null +++ b/python/paddle/v2/framework/tests/test_adadelta_op.py @@ -0,0 +1,96 @@ +import unittest +import numpy as np +from op_test import OpTest + + +class TestAdadeltaOp1(OpTest): + def setUp(self): + self.op_type = "adadelta" + param = np.random.uniform(-1, 1, (102, 105)).astype("float32") + grad = np.random.uniform(-1, 1, (102, 105)).astype("float32") + # The squared gradient is positive + avg_squared_grad = np.random.random((102, 105)).astype("float32") + # The squared update is positive + avg_squared_update = np.random.random((102, 105)).astype("float32") + + rho = 0.95 + epsilon = 1e-6 + + self.inputs = { + 'Param': param, + 'Grad': grad, + 'AvgSquaredGrad': avg_squared_grad, + 'AvgSquaredUpdate': avg_squared_update + } + + self.attrs = {'rho': rho, 'epsilon': epsilon} + + avg_squared_grad_out = rho * avg_squared_grad + \ + (1 - rho) * np.square(grad) + update = -np.multiply( + np.sqrt( + np.divide(avg_squared_update + epsilon, avg_squared_grad_out + + epsilon)), grad) + + avg_squared_update_out = rho * avg_squared_update + \ + (1 - rho) * np.square(update) + + param_out = param + update + + self.outputs = { + 'ParamOut': param_out, + 'AvgSquaredGradOut': avg_squared_grad_out, + 'AvgSquaredUpdateOut': avg_squared_update_out + } + + def test_check_output(self): + self.check_output() + + +class TestAdadeltaOp2(OpTest): + '''Test Adadelta op with default attribute values + ''' + + def setUp(self): + self.op_type = "adadelta" + param = np.random.uniform(-1, 1, (102, 105)).astype("float32") + grad = np.random.uniform(-1, 1, (102, 105)).astype("float32") + # The squared gradient is positive + avg_squared_grad = np.random.random((102, 105)).astype("float32") + # The squared update is positive + avg_squared_update = np.random.random((102, 105)).astype("float32") + + rho = 0.95 + epsilon = 1e-6 + + self.inputs = { + 'Param': param, + 'Grad': grad, + 'AvgSquaredGrad': avg_squared_grad, + 'AvgSquaredUpdate': avg_squared_update + } + + avg_squared_grad_out = rho * avg_squared_grad + \ + (1 - rho) * np.square(grad) + update = -np.multiply( + np.sqrt( + np.divide(avg_squared_update + epsilon, avg_squared_grad_out + + epsilon)), grad) + + avg_squared_update_out = rho * avg_squared_update + \ + (1 - rho) * np.square(update) + + param_out = param + update + + self.outputs = { + 'ParamOut': param_out, + 'AvgSquaredGradOut': avg_squared_grad_out, + 'AvgSquaredUpdateOut': avg_squared_update_out + } + + def test_check_output(self): + self.check_output() + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/v2/framework/tests/test_adagrad_op.py b/python/paddle/v2/framework/tests/test_adagrad_op.py new file mode 100644 index 0000000000000000000000000000000000000000..66bad349e59b608cb3cc965401c81ef4c716b318 --- /dev/null +++ b/python/paddle/v2/framework/tests/test_adagrad_op.py @@ -0,0 +1,69 @@ +import unittest +import numpy as np +from op_test import OpTest + + +class TestAdagradOp1(OpTest): + ''' Test Adagrad operator with explicit attributes + ''' + + def setUp(self): + self.op_type = "adagrad" + + param = np.random.random((123, 321)).astype("float32") + grad = np.random.random((123, 321)).astype("float32") + moment = np.zeros((123, 321)).astype("float32") + lr = 0.01 + epsilon = 1e-8 + + self.inputs = { + 'Param': param, + 'Grad': grad, + 'Moment': moment, + 'LearningRate': np.array([lr]).astype("float32") + } + + self.attrs = {'epsilon': epsilon} + + moment_out = moment + grad * grad + param_out = param - lr * grad / (np.sqrt(moment_out) + epsilon) + + self.outputs = {'ParamOut': param_out, 'MomentOut': moment_out} + + def