Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
65dbbd57
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
65dbbd57
编写于
10月 26, 2017
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add and pass unittests.
上级
06c7c8c8
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
188 addition
and
11 deletion
+188
-11
paddle/operators/precision_recall_op.cc
paddle/operators/precision_recall_op.cc
+16
-5
paddle/operators/precision_recall_op.h
paddle/operators/precision_recall_op.h
+8
-6
python/paddle/v2/framework/tests/test_precision_recall_op.py
python/paddle/v2/framework/tests/test_precision_recall_op.py
+164
-0
未找到文件。
paddle/operators/precision_recall_op.cc
浏览文件 @
65dbbd57
...
...
@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/precision_recall_op.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -37,13 +39,15 @@ class PrecisionRecallOp : public framework::OperatorWithKernel {
if
(
ctx
->
HasInput
(
"Weights"
))
{
auto
weights_dims
=
ctx
->
GetInputDim
(
"Weights"
);
PADDLE_ENFORCE_EQ
(
weights_dims
,
{
predictions_dims
[
0
],
1
},
PADDLE_ENFORCE_EQ
(
weights_dims
,
framework
::
make_ddim
({
predictions_dims
[
0
],
1
}),
"The shape of Input(Weights) should be "
"[batch_size, 1]."
);
}
if
(
ctx
->
HasInput
(
"StatesInfo"
))
{
auto
states_dims
=
ctx
->
GetInputDim
(
"StatesInfo"
);
PADDLE_ENFORCE_EQ
(
states_dims
,
{
predictions_dims
[
1
],
4
},
PADDLE_ENFORCE_EQ
(
states_dims
,
framework
::
make_ddim
({
predictions_dims
[
1
],
4
}),
"The shape of Input(StatesInfo) should be "
"[class_number, 4]."
);
}
...
...
@@ -71,6 +75,12 @@ class PrecisionRecallOp : public framework::OperatorWithKernel {
// [ TP, FP, TN, FN ]
ctx
->
SetOutputDim
(
"AccumStatesInfo"
,
{
predictions_dims
[
1
],
4
});
}
protected:
framework
::
DataType
IndicateDataType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"Predictions"
)
->
type
());
}
};
class
PrecisionRecallOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
...
...
@@ -98,6 +108,9 @@ class PrecisionRecallOpMaker : public framework::OpProtoAndCheckerMaker {
"provided, current state will be accumulated to this state and "
"the accumulation state will be as the output state."
)
.
AsDispensable
();
AddOutput
(
"BatchMetrics"
,
""
);
AddOutput
(
"AccumMetrics"
,
""
);
AddOutput
(
"AccumStatesInfo"
,
""
);
AddComment
(
R"DOC(
)DOC"
);
...
...
@@ -113,6 +126,4 @@ REGISTER_OP_WITHOUT_GRADIENT(precision_recall, ops::PrecisionRecallOp,
REGISTER_OP_CPU_KERNEL
(
precision_recall
,
ops
::
PrecisionRecallKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
PrecisionRecallKernel
<
paddle
::
platform
::
CPUPlace
,
int
>
,
ops
::
PrecisionRecallKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
,
ops
::
PrecisionRecallKernel
<
paddle
::
platform
::
CPUPlace
,
int64_t
>
,
ops
::
PrecisionRecallKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
paddle/operators/precision_recall_op.h
浏览文件 @
65dbbd57
...
...
@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -37,7 +39,7 @@ class PrecisionRecallKernel : public framework::OpKernel<T> {
auto
*
out2
=
ctx
.
Output
<
Tensor
>
(
"AccumStatesInfo"
);
const
T
*
predictions_data
=
in0
->
data
<
T
>
();
const
T
*
labels_data
=
in1
->
data
<
T
>
();
const
int
*
labels_data
=
in1
->
data
<
int
>
();
const
T
*
weights_data
=
in2
?
in2
->
data
<
T
>
()
:
nullptr
;
const
T
*
states_data
=
in3
?
in3
->
data
<
T
>
()
:
nullptr
;
T
*
batch_metrics_data
=
out0
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
...
...
@@ -45,7 +47,7 @@ class PrecisionRecallKernel : public framework::OpKernel<T> {
out2
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
accum_states
=
EigenMatrix
<
T
>::
From
(
*
out2
);
accum_states
.
setZero
();
T
*
accum_states_data
=
out2
->
data
<
T
>
(
ctx
.
