From 654825cfe3ae7a7dcc85833d28ae52c5a97f6d0c Mon Sep 17 00:00:00 2001 From: Jiabin Yang Date: Wed, 6 Mar 2019 11:01:42 +0800 Subject: [PATCH] test=develop, reconstruct layer helper to fit imperative usage (#15938) * test=develop, reconstruct layer helper to fit imperative usage * test=develop, fix import error on py35 * test=develop, fix rnn gradient error * test=develop, delete test use code * test=develop, remove helper from imperative usage * test=develop, fix test_base_layer using new helper * test=develop, reconstruct layerhelper for imperative mode * test=develop, reconstruct layerhelper for imperative mode * test=develop, fix bug * test=develop, fix test failed bug * test=develop, fix test failed bug * test=develop, fix test failed bug * test=develop, fix bug * test=develop, polish code --- .../fluid/imperative/layer_object_helper.py | 220 ++++++++++ python/paddle/fluid/imperative/layers.py | 49 ++- python/paddle/fluid/imperative/nn.py | 85 ++-- python/paddle/fluid/initializer.py | 17 +- python/paddle/fluid/layer_helper.py | 323 +-------------- python/paddle/fluid/layer_helper_base.py | 381 ++++++++++++++++++ python/paddle/fluid/optimizer.py | 2 +- .../fluid/tests/unittests/test_base_layer.py | 38 +- .../tests/unittests/test_imperative_basic.py | 52 +-- .../unittests/test_imperative_optimizer.py | 2 +- .../unittests/test_imperative_ptb_rnn.py | 23 +- 11 files changed, 756 insertions(+), 436 deletions(-) create mode 100644 python/paddle/fluid/imperative/layer_object_helper.py create mode 100644 python/paddle/fluid/layer_helper_base.py diff --git a/python/paddle/fluid/imperative/layer_object_helper.py b/python/paddle/fluid/imperative/layer_object_helper.py new file mode 100644 index 0000000000..6afffe3636 --- /dev/null +++ b/python/paddle/fluid/imperative/layer_object_helper.py @@ -0,0 +1,220 @@ +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import copy +import six +from ..framework import Parameter, _in_imperative_mode +from ..param_attr import ParamAttr +from .. import core +from six.moves import zip +from ..layer_helper_base import LayerHelperBase + + +class LayerObjectHelper(LayerHelperBase): + def __init__(self, name): + super(LayerObjectHelper, self).__init__(name, layer_type=name) + + def append_op(self, + type=None, + inputs=None, + outputs=None, + attrs=None, + stop_gradient=None): + """append an operator for this layer object. + + Args: + type: operator type + inputs: input variable of the operator + dtype: data type of this parameter + is_bias: if this is a bias parameter + default_initializer: set the default initializer for this parameter + + Returns created parameter Variable. + """ + return self.main_program.current_block().append_op( + type=type, + inputs=inputs, + outputs=outputs, + attrs=attrs, + stop_gradient=stop_gradient) + + def _multiple_input(self, inputs_in): + inputs = inputs_in + ret = [] + if isinstance(inputs, (list, tuple)): + for inp in inputs: + ret.append(self.to_variable(inp)) + else: + ret.append(self.to_variable(inputs)) + return ret + + # TODO: make it public when we need it + def _input(self, inputs_in): + inputs = self._multiple_input(inputs_in) + if len(inputs) != 1: + raise "{0} layer only takes one input".format(self.layer_type) + return inputs[0] + + def _multiple_param_attr(self, length, param_attr_in=None): + param_attr = param_attr_in + if isinstance(param_attr, ParamAttr): + param_attr = [param_attr] + + if len(param_attr) != 1 and len(param_attr) != length: + raise ValueError("parameter number mismatch") + elif len(param_attr) == 1 and length != 1: + tmp = [None] * length + for i in six.moves.range(length): + tmp[i] = copy.deepcopy(param_attr[0]) + param_attr = tmp + return param_attr + + def iter_inputs_and_params(self, inputs_in, param_attr_in=None): + """Access all inputs and params one by one + + Args: + inputs_in: inputs to be iter + param_attr_in: param_attr to be iter + + Returns input, param_attr + """ + inputs = inputs_in if (inputs_in is not None) else [] + inputs = self._multiple_input(inputs) + param_attrs = self._multiple_param_attr(len(inputs), param_attr_in) + for ipt, param_attr in zip(inputs, param_attrs): + yield ipt, param_attr + + def input_dtype(self, inputs_in): + """Get input data type + + Args: + inputs_in: inputs wanted know the data type + + Returns dtype of the input + """ + inputs = self._multiple_input(inputs_in) + dtype = None + for each in inputs: + if dtype is None: + dtype = each.dtype + elif dtype != each.dtype: + raise ValueError("Data Type mismatch: %d to %d" % + (dtype, each.dtype)) + return dtype + + def get_parameter(self, name): + """Get parameter specifically + + Args: + name: parameter's name + + Returns target parameter + """ + param = self.main_program.global_block().var(name) + if not isinstance(param, Parameter): + raise ValueError("no Parameter name %s found" % name) + return param + + def append_bias_op(self, + input_var, + dim_start=1, + dim_end=None, + bias_attr=None): + """Append bias operator and return its output. If the user does not set bias_attr, append_bias_op will return input_var + + Args: + input_var: the input variable. The len(input_var.shape) is + larger or equal than 2. + dim_start: + dim_end: the shape of the bias will be + bias_attr: the bias_attr of it + + Return the Variable of after append bias op + """ + size = list(input_var.shape[dim_start:dim_end]) + bias_attr = bias_attr + if not bias_attr: + return input_var + + b = self.create_parameter( + attr=bias_attr, shape=size, dtype=input_var.dtype, is_bias=True) + tmp = self.create_variable_for_type_inference(dtype=input_var.dtype) + self.append_op( + type='elementwise_add', + inputs={'X': [input_var], + 'Y': [b]}, + outputs={'Out': [tmp]}, + attrs={'axis': dim_start}) + return tmp + + # TODO: this should not be called anymore after all activation func move to Layers + def append_activation(self, + input_var, + act=None, + use_cudnn=None, + use_mkl_dnn=None): + """Append activation + + Args: + input_var: the input variable. The len(input_var.shape) is + larger or equal than 2. + act: activation type + use_mkl_dnn: if use mkldnn + use_cudnn: if use cudnn + + Return the Variable of after append activation + """ + act = act + if act is None: + return input_var + if isinstance(act, six.string_types): + act = {'type': act} + else: + raise TypeError(str(act) + " should be unicode or str") + + if (use_cudnn is not None) and use_cudnn: + act['use_cudnn'] = use_cudnn + if (use_mkl_dnn is not None) and use_mkl_dnn: + act['use_mkldnn'] = use_mkl_dnn + act_type = act.pop('type') + + tmp = input_var + # NOTE(dzhwinter): some activation support inplace compution. + # NOTE(minqiyang): currently, we don't support inplace in imperative mode + if not _in_imperative_mode() and core.IsInplace(act_type): + tmp = input_var + else: + tmp = self.create_variable_for_type_inference(dtype=input_var.dtype) + self.append_op( + type=act_type, + inputs={"X": [input_var]}, + outputs={"Out": [tmp]}, + attrs=act) + return tmp + + def is_instance(self, param, cls): + """Check if the input parameter is instance of input class + + Args: + param: parameter to be check + cls: class of the parameter + + Return result of the check (True or False) + """ + param = param + if not isinstance(param, cls): + raise TypeError("The input {0} parameter of method {1} must be {2}", + param, self.layer_type, cls.__name__) diff --git a/python/paddle/fluid/imperative/layers.py b/python/paddle/fluid/imperative/layers.py index 46640ce37a..0c96d4dc59 100644 --- a/python/paddle/fluid/imperative/layers.py +++ b/python/paddle/fluid/imperative/layers.py @@ -19,8 +19,8 @@ import numpy as np import collections from .. import unique_name from paddle.fluid import core +from .layer_object_helper import LayerObjectHelper from paddle.fluid import framework -from paddle.fluid.imperative import base __all__ = ['Layer', 'PyLayer'] @@ -44,6 +44,8 @@ class Layer(core.Layer): self._parameters = collections.OrderedDict() self._sub_layers = collections.OrderedDict() + self._helper = LayerObjectHelper(self._full_name) + def full_name(self): """Full name for this layers. @@ -53,6 +55,51 @@ class Layer(core.Layer): """ return self._full_name + def create_parameter(self, + attr, + shape, + dtype, + is_bias=False, + default_initializer=None): + """Create parameters for this layers. + + Args: + attr: [ParamAttr] should be the parameter attribute for this parameter + shape: shape of the paramter + dtype: data type of this parameter + is_bias: if this is a bias parameter + default_initializer: set the default initializer for this parameter + + Returns created parameter Variable. + """ + return self._helper.create_parameter(attr, shape, dtype, is_bias, + default_initializer) + + # TODO: Add more parameter list when we need them + def create_variable(self, + name=None, + persistable=None, + dtype=None, + type=core.VarDesc.VarType.LOD_TENSOR): + """Create Variable for this layers. + + Args: + name: name of the variable + persistable: if set this variable persistable + dtype: data type of data in the variable + type: type of the variable + + Returns created Variable. + """ + if name is not None: + var_name = ".".join([self._full_name, name]) + else: + var_name = unique_name.generate(".".join( + [self._full_name, "_generated_var"])) + + return self._helper.main_program.current_block().create_var( + name=var_name, persistable=persistable, dtype=dtype, type=type) + def parameters(self, include_sublayers=True): """Returns a list of Parameters from current and sub-layers. diff --git a/python/paddle/fluid/imperative/nn.py b/python/paddle/fluid/imperative/nn.py index 41655c4f54..4786f8b8ad 100644 --- a/python/paddle/fluid/imperative/nn.py +++ b/python/paddle/fluid/imperative/nn.py @@ -41,21 +41,12 @@ class Conv2D(layers.Layer): bias_attr=None, dtype=core.VarDesc.VarType.FP32): assert param_attr is not False, "param_attr should not be False here." - super(Conv2D, self).