test_check_output(self): + self.check_output() + + +class TestAdagradOp2(OpTest): + ''' Test Adagrad operator with default attributes + ''' + + def setUp(self): + self.op_type = "adagrad" + + param = np.random.random((123, 321)).astype("float32") + grad = np.random.random((123, 321)).astype("float32") + moment = np.zeros((123, 321)).astype("float32") + lr = 0.01 + epsilon = 1e-6 + + self.inputs = { + 'Param': param, + 'Grad': grad, + 'Moment': moment, + 'LearningRate': np.array([lr]).astype("float32") + } + + self.attrs = {'epsilon': epsilon} + + moment_out = moment + grad * grad + param_out = param - lr * grad / (np.sqrt(moment_out) + epsilon) + + self.outputs = {'ParamOut': param_out, 'MomentOut': moment_out} + + def test_check_output(self): + self.check_output() + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/v2/framework/tests/test_adamax_op.py b/python/paddle/v2/framework/tests/test_adamax_op.py new file mode 100644 index 0000000000000000000000000000000000000000..af81075d6ad508dcd473ed596b00b036d87d894f --- /dev/null +++ b/python/paddle/v2/framework/tests/test_adamax_op.py @@ -0,0 +1,178 @@ +import unittest +import numpy as np +from op_test import OpTest + + +class TestAdamaxOp1(OpTest): + def setUp(self): + '''Test Adamax Operator with supplied attributes + ''' + self.op_type = "adamax" + param = np.random.uniform(-1, 1, (102, 105)).astype("float32") + grad = np.random.uniform(-1, 1, (102, 105)).astype("float32") + moment = np.random.uniform(-1, 1, (102, 105)).astype("float32") + # The infinity norm is positive + inf_norm = np.random.random((102, 105)).astype("float32") + + learning_rate = 0.002 + beta1 = 0.78 + beta2 = 0.899 + epsilon = 1e-5 + beta1_pow = beta1**10 + + self.inputs = { + 'Param': param, + 'Grad': grad, + 'Moment': moment, + 'InfNorm': inf_norm, + 'LearningRate': np.array([learning_rate]).astype("float32"), + 'Beta1Pow': np.array([beta1_pow]).astype("float32") + } + + self.attrs = {'beta1': beta1, 'beta2': beta2, 'epsilon': epsilon} + + param_out, moment_out, inf_norm_out, beta1_pow_out = adamax_step( + self.inputs, self.attrs) + + self.outputs = { + 'ParamOut': param_out, + 'MomentOut': moment_out, + 'InfNormOut': inf_norm_out, + 'Beta1PowOut': beta1_pow_out + } + + def test_check_output(self): + self.check_output() + + +class TestAdamaxOp2(OpTest): + '''Test Adamax Operator with default attributes + ''' + + def setUp(self): + self.op_type = "adamax" + param = np.random.uniform(-1, 1, (102, 105)).astype("float32") + grad = np.random.uniform(-1, 1, (102, 105)).astype("float32") + moment = np.random.uniform(-1, 1, (102, 105)).astype("float32") + # The infinity norm is positive + inf_norm = np.random.random((102, 105)).astype("float32") + + learning_rate = 0.002 + beta1 = 0.9 + beta2 = 0.999 + epsilon = 1e-8 + beta1_pow = beta1**8 + + self.inputs = { + 'Param': param, + 'Grad': grad, + 'Moment': moment, + 'InfNorm': inf_norm, + 'LearningRate': np.array([learning_rate]).astype("float32"), + 'Beta1Pow': np.array([beta1_pow]).astype("float32") + } + + attrs = {'beta1': beta1, 'beta2': beta2, 'epsilon': epsilon} + param_out, moment_out, inf_norm_out, beta1_pow_out = adamax_step( + self.inputs, attrs) + + self.outputs = { + 'ParamOut': param_out, + 'MomentOut': moment_out, + 'InfNormOut': inf_norm_out, + 'Beta1PowOut': beta1_pow_out + } + + def test_check_output(self): + self.check_output() + + +class TestAdamaxOpMultipleSteps(OpTest): + def setUp(self): + '''Test Adamax Operator with supplied attributes + ''' + self.op_type = "adamax" + self.num_steps = 10 + + param = np.random.uniform(-1, 1, (102, 