GetPlace
()
);
T
*
accum_states_data
=
out2
->
data
<
T
>
();
size_t
sample_num
=
in0
->
dims
()[
0
];
size_t
class_dim
=
in0
->
dims
()[
1
];
...
...
@@ -76,7 +78,7 @@ class PrecisionRecallKernel : public framework::OpKernel<T> {
accum_states_data
[
j
*
state_var_num
+
TN
]
+=
w
;
}
accum_states_data
[
max_idx
*
state_var_num
+
TN
]
-=
w
;
accum_states_data
[
labels_data
[
j
]
*
state_var_num
+
TN
]
-=
w
;
accum_states_data
[
labels_data
[
i
]
*
state_var_num
+
TN
]
-=
w
;
}
}
...
...
@@ -108,7 +110,7 @@ class PrecisionRecallKernel : public framework::OpKernel<T> {
if
(
tp_count
>
0.0
||
fn_count
>
0.0
)
{
return
tp_count
/
(
tp_count
+
fn_count
);
}
return
1.0
return
1.0
;
}
static
inline
T
CalcF1Score
(
T
precision
,
T
recall
)
{
...
...
@@ -120,7 +122,7 @@ class PrecisionRecallKernel : public framework::OpKernel<T> {
protected:
void
ComputeMetrics
(
const
T
*
states_data
,
T
*
metrics_data
,
size_t
state_var_num
,
size_t
class_dim
)
{
size_t
state_var_num
,
size_t
class_dim
)
const
{
T
total_tp_count
=
0
;
T
total_fp_count
=
0
;
T
total_fn_count
=
0
;
...
...
@@ -143,7 +145,7 @@ class PrecisionRecallKernel : public framework::OpKernel<T> {
T
micro_avg_precision
=
CalcPrecision
(
total_tp_count
,
total_fp_count
);
T
micro_avg_recall
=
CalcRecall
(
total_tp_count
,
total_fn_count
);
T
micro_f1_score
=
Calc
Recall
(
micro_avg_precision
,
micro_avg_recall
);
T
micro_f1_score
=
Calc
F1Score
(
micro_avg_precision
,
micro_avg_recall
);
// fill metrics data
metrics_data
[
0
]
=
macro_avg_precision
;
...
...
python/paddle/v2/framework/tests/test_precision_recall_op.py
0 → 100644
浏览文件 @
65dbbd57
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
def
calc_precision
(
tp_count
,
fp_count
):
if
tp_count
>
0.0
or
fp_count
>
0.0
:
return
tp_count
/
(
tp_count
+
fp_count
)
return
1.0
def
calc_recall
(
tp_count
,
fn_count
):
if
tp_count
>
0.0
or
fn_count
>
0.0
:
return
tp_count
/
(
tp_count
+
fn_count
)
return
1.0
def
calc_f1_score
(
precision
,
recall
):
if
precision
>
0.0
or
recall
>
0.0
:
return
2
*
precision
*
recall
/
(
precision
+
recall
)
return
0.0
def
get_states
(
predictions
,
labels
,
weights
=
None
):
ins_num
=
predictions
.
shape
[
0
]
class_num
=
predictions
.
shape
[
1
]
# TP FP TN FN
states
=
np
.
zeros
((
class_num
,
4
)).
astype
(
'float32'
)
for
i
in
xrange
(
ins_num
):
w
=
weights
[
i
]
if
weights
is
not
None
else
1.0
max_idx
=
np
.
argmax
(
predictions
[
i
])
if
max_idx
==
labels
[
i
][
0
]:
states
[
max_idx
][
0
]
+=
w
for
j
in
xrange
(
class_num
):
states
[
j
][
2
]
+=
w
states
[
max_idx
][
2
]
-=
w
else
:
states
[
labels
[
i
][
0
]][
3
]
+=
w
states
[
max_idx
][
1
]
+=
w
for
j
in
xrange
(
class_num
):
states
[
j
][
2
]
+=
w
states
[
labels
[
i
][
0
]][
2
]
-=
w
states
[
max_idx
][
2
]
-=
w
return
states
def
compute_metrics
(
states
):
class_num
=
states
.
