diff --git a/doc/api/v2/fluid/layers.rst b/doc/api/v2/fluid/layers.rst
index 92ca1cf0f836a376387f3e6f2b5a24c78109323d..842f3b18007a55fb538fbe5d5fefc3f4b75ebe14 100644
--- a/doc/api/v2/fluid/layers.rst
+++ b/doc/api/v2/fluid/layers.rst
@@ -312,3 +312,9 @@ sequence_softmax
 ..  autofunction:: paddle.v2.fluid.layers.sequence_softmax
     :noindex:
 
+
+reduce_sum
+---------
+..  autofunction:: paddle.v2.fluid.layers.reduce_sum
+    :noindex:
+
diff --git a/doc/design/switch_kernel.md b/doc/design/switch_kernel.md
new file mode 100644
index 0000000000000000000000000000000000000000..1846e5d9f99dd433b44ac6b5ae52893ec8f0d451
--- /dev/null
+++ b/doc/design/switch_kernel.md
@@ -0,0 +1,66 @@
+## Background
+Every operator has many kernels because there are multiple data types, places, data layout that Fluid supports. We use the `KernelType` to describe kernel types that operators can hold. 
+
+The `KernelType` is as follows.
+
+```
+struct KernelType {
+  Place place_;
+  DataType data_type_;
+  LayoutType layout_;
+};
+```
+
+The `place_` is a descriptor of the device and the computational library, e.g., `MKLDNNPlace`, `CUDAPlace`.
+
+The `data_type_` is the data type that this kernel performs on, e.g., `FP32`, `INT64`. Note that one kernel may have inputs with different data types. However, it will be a major `data_type`. For example, the `cross_entropy` takes `int64` as it label, and `double`/`float` as its input logit and output cost. The major `data_type` of `cross_entropy` is `float`/`double`.
+
+The `layout` is useful for some computational library. One example is that MKLDNN uses many kinds of layout, such as `nChw8c`. Each kind of layout will invoke the different kernel.
+
+## Problem
+
+We register a kernel for every operator and every kernel type ideally. However, it is impracticable for the following situations.
+
+1. Some operators, like CRF, are complicated and inefficient to be implemented on GPU. The CRF operator will only have a CPU kernel.
+2. Some operators will take too many memory. It is better to force them into CPU. However, the rest of operators in this neural network will be performed on GPU, i.e., model parallel problem.
+3. Some layout and place are particular. One example is that MKLDNN uses `nChw8` and there is no other library uses `nChw8c`.
+
+Problems under these situations are similar. We can formalise this problem as follow.
+
+We register kernels with types $KT = \{kt_1, kt_2, kt_3, ...\}$ for one operator. The inputs of this operator should be run on kernel type $kt_{?}$, which the $kt_{?} \notin KT$. How to cast the input of this operator from $kt_{?}$ to any of kernel type in $KT$.
+
+## Solution
+
+It is clearly that transforming inputs of an operator toadapt another kernel type is not related to the particular operator. So we should register these transformation methods as global methods.
+
+We can infer a kernel type from the inputs of an operators. We let this kernel type as `actual kernel type`, which means this kernel type is the actually kernel type that operator should be performed.
+
+We can get a kernel type by 1) The configuration of operator description. (Users may want to force use `MKL` for `conv` operator). 2) The place of the current executor. (Executor is running on GPU). This kernel type is what we expect the operator will be performed on. We let this kernel type as `expect kernel type`.
+
+We transform the input data from `actual` to `expect` if the expect kernel type is not as same as actual kernel type.
+
+The algorithm is described as follow
+
+```cpp
+using DataTransformationFN = std::function<void(const Tensor& in, Tensor* out)>;
+using KernelTypePair = std::pair<KernelType, KernelType>;
+
+map<KernelTypePair, DataTransformationFN> g_data_transformation_;
+
+void OpWithKernel::Run() {
+  vec<Tensor> inputs = ...
+  auto actual_kernel_type = GetActualKernelType(inputs);
+  
+  // The expected kernel type is related to actual kernel type.
+  // For the most operators, the expected kernel type is as same as
+  // actual kernel type.
+  //
+  // So we pass `actual_kernel_type` as a parameter of 
+  // GetExpectedKernelType
+  auto expect_kernel_type = GetExpectedKernelType(actual_kernel_type);
+  
+  auto trans = g_data_transformation_[{actual_kernel_type, expect_kernel_type}];
+  
+  kernel.run(trans(inputs));
+}
+```
diff --git a/paddle/framework/lod_rank_table.cc b/paddle/framework/lod_rank_table.cc
index 1c2fba70c8ab0827ba6d1563f08cd0820650822e..17d524c09276fc0eb166925bd79bc0bdfcead195 100644
--- a/paddle/framework/lod_rank_table.cc
+++ b/paddle/framework/lod_rank_table.cc
@@ -46,4 +46,13 @@ void LoDRankTable::Reset(const LoD& lod, size_t level) {
 }
 
 }  // namespace framework
+
+std::ostream& operator<<(std::ostream& out,
+                         const framework::LoDRankTable& table) {
+  out << "NumOfSequence " << table.items().size() << "\n";
+  for (auto& each_item : table.items()) {
+    out << "\tSeq #" << each_item.index << ", Len=" << each_item.length << "\n";
+  }
+  return out;
+}
 }  // namespace paddle
diff --git a/paddle/framework/lod_rank_table.h b/paddle/framework/lod_rank_table.h
index 9faa3a4d7bdc55ab7b24e31f5e5434dacc0a4b36..d3007d3d7379a59b32465cbd55780c6268e0e4a8 100644
--- a/paddle/framework/lod_rank_table.h
+++ b/paddle/framework/lod_rank_table.h
@@ -13,6 +13,7 @@
    limitations under the License. */
 
