Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
67204c18
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
67204c18
编写于
11月 23, 2022
作者:
Y
Yuanle Liu
提交者:
GitHub
11月 23, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Paddle Inference] add Conv2d fusion layout transfer pass (#48128)
上级
a914d68e
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
313 addition
and
0 deletion
+313
-0
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+1
-0
paddle/fluid/framework/ir/conv2d_fusion_layout_transfer_pass.cc
.../fluid/framework/ir/conv2d_fusion_layout_transfer_pass.cc
+278
-0
paddle/fluid/framework/ir/conv2d_fusion_layout_transfer_pass.h
...e/fluid/framework/ir/conv2d_fusion_layout_transfer_pass.h
+34
-0
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
67204c18
...
...
@@ -101,6 +101,7 @@ pass_library(delete_c_identity_op_pass inference)
pass_library
(
preln_residual_bias_fuse_pass inference
)
pass_library
(
delete_fill_constant_op_pass inference
)
pass_library
(
constant_folding_pass inference
)
pass_library
(
conv2d_fusion_layout_transfer_pass inference
)
pass_library
(
simplify_with_basic_ops_pass base
)
pass_library
(
fc_elementwise_layernorm_fuse_pass base
)
pass_library
(
skip_layernorm_fuse_pass base
)
...
...
paddle/fluid/framework/ir/conv2d_fusion_layout_transfer_pass.cc
0 → 100644
浏览文件 @
67204c18
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/conv2d_fusion_layout_transfer_pass.h"
#include <string>
#include <unordered_map>
#include <unordered_set>
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/dense_tensor.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
namespace
{
void
TransDataLayout
(
DataLayout
from_layout
,
DataLayout
to_layout
,
const
phi
::
DenseTensor
&
in
,
phi
::
DenseTensor
*
out
)
{
PADDLE_ENFORCE_EQ
(
arity
(
in
.
dims
()),
4
,
platform
::
errors
::
InvalidArgument
(
"Input dimension arity only can be 4, the input dimension is %s."
,
in
.
dims
()));
auto
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
src_dim
=
in
.
dims
();
std
::
vector
<
int64_t
>
dst_dim
;
auto
axis
=
GetAxis
(
from_layout
,
to_layout
);
dst_dim
.
resize
(
axis
.
size
());
for
(
size_t
i
=
0
;
i
<
axis
.
size
();
i
++
)
{
dst_dim
[
i
]
=
src_dim
[
axis
[
i
]];
}
out
->
Resize
(
phi
::
make_ddim
(
dst_dim
));
out
->
mutable_data
(
phi
::
CPUPlace
(),
in
.
dtype
());
framework
::
VisitDataType
(
framework
::
TransToProtoVarType
(
in
.
dtype
()),
CastDataLayout
(
pool
.
Get
(
phi
::
CPUPlace
()),
axis
,
in
,
out
));
out
->
set_layout
(
to_layout
);
}
void
InsertLayoutTransOp
(
ir
::
Graph
*
graph
,
ir
::
Node
*
prev_node
,
ir
::
Node
*
next_node
,
DataLayout
from_layout
,
DataLayout
to_layout
,
framework
::
BlockDesc
*
block_desc
,
std
::
unordered_map
<
ir
::
Node
*
,
ir
::
Node
*>
*
cache
)
{
auto
do_insert
=
[
&
](
const
std
::
string
&
in_var_name
,
const
std
::
string
&
out_var_name
)
{
auto
update_op_desc
=
[
&
](
framework
::
OpDesc
&
desc
,
const
std
::
string
&
x_name
,
const
std
::
string
&
out_name
)
{
desc
.
SetType
(
"transfer_layout"
);
desc
.
SetInput
(
"X"
,
{
x_name
});
desc
.
SetOutput
(
"Out"
,
{
out_name
});
desc
.
SetAttr
(
"src_layout"
,
static_cast
<
int
>
(
from_layout
));
desc
.
SetAttr
(
"dst_layout"
,
static_cast
<
int
>
(
to_layout
));
desc
.