shape
[
0
]
total_tp_count
=
0.0
total_fp_count
=
0.0
total_fn_count
=
0.0
macro_avg_precision
=
0.0
macro_avg_recall
=
0.0
for
i
in
xrange
(
class_num
):
total_tp_count
+=
states
[
i
][
0
]
total_fp_count
+=
states
[
i
][
1
]
total_fn_count
+=
states
[
i
][
3
]
macro_avg_precision
+=
calc_precision
(
states
[
i
][
0
],
states
[
i
][
1
])
macro_avg_recall
+=
calc_recall
(
states
[
i
][
0
],
states
[
i
][
3
])
metrics
=
[]
macro_avg_precision
/=
class_num
macro_avg_recall
/=
class_num
metrics
.
append
(
macro_avg_precision
)
metrics
.
append
(
macro_avg_recall
)
metrics
.
append
(
calc_f1_score
(
macro_avg_precision
,
macro_avg_recall
))
micro_avg_precision
=
calc_precision
(
total_tp_count
,
total_fp_count
)
metrics
.
append
(
micro_avg_precision
)
micro_avg_recall
=
calc_recall
(
total_tp_count
,
total_fn_count
)
metrics
.
append
(
micro_avg_recall
)
metrics
.
append
(
calc_f1_score
(
micro_avg_precision
,
micro_avg_recall
))
return
np
.
array
(
metrics
).
astype
(
'float32'
)
class
TestPrecisionRecallOp_0
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"precision_recall"
ins_num
=
64
class_num
=
10
predictions
=
np
.
random
.
uniform
(
0
,
1.0
,
(
ins_num
,
class_num
)).
astype
(
'float32'
)
labels
=
np
.
random
.
choice
(
xrange
(
class_num
),
ins_num
).
reshape
(
(
ins_num
,
1
)).
astype
(
'int32'
)
states
=
get_states
(
predictions
,
labels
)
metrics
=
compute_metrics
(
states
)
self
.
inputs
=
{
'Predictions'
:
predictions
,
'Labels'
:
labels
}
self
.
outputs
=
{
'BatchMetrics'
:
metrics
,
'AccumMetrics'
:
metrics
,
'AccumStatesInfo'
:
states
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestPrecisionRecallOp_1
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"precision_recall"
ins_num
=
64
class_num
=
10
predictions
=
np
.
random
.
uniform
(
0
,
1.0
,
(
ins_num
,
class_num
)).
astype
(
'float32'
)
weights
=
np
.
random
.
uniform
(
0
,
1.0
,
(
ins_num
,
1
)).
astype
(
'float32'
)
predictions
=
np
.
random
.
random
((
ins_num
,
class_num
)).
astype
(
'float32'
)
labels
=
np
.
random
.
choice
(
xrange
(
class_num
),
ins_num
).
reshape
(
(
ins_num
,
1
)).
astype
(
'int32'
)
states
=
get_states
(
predictions
,
labels
,
weights
)
metrics
=
compute_metrics
(
states
)
self
.
inputs
=
{
'Predictions'
:
predictions
,
'Labels'
:
labels
,
'Weights'
:
weights
}
self
.
outputs
=
{
'BatchMetrics'
:
metrics
,
'AccumMetrics'
:
metrics
,
'AccumStatesInfo'
:
states
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestPrecisionRecallOp_2
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"precision_recall"
ins_num
=
64
class_num
=
10
predictions
=
np
.
random
.
uniform
(
0
,
1.0
,
(
ins_num
,
class_num
)).
astype
(
'float32'
)
weights
=
np
.
random
.
uniform
(
0
,
1.0
,
(
ins_num
,
1
)).
astype
(
'float32'
)
predictions
=
np
.
random
.
random
((
ins_num
,
class_num
)).
astype
(
'float32'
)
labels
=
np
.
random
.
choice
(
xrange
(
class_num
),
ins_num
).
reshape
(
(
ins_num
,
1
)).
astype
(
'int32'
)
states
=
np
.
random
.
randint
(
0
,
30
,
(
class_num
,
4
)).
astype
(
'float32'
)
accum_states
=
get_states
(
predictions
,
labels
,
weights
)
batch_metrics
=
compute_metrics
(
accum_states
)
accum_states
+=
states
accum_metrics
=
compute_metrics
(
accum_states
)
self
.
inputs
=
{
'Predictions'
:
predictions
,
'Labels'
:
labels
,
'Weights'
:
weights
,
'StatesInfo'
:
states
}
self
.
outputs
=
{
'BatchMetrics'
:
batch_metrics
,
'AccumMetrics'
:
accum_metrics
,
'AccumStatesInfo'
:
accum_states
}
def
test_check_output
(
self
):
self
.
check_output
()
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录