__init__(name_scope, dtype=dtype) - - # TODO(minqiyang): Move this to the top. - from ..layer_helper import LayerHelper - self._helper = LayerHelper( - self.full_name(), - param_attr=param_attr, - bias_attr=bias_attr, - dtype=dtype, - act=act) - + super(Conv2D, self).__init__(name_scope) self._groups = groups self._stride = utils.convert_to_list(stride, 2, 'stride') self._padding = utils.convert_to_list(padding, 2, 'padding') self._dilation = utils.convert_to_list(dilation, 2, 'dilation') + self._act = act if not isinstance(use_cudnn, bool): raise ValueError("use_cudnn should be True or False") self._use_cudnn = use_cudnn @@ -80,28 +71,28 @@ class Conv2D(layers.Layer): std = (2.0 / filter_elem_num)**0.5 return Normal(0.0, std, 0) - self._filter_param = self._helper.create_parameter( - attr=self._helper.param_attr, + self._filter_param = self.create_parameter( + attr=param_attr, shape=filter_shape, dtype=self._dtype, default_initializer=_get_default_param_initializer()) if self._use_cudnn: - self._helper.create_variable( + self.create_variable( name="kCUDNNFwdAlgoCache", persistable=True, type=core.VarDesc.VarType.RAW) - self._helper.create_variable( + self.create_variable( name="kCUDNNBwdDataAlgoCache", persistable=True, type=core.VarDesc.VarType.RAW) - self._helper.create_variable( + self.create_variable( name="kCUDNNBwdFilterAlgoCache", persistable=True, type=core.VarDesc.VarType.RAW) - self._bias_param = self._helper.create_parameter( - attr=self._helper.bias_attr, + self._bias_param = self.create_parameter( + attr=bias_attr, shape=[num_filters], dtype=self._dtype, is_bias=True) @@ -137,7 +128,7 @@ class Conv2D(layers.Layer): attrs={'axis': 1}) # Currently, we don't support inplace in imperative mode - return self._helper.append_activation(pre_act) + return self._helper.append_activation(pre_act, act=self._act) class Pool2D(layers.Layer): @@ -167,9 +158,6 @@ class Pool2D(layers.Layer): super(Pool2D, self).__init__(name_scope, dtype=dtype) - from ..layer_helper import LayerHelper - self._helper = LayerHelper(self.full_name(), dtype=dtype) - self._pool_type = pool_type self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size') self._pool_padding = utils.convert_to_list(pool_padding, 2, @@ -216,28 +204,25 @@ class FC(layers.Layer): self._size = size self._num_flatten_dims = num_flatten_dims self._dtype = dtype - from ..layer_helper import LayerHelper - self._helper = LayerHelper( - self.full_name(), - param_attr=param_attr, - bias_attr=bias_attr, - act=act) + self._param_attr = param_attr + self._bias_attr = param_attr + self._act = act def _build_once(self, input): input_shape = input.shape param_shape = [ reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1) ] + [self._size] - self._w = self._helper.create_parameter( - attr=self._helper.param_attr, + self._w = self.create_parameter( + attr=self._param_attr, shape=param_shape, dtype=self._dtype, is_bias=False) - if self._helper.bias_attr: + if self._param_attr: size = list([self._size]) - self._b = self._helper.create_parameter( - attr=self._helper.bias_attr, + self._b = self.create_parameter( + attr=self._param_attr, shape=size, dtype=self._dtype, is_bias=True) @@ -275,7 +260,7 @@ class FC(layers.Layer): else: pre_activation = pre_bias # Currently, we don't support inplace in imperative mode - return self._helper.append_activation(pre_activation) + return self._helper.append_activation(pre_activation, act=self._act) class BatchNorm(layers.Layer): @@ -297,16 +282,12 @@ class BatchNorm(layers.Layer): fuse_with_relu=False, use_global_stats=False): super(BatchNorm, self).