Flush
();
};
CHECK_NOTNULL
(
block_desc
);
if
(
cache
->
count
(
prev_node
)
==
0
)
{
framework
::
OpDesc
op_desc
(
block_desc
);
update_op_desc
(
op_desc
,
in_var_name
,
out_var_name
);
auto
*
op_node
=
graph
->
CreateOpNode
(
&
op_desc
);
auto
*
op_out_var_desc
=
block_desc
->
Var
(
out_var_name
);
op_out_var_desc
->
SetPersistable
(
false
);
op_out_var_desc
->
SetDataType
(
prev_node
->
Var
()
->
GetDataType
());
auto
to_shape
=
prev_node
->
Var
()
->
GetShape
();
if
(
from_layout
==
DataLayout
::
kNCHW
)
{
auto
n
=
to_shape
[
0
];
auto
c
=
to_shape
[
1
];
auto
h
=
to_shape
[
2
];
auto
w
=
to_shape
[
3
];
op_out_var_desc
->
SetShape
({
n
,
h
,
w
,
c
});
}
else
{
auto
n
=
to_shape
[
0
];
auto
h
=
to_shape
[
1
];
auto
w
=
to_shape
[
2
];
auto
c
=
to_shape
[
3
];
op_out_var_desc
->
SetShape
({
n
,
c
,
h
,
w
});
}
auto
*
op_out_var_node
=
graph
->
CreateVarNode
(
op_out_var_desc
);
IR_NODE_LINK_TO
(
op_node
,
op_out_var_node
);
cache
->
insert
(
std
::
make_pair
(
prev_node
,
op_out_var_node
));
}
next_node
->
Op
()
->
RenameInput
(
prev_node
->
Name
(),
cache
->
at
(
prev_node
)
->
Name
());
IR_NODE_LINK_TO
(
prev_node
,
cache
->
at
(
prev_node
)
->
inputs
.
front
());
IR_NODE_LINK_TO
(
cache
->
at
(
prev_node
),
next_node
);
IR_NODE_UNLINK
(
prev_node
,
next_node
);
};
if
(
from_layout
==
DataLayout
::
kNCHW
&&
to_layout
==
DataLayout
::
kNHWC
)
{
auto
in_var_name
=
prev_node
->
Var
()
->
Name
();
auto
out_var_name
=
in_var_name
+
"_nchw_to_nhwc"
;
do_insert
(
in_var_name
,
out_var_name
);
}
else
if
(
from_layout
==
DataLayout
::
kNHWC
&&
to_layout
==
DataLayout
::
kNCHW
)
{
auto
in_var_name
=
prev_node
->
Var
()
->
Name
();
auto
out_var_name
=
in_var_name
+
"_nhwc_to_nchw"
;
do_insert
(
in_var_name
,
out_var_name
);
}
}
}
// namespace
void
Conv2dFusionLayoutTransferPass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
PreconditionNotMet
(
"graph should not be nullptr."
));
FusePassBase
::
Init
(
"data_layout_transfer"
,
graph
);
auto
*
scope
=
param_scope
();
PADDLE_ENFORCE_EQ
(
graph
->
IsMainGraph
(),
true
,
platform
::
errors
::
InvalidArgument
(
"the graph should be main graph when applying "
"conv2d_fusion_layout_transfer_pass"
));
PADDLE_ENFORCE_NOT_NULL
(
scope
,
platform
::
errors
::
Fatal
(
"scope must not be nullptr when applying "
"conv2d_fusion_layout_transfer_pass"
));
// Not support multiple block now.
std
::
unordered_map
<
ir
::
Node
*
,
ir
::
Node
*>
cache
;
auto
op_nodes
=
ir
::
TopologySortOperations
(
*
graph
);
auto
iter
=
op_nodes
.
cbegin
();
auto
*
block_desc
=
(
*
iter
)
->
Op
()
->
Block
();
std
::
unordered_set
<
ir
::
Node
*>
vars_shape_nhwc
;
// Only support conv2d_fusion now.
std
::
string
target_op_type
=
"conv2d_fusion"
;
std
::
unordered_set
<
ir
::
Node
*>
valid_ops
;
auto
OpIsValid
=
[
&
](
ir
::
Node
*
op_node
)
->
bool
{
if
(
op_node
->
Op
()
->
Type
()
!=
target_op_type
)
return
false
;
auto
data_format
=
op_node
->
Op
()
->
GetAttrIfExists
<
std
::
string
>
(
"data_format"
);
if
(
data_format
!=
"NCHW"
)
return
false
;
auto
filter_names
=
op_node
->
Op
()
->
Input
(
"Filter"
);
// If filter's channel is not multiple of 8, conv2d_fusion not run at nhwc.
for
(
const
auto
&
filter_name
:
filter_names
)
{
auto
*
filter_var
=
scope
->
FindLocalVar
(
filter_name
);
const
auto
&
filter_tensor
=
filter_var
->
Get
<
phi
::
DenseTensor
>
();
if
(
filter_tensor
.
dims
().
size
()
==
4
&&
(
filter_tensor
.