 #pragma once
+#include <iosfwd>
 #include "paddle/framework/lod_tensor.h"
 
 namespace paddle {
@@ -52,4 +53,8 @@ class LoDRankTable {
 };
 
 }  // namespace framework
+
+std::ostream& operator<<(std::ostream& out,
+                         const framework::LoDRankTable& table);
+
 }  // namespace paddle
diff --git a/paddle/framework/lod_tensor.h b/paddle/framework/lod_tensor.h
index 9411c96aea4c10ebf921cc3e3b442769c8acbefa..0923c52a0ad2fe10cea760df20c99021984ad39d 100644
--- a/paddle/framework/lod_tensor.h
+++ b/paddle/framework/lod_tensor.h
@@ -184,6 +184,18 @@ LoDTensor LodExpand(const LoDTensor& source, const LoD& lod, size_t level,
   return tensor;
 }
 
+// Get the absolute offset of a lod[start_level][start_idx:end_idx] and
+// relative length of details for every levels(i.e., [start_level: ]).
+//
+// For example,
+//   lod = [[0, 3, 4, 8], [0, 9, 10, 11, 13, 17, 19, 22, 24]]
+//   start_level = 0
+//   start_idx = 1
+//   end_idx = 3
+//
+// Returns:
+//  LoD = [[1, 4], [2, 4, 2, 3, 2]]
+//  pair<size_t, size_t> = {11, 24}
 std::pair<LoD, std::pair<size_t, size_t>> GetSubLoDAndAbsoluteOffset(
     const LoD& lod, size_t start_idx, size_t end_idx, size_t start_level);
 
diff --git a/paddle/operators/lod_rank_table_op.cc b/paddle/operators/lod_rank_table_op.cc
index 3e281c8d1e292cd61336c50c013ca9c05e12c5f4..46577d0c5821a1738bd050815f46776591bdfdde 100644
--- a/paddle/operators/lod_rank_table_op.cc
+++ b/paddle/operators/lod_rank_table_op.cc
@@ -30,6 +30,7 @@ class LoDRankTableOp : public framework::OperatorBase {
         scope.FindVar(Output("Out"))->GetMutable<framework::LoDRankTable>();
     VLOG(10) << "Level = " << static_cast<size_t>(Attr<int>("level"));
     out->Reset(x.lod(), static_cast<size_t>(Attr<int>("level")));
+    VLOG(10) << Input("X") << "'s lod information is " << *out;
   }
 };
 
diff --git a/python/paddle/v2/fluid/layers/nn.py b/python/paddle/v2/fluid/layers/nn.py
index 71dab4e66a30bd6a794d9d2b6d7c4c49038bee24..4d8ecb5ce2cd2c01b347a0aefd4cca55b2a9fec5 100644
--- a/python/paddle/v2/fluid/layers/nn.py
+++ b/python/paddle/v2/fluid/layers/nn.py
@@ -13,7 +13,7 @@ __all__ = [
     'crf_decoding', 'cos_sim', 'cross_entropy', 'square_error_cost', 'accuracy',
     'chunk_eval', 'sequence_conv', 'conv2d', 'sequence_pool', 'pool2d',
     'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'sequence_expand',
-    'lstm_unit'
+    'lstm_unit', 'reduce_sum'
 ]
 
 
@@ -421,8 +421,8 @@ def chunk_eval(input,
         },
         attrs={
             "num_chunk_types": num_chunk_types,
-            'chunk_scheme': chunk_scheme,
-            'excluded_chunk_types': excluded_chunk_types or []
+            "chunk_scheme": chunk_scheme,
+            "excluded_chunk_types": excluded_chunk_types or []
         })
     return precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks
 
@@ -954,3 +954,47 @@ def lstm_unit(x_t,
         attrs={"forget_bias": forget_bias})
 
     return h, c
+
+
+def reduce_sum(input, dim=None, keep_dim=False):
+    """
+    Computes the sum of tensor elements over the given dimension. 
+
+    Args:
+        input (Variable): The input variable which is a Tensor or LoDTensor.
+        dim (int|None): The dimension along which the sum is performed. If 
+            :attr:`None`, sum all elements of :attr:`input` and return a 
+            Tensor variable with a single element, otherwise must be in the 
+            range :math:`[-rank(input), rank(input))`. If :math:`dim < 0`, 
+            the dimension to reduce is :math:`rank + dim`.
+        keep_dim (bool): Whether to reserve the reduced dimension in the 
+            output Tensor. The result tensor will have one fewer dimension 
+            than the :attr:`input` unless :attr:`keep_dim` is true.
+
+    Returns:
+        Variable: The reduced Tensor variable.
+    
+    Examples:
+        .. code-block:: python
+
+            # x is a Tensor variable with following elements:
+            #    [[0.2, 0.3, 0.5, 0.9]
+            #     [0.1, 0.2, 0.6, 0.7]]
+            # Each example is followed by the correspending output tensor.
+            fluid.layers.reduce_sum(x)  # [3.5]
+            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
+            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
+            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
+    """
+    helper = LayerHelper('reduce_sum', **locals())
+    out = helper.create_tmp_variable(dtype=helper.input_dtype())
+    helper.append_op(
+        type='reduce_sum',
+        inputs={'X': input},
+        outputs={'Out': out},
+        attrs={
+            'dim': dim if dim != None else 0,
+            'keep_dim': keep_dim,
+            'reduce_all': True if dim == None else False
+        })
+    return out