__init__(name_scope) + self._param_attr = param_attr + self._param_attr = bias_attr + self._act = act assert bias_attr is not False, "bias_attr should not be False in batch_norm." - from ..layer_helper import LayerHelper - self._helper = LayerHelper( - self.full_name(), - param_attr=param_attr, - bias_attr=bias_attr, - act=act) - if dtype == core.VarDesc.VarType.FP16: self._dtype = core.VarDesc.VarType.FP32 else: @@ -315,23 +296,23 @@ class BatchNorm(layers.Layer): param_shape = [num_channels] # create parameter - self._scale = self._helper.create_parameter( - attr=self._helper.param_attr, + self._scale = self.create_parameter( + attr=self._param_attr, shape=param_shape, dtype=self._dtype, default_initializer=Constant(1.0)) - if use_global_stats and self._helper.param_attr.learning_rate == 0.: + if use_global_stats and self._param_attr.learning_rate == 0.: self._scale._stop_gradient = True - self._bias = self._helper.create_parameter( - attr=self._helper.bias_attr, + self._bias = self.create_parameter( + attr=self._param_attr, shape=param_shape, dtype=self._dtype, is_bias=True) - if use_global_stats and self._helper.bias_attr.learning_rate == 0.: + if use_global_stats and self._param_attr.learning_rate == 0.: self._bias._stop_gradient = True - self._mean = self._helper.create_parameter( + self._mean = self.create_parameter( attr=ParamAttr( name=moving_mean_name, initializer=Constant(0.0), @@ -341,7 +322,7 @@ class BatchNorm(layers.Layer): dtype=self._dtype) self._mean._stop_gradient = True - self._variance = self._helper.create_parameter( + self._variance = self.create_parameter( attr=ParamAttr( name=moving_variance_name, initializer=Constant(1.0), @@ -401,7 +382,7 @@ class BatchNorm(layers.Layer): }) # Currently, we don't support inplace in imperative mode - return self._helper.append_activation(batch_norm_out) + return self._helper.append_activation(batch_norm_out, self._act) class Embedding(layers.Layer): @@ -466,9 +447,7 @@ class Embedding(layers.Layer): if self._remote_prefetch: assert self._is_sparse is True and self._is_distributed is False - from ..layer_helper import LayerHelper - self._helper = LayerHelper(self.full_name(), param_attr=param_attr) - self._w = self._helper.create_parameter( + self._w = self.create_parameter( attr=self._param_attr, shape=self._size, dtype=self._dtype, diff --git a/python/paddle/fluid/initializer.py b/python/paddle/fluid/initializer.py index 190e7b5608..482dfa6fac 100644 --- a/python/paddle/fluid/initializer.py +++ b/python/paddle/fluid/initializer.py @@ -19,7 +19,6 @@ import numpy as np from .wrapped_decorator import signature_safe_contextmanager from .core import VarDesc from . import unique_name -from .imperative import base as imperative_base __all__ = [ 'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear', @@ -166,7 +165,7 @@ class ConstantInitializer(Initializer): 'force_cpu': self._force_cpu or force_init_on_cpu() }, stop_gradient=True) - if not imperative_base.enabled(): + if not framework._in_imperative_mode(): var.op = op return op @@ -246,7 +245,7 @@ class UniformInitializer(Initializer): attrs={"in_dtype": out_var.dtype, "out_dtype": var.dtype}) - if not imperative_base.enabled(): + if not framework._in_imperative_mode(): var.op = op return op @@ -325,7 +324,7 @@ class NormalInitializer(Initializer): outputs={"Out": var}, attrs={"in_dtype": out_var.dtype, "out_dtype": var.dtype}) - if not imperative_base.enabled(): + if not framework._in_imperative_mode(): var.op = op return op @@ -404,7 +403,7 @@ class TruncatedNormalInitializer(Initializer): outputs={"Out": var}, attrs={"in_dtype": out_var.dtype, "out_dtype": var.dtype}) - if not imperative_base.enabled(): + if not framework._in_imperative_mode(): var.op = op return op @@ -510,7 +509,7 @@ class XavierInitializer(Initializer): "seed": self._seed }, stop_gradient=True) - if not imperative_base.enabled(): + if not framework._in_imperative_mode(): var.op = op return op @@ -611,7 +610,7 @@ class MSRAInitializer(Initializer): "seed": self._seed }, stop_gradient=True) - if not imperative_base.enabled(): + if not framework._in_imperative_mode(): var.op = op return op @@ -710,7 +709,7 @@ class BilinearInitializer(Initializer): 'shape': list(shape), value_name: values }) - if not imperative_base.enabled(): + if not framework._in_imperative_mode(): var.op = op return op @@ -769,7 +768,7 @@ class NumpyArrayInitializer(Initializer): value_name: values }, stop_gradient=True) - if not imperative_base.enabled(): + if not framework._in_imperative_mode(): var.op = op return op diff --git a/python/paddle/fluid/layer_helper.py b/python/paddle/fluid/layer_helper.py index 65864ca7e0..6f60fad94d 100644 --- a/python/paddle/fluid/layer_helper.py +++ b/python/paddle/fluid/layer_helper.py @@ -15,45 +15,29 @@ from __future__ import print_function import copy -import itertools import six -import sys -import numpy as np -from .framework import Variable, Parameter, default_main_program, default_startup_program, dtype_is_floating, _in_imperative_mode +from .framework import Parameter, dtype_is_floating, _in_imperative_mode from . import unique_name -from paddle.fluid.imperative