dims
()[
0
]
%
8
!=
0
||
filter_tensor
.
dims
()[
1
]
%
8
!=
0
))
{
return
false
;
}
}
return
true
;
};
for
(
auto
*
op_node
:
op_nodes
)
{
CHECK_EQ
(
op_node
->
IsOp
(),
true
);
if
(
OpIsValid
(
op_node
))
{
valid_ops
.
insert
(
op_node
);
auto
*
op_desc
=
op_node
->
Op
();
auto
nhwc_attr
=
framework
::
Attribute
(
std
::
string
(
"NHWC"
));
op_desc
->
SetAttr
(
"data_format"
,
nhwc_attr
);
op_desc
->
Flush
();
// transfer weights
auto
filter_names
=
op_desc
->
Input
(
"Filter"
);
for
(
const
auto
&
filter_name
:
filter_names
)
{
auto
*
filter_var
=
scope
->
FindLocalVar
(
filter_name
);
auto
*
filter_tensor
=
filter_var
->
GetMutable
<
phi
::
DenseTensor
>
();
phi
::
DenseTensor
temp_tensor
=
*
filter_tensor
;
filter_tensor
->
clear
();
TransDataLayout
(
DataLayout
::
kNCHW
,
DataLayout
::
kNHWC
,
temp_tensor
,
filter_tensor
);
}
auto
op_inputs
=
op_node
->
inputs
;
for
(
auto
*
in_var_node
:
op_inputs
)
{
CHECK_EQ
(
in_var_node
->
IsVar
(),
true
);
if
(
in_var_node
->
Var
()
->
Persistable
())
{
if
(
std
::
find
(
filter_names
.
cbegin
(),
filter_names
.
cend
(),
in_var_node
->
Var
()
->
Name
())
!=
filter_names
.
cend
())
{
auto
from_shape
=
in_var_node
->
Var
()
->
GetShape
();
in_var_node
->
Var
()
->
SetShape
(
{
from_shape
[
0
],
from_shape
[
2
],
from_shape
[
3
],
from_shape
[
1
]});
}
}
}
// transfer outputs
auto
op_outputs
=
op_node
->
outputs
;
for
(
auto
*
out_var_node
:
op_outputs
)
{
CHECK_EQ
(
out_var_node
->
IsVar
(),
true
);
if
(
out_var_node
->
Var
()
->
Persistable
())
continue
;
auto
from_shape
=
out_var_node
->
Var
()
->
GetShape
();
out_var_node
->
Var
()
->
SetShape
(
{
from_shape
[
0
],
from_shape
[
2
],
from_shape
[
3
],
from_shape
[
1
]});
vars_shape_nhwc
.
insert
(
out_var_node
);
}
}
}
// Insert transfer_layout op
for
(
auto
*
op_node
:
op_nodes
)
{
CHECK_EQ
(
op_node
->
IsOp
(),
true
);
if
(
valid_ops
.
count
(
op_node
))
{
auto
op_inputs
=
op_node
->
inputs
;
for
(
auto
*
in_var_node
:
op_inputs
)
{
CHECK_EQ
(
in_var_node
->
IsVar
(),
true
);
if
(
in_var_node
->
Var
()
->
Persistable
())
continue
;
if
(
vars_shape_nhwc
.
count
(
in_var_node
))
continue
;
InsertLayoutTransOp
(
graph
,
in_var_node
,
op_node
,
DataLayout
::
kNCHW
,
DataLayout
::
kNHWC
,
block_desc
,
&
cache
);
}
}
else
{
auto
op_inputs
=
op_node
->
inputs
;
for
(
auto
*
in_var_node
:
op_inputs
)
{
CHECK_EQ
(
in_var_node
->
IsVar
(),
true
);
if
(
vars_shape_nhwc
.
count
(
in_var_node
))
{
InsertLayoutTransOp
(
graph
,
in_var_node
,
op_node
,
DataLayout
::
kNHWC
,
DataLayout
::
kNCHW
,
block_desc
,
&
cache
);
}
}
}
}
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
conv2d_fusion_layout_transfer_pass
,
paddle
::
framework
::
ir
::
Conv2dFusionLayoutTransferPass
);
paddle/fluid/framework/ir/conv2d_fusion_layout_transfer_pass.h
0 → 100644
浏览文件 @
67204c18
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
Conv2dFusionLayoutTransferPass
:
public
FusePassBase
{
public:
Conv2dFusionLayoutTransferPass
()
=
default
;
virtual
~
Conv2dFusionLayoutTransferPass
()
=
default
;
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录