105)).astype("float32") + grad = np.random.uniform(-1, 1, (102, 105)).astype("float32") + moment = np.random.uniform(-1, 1, (102, 105)).astype("float32") + # The infinity norm is positive + inf_norm = np.random.random((102, 105)).astype("float32") + + learning_rate = 0.002 + beta1 = 0.8 + beta2 = 0.99 + epsilon = 1e-5 + beta1_pow = 1 + + self.inputs = { + 'Param': param, + 'Grad': grad, + 'Moment': moment, + 'InfNorm': inf_norm, + 'LearningRate': np.array([learning_rate]).astype("float32"), + 'Beta1Pow': np.array([beta1_pow]).astype("float32") + } + + self.attrs = {'beta1': beta1, 'beta2': beta2, 'epsilon': epsilon} + + param_out, moment_out, inf_norm_out, beta1_pow_out = adamax_step( + self.inputs, self.attrs) + + def test_check_output(self): + for _ in range(self.num_steps): + param_out, moment_out, inf_norm_out, beta1_pow_out = adamax_step( + self.inputs, self.attrs) + + self.outputs = { + 'ParamOut': param_out, + 'MomentOut': moment_out, + 'InfNormOut': inf_norm_out, + 'Beta1PowOut': beta1_pow_out + } + + # Verify output for this step + self.check_output() + + # Output of this step becomes input for next step + self.inputs['Param'] = param_out + self.inputs['Moment'] = moment_out + self.inputs['InfNorm'] = inf_norm_out + self.inputs['Beta1Pow'] = beta1_pow_out + + # Randomize gradient for next step + self.inputs['Grad'] = np.random.uniform( + -1, 1, (102, 105)).astype("float32") + + +def adamax_step(inputs, attributes): + ''' + Simulate one step of the adamax optimizer + :param inputs: dict of inputs + :param attributes: dict of attributes + :return tuple: tuple of output param, moment, inf_norm and + beta1 power accumulator + ''' + param = inputs['Param'] + grad = inputs['Grad'] + moment = inputs['Moment'] + inf_norm = inputs['InfNorm'] + lr = inputs['LearningRate'] + beta1_pow = inputs['Beta1Pow'] + + beta1 = attributes['beta1'] + beta2 = attributes['beta2'] + epsilon = attributes['epsilon'] + + moment_out = beta1 * moment + (1 - beta1) * grad + inf_norm_out = np.maximum(beta2 * inf_norm + epsilon, np.abs(grad)) + beta1_pow_out = beta1_pow * beta1 + lr_t = (lr / (1 - beta1_pow_out)) + param_out = param - lr_t * np.divide(moment_out, inf_norm_out) + + return param_out, moment_out, inf_norm_out, beta1_pow_out + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/v2/framework/tests/test_infer_shape.py b/python/paddle/v2/framework/tests/test_infer_shape.py new file mode 100644 index 0000000000000000000000000000000000000000..b38ec9c03740a2e69f1247c094ce56ab43fa8e32 --- /dev/null +++ b/python/paddle/v2/framework/tests/test_infer_shape.py @@ -0,0 +1,63 @@ +import unittest +import paddle.v2.framework.core as core +from paddle.v2.framework.op import Operator + + +class TestInferShape(unittest.TestCase): + def test_sum_op(self): + prog = core.ProgramDesc.__create_program_desc__() + self.assertIsNotNone(prog) + block = prog.block(0) + self.assertIsNotNone(block) + + shape = [10, 20] + + # prepare input/output + x1 = block.new_var("x1") + x1.set_shape(shape) + x2 = block.new_var("x2") + x2.set_shape(shape) + + out = block.new_var("out") + + # prepare the operator + sum_op_desc = block.append_op() + sum_op_desc.set_type("sum") + sum_op_desc.set_input("X", ["x1", "x2"]) + sum_op_desc.set_output("Out", ["out"]) + + core.Operator.infer_shape(sum_op_desc, block) + self.assertEqual(out.shape(), shape) + + def test_mul_op(self): + prog = core.ProgramDesc.