import base as imperative_base from paddle.fluid.initializer import Constant, Xavier -from .param_attr import ParamAttr, WeightNormParamAttr +from .param_attr import ParamAttr from . import core from six.moves import zip +from .layer_helper_base import LayerHelperBase -class LayerHelper(object): +class LayerHelper(LayerHelperBase): def __init__(self, layer_type, **kwargs): self.kwargs = kwargs - self.layer_type = layer_type name = self.kwargs.get('name', None) # TODO(panyx0718, minqiyang): imperative mode # can not use both `layer_type` and `name`. Deprecate LayerHelper # and write a Helper for imperative mode. if name is None: - self.kwargs['name'] = unique_name.generate(self.layer_type) + self.kwargs['name'] = unique_name.generate(layer_type) - @property - def name(self): - return self.kwargs['name'] - - @property - def main_program(self): - return default_main_program() - - @property - def startup_program(self): - return default_startup_program() - - def to_variable(self, x): - return imperative_base.to_variable(x, self.main_program.current_block()) + super(LayerHelper, self).__init__( + self.kwargs['name'], layer_type=layer_type) def append_op(self, *args, **kwargs): return self.main_program.current_block().append_op(*args, **kwargs) @@ -82,6 +66,7 @@ class LayerHelper(object): def bias_attr(self): return ParamAttr._to_attr(self.kwargs.get('bias_attr', None)) + #TODO (jiabin): reconstruct this in LayerObjHelper and avoid dependency of param_attr def multiple_param_attr(self, length): param_attr = self.param_attr if isinstance(param_attr, ParamAttr): @@ -113,297 +98,13 @@ class LayerHelper(object): (dtype, each.dtype)) return dtype - def _create_weight_normalize(self, attr, shape, dtype): - from .layers import elementwise_mul, elementwise_div, reshape - - # Remove these ops when LayerHelper and layers support indicating - # program and block. - def __norm_op(x, - out=None, - p=2, - dim=None, - keep_dim=False, - block=self.startup_program.global_block()): - if out is None: - out = block.create_var( - name=unique_name.generate(".".join( - [self.name, 'weight_norm_norm'])), - dtype=dtype, - persistable=False) - abs_out = block.create_var( - name=unique_name.generate(".".join( - [self.name, 'weight_norm_abs'])), - dtype=dtype, - persistable=False) - block.append_op( - type='abs', inputs={'X': x}, outputs={'Out': abs_out}) - pow_out = block.create_var( - name=unique_name.generate(".".join( - [self.name, 'weight_norm_pow'])), - dtype=dtype, - persistable=False) - block.append_op( - type='pow', - inputs={'X': abs_out}, - outputs={'Out': pow_out}, - attrs={'factor': float(p)}) - sum_out = block.create_var( - name=unique_name.generate(".".join( - [self.name, 'weight_norm_sum'])), - dtype=dtype, - persistable=False) - block.append_op( - type='reduce_sum', - inputs={'X': pow_out}, - outputs={'Out': sum_out}, - attrs={ - 'dim': dim, - 'keep_dim': keep_dim, - 'reduce_all': True if dim is None else False - }) - block.append_op( - type='pow', - inputs={'X': sum_out}, - outputs={'Out': out}, - attrs={'factor': 1. / p}) - return out - - def __reshape_op(x, - shape, - out=None, - block=self.startup_program.global_block()): - if out is None: - out = block.create_var( - name=unique_name.generate(".".join( - [self.name, 'weight_norm_reshape'])), - dtype=dtype, - persistable=False) - block.append_op( - type='reshape', - inputs={'X': x}, - outputs={'Out': out}, - attrs={'shape': shape}) - return out - - def __transpose_op(x, - axis, - out=None, - block=self.startup_program.global_block()): - if out is None: - out = block.create_var( - name=unique_name.generate(".".join( - [self.name, 'weight_norm_transpose'])), - dtype=dtype, - persistable=False) - block.append_op( - type='transpose', - inputs={'X': x}, - outputs={'Out': out}, - attrs={'axis': axis}) - return out - - def __norm_except_dim(x, - out=None, - dim=None, - block=self.startup_program.global_block()): - """Computes the norm over all dimensions except dim""" - if out is None: - out = block.create_var( - name=unique_name.generate(".".join( - [self.name, 'weight_norm_norm'])), - dtype=dtype, - persistable=False) - if dim is None: - __norm_op(x, out, dim=dim, block=block) - elif dim == 0: - out_shape = [x.shape[0]] + [1] * (len(x.shape) - 1) - reshape = __reshape_op(x, shape=[x.shape[0], -1], block=block) - norm = __norm_op(reshape, dim=1, block=block) - __reshape_op(norm, out=out, shape=out_shape, block=block) - elif dim == len(x.shape) - 1: - out_shape = [1] * (len(x.shape) - 1) + [x.shape[-1]] - reshape = __reshape_op(x, shape=[-1, x.shape[-1]], block=block) - norm = __norm_op(reshape, dim=0, block=block) - __reshape_op(norm, out=out, shape=out_shape, block=block) - else: - perm = list(range(len(x.shape))) - perm[0], perm[dim] = dim, 0 - transpose = __transpose_op(x, perm, block=block) - norm = __norm_op(transpose, dim=0, block=block) - __transpose_op(norm, perm, out=out, block=block) - return out - - def __weight_normalize(g, v, dim): - """Calculations for weight normalization""" - norm = __norm_except_dim( - v, dim=dim, block=self.main_program.current_block()) - scale = elementwise_div( - x=g, y=norm) # The shapes of g and norm are the same. - # Currently, elementwise_mul only support broadcast when the shape - # of y is a subset of the shape of x. Thus, we reshape y to squeeze - # to achive the subset. - w = elementwise_mul( - x=v, - y=scale if dim is None else reshape( - x=scale, shape=[v.shape[dim]]), - axis=-1 if dim is None else dim) - # To serialize the original parameter for inference, maybe a - # parameter rather than a variable should be returned. - return w - - g_param_attr = copy.deepcopy(attr) - g_param_attr.name = attr.name + '_g' - g_param_shape = [1] * len(shape) - if attr.dim is not None: - g_param_shape[attr.dim] = shape[attr.dim] - v_param_attr = copy.deepcopy(attr) - v_param_attr.name = attr.name + '_v' - v_param_shape = shape - - # Add to startup_program to initialize g and v. - # Try to reconstruct the initializer of w by initializing g and v. - # Set the initializers of g and v as below, then the distribution - # of w is the same as initializing w with the given initializer. - # For Data-Dependent Initialization, please compute the init-values - # of g and v in external and then feed the values to g and v by - # executing an extra program. - g_param = self.startup_program.global_block().create_parameter( - dtype=dtype, - shape=g_param_shape, - **g_param_attr._to_kwargs(with_initializer=False)) - v_param = self.startup_program.global_block().create_parameter( - dtype=dtype, - shape=v_param_shape, - **v_param_attr._to_kwargs(with_initializer=True)) - __norm_except_dim( - x=v_param, - out=g_param, - dim=attr.dim, - block=self.startup_program.global_block()) - - # Add weight normalization to main_program - g_param = self.main_program.global_block().create_parameter( - dtype=dtype, shape=g_param_shape, **g_param_attr._to_kwargs()) - v_param = self.main_program.global_block().create_parameter( - dtype=dtype, shape=v_param_shape, **v_param_attr._to_kwargs()) - w_param = __weight_normalize(g_param, v_param, dim=attr.dim) - return w_param - - def create_parameter(self, - attr, - shape, - dtype, - is_bias=False, - default_initializer=None): - # Deepcopy the attr so that parameters can be shared in program - attr = copy.deepcopy(attr) - assert isinstance(attr, ParamAttr) - suffix = 'b' if is_bias else 'w' - if attr.name is None: - attr.name = unique_name.generate(".".join([self.name, suffix])) - - if default_initializer is None and attr.initializer is None: - if isinstance(dtype, core.VarDesc.VarType): - if dtype != core.VarDesc.VarType.FP32 and \ - dtype != core.VarDesc.VarType.FP64 and \ - dtype != core.VarDesc.VarType.FP16: - raise TypeError( - "Can not create parameter with default initializer when dtype is not float type. Set default_initializer to fit the parameter dtype!" - ) - else: - if not (dtype.startswith("float") or dtype == "double"): - raise TypeError( - "Can not create parameter with default initializer when dtype is not float type. Set default_initializer to fit the parameter dtype!" - ) - if is_bias: - attr._set_default_bias_initializer() - else: - attr._set_default_param_initializer() - else: - attr._set_default_initializer(default_initializer) - - # If weight normalization is set, insert extra parameters and ops. - # Refer to https://arxiv.org/pdf/1602.07868.pdf - if isinstance(attr, WeightNormParamAttr): - param = self._create_weight_normalize(attr, shape, dtype) - WeightNormParamAttr.params_with_weight_norm.append(param) - return param - if _in_imperative_mode(): - # In imperative mode, we want the returned parameter to be - # initialized so that it can be used imperatively. - return self.main_program.global_block().create_parameter( - dtype=dtype, - shape=shape, - **attr._to_kwargs(with_initializer=True)) - else: - self.startup_program.global_block().create_parameter( - dtype=dtype, - shape=shape, - **attr._to_kwargs(with_initializer=True)) - return self.main_program.global_block().create_parameter( - dtype=dtype, shape=shape, **attr._to_kwargs()) - def get_parameter(self, name): param = self.main_program.global_block().var(name) if not isinstance(param, Parameter): raise ValueError("no Parameter name %s found" % name) return param - def