__create_program_desc__() + self.assertIsNotNone(prog) + block = prog.block(0) + self.assertIsNotNone(block) + + x_shape = [10, 20] + y_shape = [20, 30] + + # prepare input/output + x1 = block.new_var("x") + x1.set_shape(x_shape) + x2 = block.new_var("y") + x2.set_shape(y_shape) + + out = block.new_var("out") + + # prepare the operator + mul_op_desc = block.append_op() + mul_op_desc.set_type("mul") + mul_op_desc.set_input("X", ["x"]) + mul_op_desc.set_input("Y", ["y"]) + mul_op_desc.set_output("Out", ["out"]) + mul_op_desc.set_attr("x_num_col_dims", 1) + mul_op_desc.set_attr("y_num_col_dims", 1) + + core.Operator.infer_shape(mul_op_desc, block) + self.assertEqual(out.shape(), [x_shape[0], y_shape[1]]) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/framework/tests/test_rmsprop_op.py b/python/paddle/v2/framework/tests/test_rmsprop_op.py new file mode 100644 index 0000000000000000000000000000000000000000..3e5ff733e9b55fe8c9727e9721e25083a494be15 --- /dev/null +++ b/python/paddle/v2/framework/tests/test_rmsprop_op.py @@ -0,0 +1,89 @@ +import unittest +import numpy as np +from op_test import OpTest + + +class TestRmspropOp1(OpTest): + ''' Test RMSProp with explicit inputs + ''' + + def setUp(self): + self.op_type = "rmsprop" + + param = np.random.random((123, 321)).astype("float32") + mean_square = np.random.random((123, 321)).astype("float32") + learning_rate = np.array([0.01]).astype("float32") + grad = np.random.random((123, 321)).astype("float32") + moment = np.zeros((123, 321)).astype("float32") + + epsilon = 1e-6 + decay = 0.9 + momentum = 0.0 + + self.inputs = { + 'Param': param, + 'MeanSquare': mean_square, + 'LearningRate': learning_rate, + 'Grad': grad, + 'Moment': moment, + } + + self.attrs = {'epsilon': epsilon, 'decay': decay, 'momentum': momentum} + + ms_out = decay * mean_square + (1 - decay) * grad * grad + moment_out = momentum * moment + \ + learning_rate * grad / np.sqrt(ms_out + epsilon) + param_out = param - moment_out + + self.outputs = { + 'ParamOut': param_out, + 'MomentOut': moment_out, + 'MeanSquareOut': ms_out + } + + def test_check_output(self): + self.check_output() + + +class TestRmspropOp2(OpTest): + '''Test RMSProp with defaukt values for attributes + ''' + + def setUp(self): + self.op_type = "rmsprop" + + param = np.random.random((123, 321)).astype("float32") + mean_square = np.random.random((123, 321)).astype("float32") + learning_rate = np.array([0.01]).astype("float32") + grad = np.random.random((123, 321)).astype("float32") + moment = np.zeros((123, 321)).astype("float32") + + epsilon = 1.0e-10 + decay = 0.9 + momentum = 0.0 + + self.inputs = { + 'Param': param, + 'MeanSquare': mean_square, + 'LearningRate': learning_rate, + 'Grad': grad, + 'Moment': moment, + } + + ms_out = decay * mean_square + (1 - decay) * grad * grad + moment_out = momentum * moment + \ + learning_rate * grad / np.sqrt(ms_out + epsilon) + param_out = param - moment_out + + self.outputs = { + 'ParamOut': param_out, + 'MomentOut': moment_out, + 'MeanSquareOut': ms_out + } + + def test_check_output(self): + self.check_output() + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/v2/framework/tests/test_tensor_array.py b/python/paddle/v2/framework/tests/test_tensor_array.py new file mode 100644 index 0000000000000000000000000000000000000000..11f8a01f9224fcbd6dd6cbc8c37cc81036ad3e07 --- /dev/null +++ b/python/paddle/v2/framework/tests/test_tensor_array.py @@ -0,0 +1,106 @@ +import logging +import paddle.v2.framework.core as core +import unittest +import numpy as np + + +class TestTensorArray(unittest.TestCase): + def setUp(self): + self.ta = core.TensorArray() + + self.batch_size = 10 + self.dim = 2 + + # create a LoDTensor + self.scope = core.Scope() + var = self.scope.new_var("test_tensor") + self.place = core.CPUPlace() + tensor = var.get_tensor() + tensor.set_dims([self.batch_size, self.dim]) + tensor.alloc_float(self.place) + tensor_array = np.array(tensor) + tensor_array[0, 0] = 0 + tensor_array[1, 0] = 1 + tensor_array[2, 0] = 2 + tensor_array[3, 0] = 3 + tensor_array[4, 0] = 4 + tensor_array[5, 0] = 5 + tensor_array[6, 0] = 6 + tensor_array[7, 0] = 7 + tensor_array[8, 0] = 8 + tensor_array[9, 0] = 9 + + lod_py = [[0, 2, 5, 10]] + lod_tensor = core.LoDTensor(lod_py) + lod_tensor.set(tensor_array, self.place) + + self.py_seq_meta = [[5, 10, 2], [2, 5, 1], [0, 2, 0]] + + self.tensor = lod_tensor + + def test_unstack(self): + self.ta.unstack(self.tensor) + self.assertEqual(self.tensor.get_dims()[0], self.ta.size()) + + def test_read(self): + self.ta.unstack(self.tensor) + for i in range(self.batch_size): + tensor = self.ta.read(i) + + def test_write(self): + self.ta.unstack(self.tensor) + + # create a tensor with shape of [1, self.dim] + var = self.scope.new_var("hell") + tensor = var.get_tensor() + tensor.set_dims([1, self.dim]) + tensor.alloc_float(self.place) + tensor_array = np.array(tensor) + for i in range(self.dim): + tensor_array[0, i] = i + tensor.set(tensor_array, self.place) + + self.ta.write(2, tensor) + + ta_tensor = self.ta.read(2) + ta_tensor_array = np.array(ta_tensor) + self.assertEqual(ta_tensor.get_dims(), [1, self.dim]) + self.assertTrue((tensor_array == ta_tensor_array).all()) + + def test_write_shared(self): + self.ta.unstack(self.tensor) + + # create a tensor with shape of [1, self.dim] + var = self.scope.new_var("hell") + tensor = var.get_tensor() + tensor.set_dims([1, self.dim]) + tensor.alloc_float(self.place) + tensor_array = np.array(tensor) + for i in range(self.dim): + tensor_array[0, i] = i + tensor.set(tensor_array, self.place) + + self.ta.write_shared(2, tensor) + + ta_tensor = self.ta.read(2) + ta_tensor_array = np.array(ta_tensor) + self.assertEqual(ta_tensor.get_dims(), [1, self.dim]) + self.assertTrue((tensor_array == ta_tensor_array).all()) + + def test_unpack(self): + meta = self.ta.unpack(self.tensor, 0, True) + self.assertEqual(self.ta.size(), 5) + self.assertEqual(meta, self.py_seq_meta) + + def test_pack(self): + meta = self.ta.unpack(self.tensor, 0, True) + print "meta", meta + tensor = self.ta.pack(0, meta, self.tensor.lod()) + print np.array(self.tensor) + print np.array(tensor) + self.assertTrue((np.array(self.tensor) == np.array(tensor)).all()) + self.assertTrue(tensor.lod(), self.tensor.lod()) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/trainer.py b/python/paddle/v2/trainer.py index ca95ef13bd440ac0ba3d46f6e4680d4d7aa94c42..076e75593991415bc3fbcbd36a108c8c7de66932 100644 --- a/python/paddle/v2/trainer.py +++ b/python/paddle/v2/trainer.py @@ -164,11 +164,18 @@ class SGD(object): pass_type) self.__gradient_machine__.eval(pass_evaluator) self.__gradient_machine__.eval(batch_evaluator) + event_handler( + v2_event.EndForwardBackward( + pass_id=pass_id, + batch_id=batch_id, + gm=self.__gradient_machine__)) for each_param in self.__gradient_machine__.getNonStaticParameters( ): self.__parameter_updater__.update(each_param) cost_sum = out_args.sum() cost = cost_sum / len(data_batch) + self.__parameter_updater__.finishBatch(cost) + batch_evaluator.finish() event_handler( v2_event.EndIteration( pass_id=pass_id, @@ -176,8 +183,6 @@ class SGD(object): cost=cost, evaluator=batch_evaluator, gm=self.__gradient_machine__)) - self.__parameter_updater__.finishBatch(cost) - batch_evaluator.finish() self.__parameter_updater__.finishPass() pass_evaluator.finish()