create_variable_for_type_inference(self, dtype, stop_gradient=False): - """Create a temporary variable that should be type inferred layer. - - Note: - The default type will be set to LOD_TENSOR. However, when - the var is used as operator output, its type will be updated - based on operator's `VarTypeInference` implementation in - infer_var_type. - """ - return self.main_program.current_block().create_var( - name=unique_name.generate(".".join([self.name, 'tmp'])), - dtype=dtype, - type=core.VarDesc.VarType.LOD_TENSOR, - persistable=False, - stop_gradient=stop_gradient) - - def create_variable(self, *args, **kwargs): - return self.main_program.current_block().create_var(*args, **kwargs) - - def create_global_variable(self, persistable=False, *args, **kwargs): - """ - create global variable, note that there is no initializer for this global variable. - Args: - persistable(bool): True if it is a checkpoint value. - *args: See create_var's documentation - **kwargs: See create_var's documentation - - Returns(Variable): the created variable. - """ - return self.main_program.global_block().create_var( - *args, persistable=persistable, **kwargs) - - def create_or_get_global_variable(self, name, *args, **kwargs): - """ - Creates a global variable if not exists and returns the variable and - a boolean flag which is true when it is a new variable. - """ - if self.main_program.global_block().has_var(name): - return self.main_program.global_block().var(name), False - else: - return self.create_global_variable(name=name, *args, **kwargs), True - - def set_variable_initializer(self, var, initializer): - assert isinstance(var, Variable) - if imperative_base.enabled(): - initializer(var, var.block) - else: - self.startup_program.global_block().create_var( - name=var.name, - type=var.type, - dtype=var.dtype, - shape=var.shape, - persistable=True, - initializer=initializer) - + #TODO (jiabin): reconstruct this in LayerObjHelper and avoid dependency of bias_attr def append_bias_op(self, input_var, dim_start=1, dim_end=None): """ Append bias operator and return its output. If the user does not set @@ -434,6 +135,7 @@ class LayerHelper(object): attrs={'axis': dim_start}) return tmp + #TODO (jiabin): reconstruct this in LayerObjHelper and avoid dependency of act def append_activation(self, input_var): act = self.kwargs.get('act', None) if act is None: @@ -448,10 +150,11 @@ class LayerHelper(object): if 'use_mkldnn' in self.kwargs: act['use_mkldnn'] = self.kwargs.get('use_mkldnn') act_type = act.pop('type') + tmp = input_var # NOTE(dzhwinter): some activation support inplace compution. # NOTE(minqiyang): currently, we don't support inplace in imperative mode - if not imperative_base.enabled() and core.IsInplace(act_type): + if not _in_imperative_mode() and core.IsInplace(act_type): tmp = input_var else: tmp = self.create_variable_for_type_inference(dtype=input_var.dtype) @@ -462,6 +165,7 @@ class LayerHelper(object): attrs=act) return tmp + #TODO (jiabin): should we remove this since it has never be used def _get_default_initializer(self, dtype): if dtype is None or dtype_is_floating(dtype) is True: return Xavier() @@ -469,6 +173,7 @@ class LayerHelper(object): # For integer and boolean types, initialize with all zeros return Constant() + #TODO (jiabin): reconstruct this in LayerObjHelper and avoid dependency of kwargs def is_instance(self, param_name, cls): param = self.kwargs.get(param_name, None) if not isinstance(param, cls): diff --git a/python/paddle/fluid/layer_helper_base.py b/python/paddle/fluid/layer_helper_base.py new file mode 100644 index 0000000000..d4b38137e4 --- /dev/null +++ b/python/paddle/fluid/layer_helper_base.py @@ -0,0 +1,381 @@ +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import copy +import numpy as np + +from .framework import Variable, default_main_program, default_startup_program, _in_imperative_mode, _current_expected_place +from . import unique_name +from .param_attr import ParamAttr, WeightNormParamAttr +from . import core + + +class LayerHelperBase(object): + def __init__(self, name, layer_type): + self._layer_type = layer_type + self._name = name + + @property + def name(self): + return self._name + + @property + def layer_type(self): + return self._layer_type + + @property + def main_program(self): + return default_main_program() + + @property + def startup_program(self): + return default_startup_program() + + def to_variable(self, value, block=None): + """convert value to variable + + Args: + value: value to be convert + block: the block of the variable + + Return Variable construct from value + """ + if isinstance(value, np.ndarray): + assert _in_imperative_mode( + ), "to_variable could only be called in imperative mode" + + if not block: + block = default_main_program().current_block() + py_var = Variable( + block, + type=core.VarDesc.VarType.LOD_TENSOR, + name=None, + shape=value.shape, + dtype=value.dtype) + var = py_var._ivar.value() + tensor = var.get_tensor() + tensor.set(value, _current_expected_place()) + return py_var + elif isinstance(value, Variable): + return value + + def _create_weight_normalize(self, attr, shape, dtype): + from .layers import elementwise_mul, elementwise_div, reshape + + # Remove these ops when LayerHelper and layers support indicating + # program and block. + def __norm_op(x, + out=None, + p=2, + dim=None, + keep_dim=False, + block=self.startup_program.global_block()): + if out is None: + out = block.create_var( + name=unique_name.generate(".".join( + [self.name, 'weight_norm_norm'])), + dtype=dtype, + persistable=False) + abs_out = block.create_var( + name=unique_name.generate(".".join( + [self.name, 'weight_norm_abs'])), + dtype=dtype, + persistable=False) + block.append_op( + type='abs', inputs={'X': x}, outputs={'Out': abs_out}) + pow_out = block.create_var( + name=unique_name.generate(".".join( + [self.name, 'weight_norm_pow'])), + dtype=dtype, + persistable=False) + block.append_op( + type='pow', + inputs={'X': abs_out}, + outputs={'Out': pow_out}, + attrs={'factor': float(p)}) + sum_out = block.create_var( + name=unique_name.generate(".".join( + [self.name, 'weight_norm_sum'])), + dtype=dtype, + persistable=False) + block.append_op( + type='reduce_sum', + inputs={'X': pow_out}, + outputs={'Out': sum_out}, + attrs={ + 'dim': dim, + 'keep_dim': keep_dim, + 'reduce_all': True if dim is None else False + }) + block.append_op( + type='pow', + inputs={'X': sum_out}, + outputs={'Out': out}, + attrs={'factor': 1. / p}) + return out + + def __reshape_op(x, + shape, + out=None, + block=self.startup_program.global_block()): + if out is None: + out = block.create_var( + name=unique_name.generate(".".join( + [self.name, 'weight_norm_reshape'])), + dtype=dtype, + persistable=False) + block.append_op( + type='reshape', + inputs={'X': x}, + outputs={'Out': out}, + attrs={'shape': shape}) + return out + + def __transpose_op(x, + axis, + out=None, + block=self.startup_program.global_block()): + if out is None: + out = block.create_var( + name=unique_name.generate(".".join( + [self.name, 'weight_norm_transpose'])), + dtype=dtype, + persistable=False) + block.append_op( + type='transpose', + inputs={'X': x}, + outputs={'Out': out}, + attrs={'axis': axis}) + return out + + def __norm_except_dim(x, + out=None, + dim=None, + block=self.startup_program.global_block()): + """Computes the norm over all dimensions except dim""" + if out is None: + out = block.create_var( + name=unique_name.generate(".".join( + [self.name, 'weight_norm_norm'])), + dtype=dtype, + persistable=False) + if dim is None: + __norm_op(x, out, dim=dim, block=block) + elif dim == 0: + out_shape = [x.shape[0]] + [1] * (len(x.shape) - 1) + reshape = __reshape_op(x, shape=[x.shape[0], -1], block=block) + norm = __norm_op(reshape, dim=1, block=block) + __reshape_op(norm, out=out, shape=out_shape, block=block) + elif dim == len(x.shape) - 1: + out_shape = [1] * (len(x.shape) - 1) + [x.shape[-1]] + reshape = __reshape_op(x, shape=[-1, x.shape[-1]], block=block) + norm = __norm_op(reshape, dim=0, block=block) + __reshape_op(norm, out=out, shape=out_shape, block=block) + else: + perm = list(range(len(x.shape))) + perm[0], perm[dim] = dim, 0 + transpose = __transpose_op(x, perm, block=block) + norm = __norm_op(transpose, dim=0, block=block) + __transpose_op(norm, perm, out=out, block=block) + return out + + def __weight_normalize(g, v, dim): + """Calculations for weight normalization""" + norm = __norm_except_dim( + v, dim=dim, block=self.main_program.current_block()) + scale = elementwise_div( + x=g, y=norm) # The shapes of g and norm are the same. + # Currently, elementwise_mul only support broadcast when the shape + # of y is a subset of the shape of x. Thus, we reshape y to squeeze + # to achive the subset. + w = elementwise_mul( + x=v, + y=scale if dim is None else reshape( + x=scale, shape=[v.shape[dim]]), + axis=-1 if dim is None else dim) + # To serialize the original parameter for inference, maybe a + # parameter rather than a variable should be returned. + return w + + g_param_attr = copy.deepcopy(attr) + g_param_attr.name = attr.name + '_g' + g_param_shape = [1] * len(shape) + if attr.dim is not None: + g_param_shape[attr.dim] = shape[attr.dim] + v_param_attr = copy.deepcopy(attr) + v_param_attr.name = attr.name + '_v' + v_param_shape = shape + + # Add to startup_program to initialize g and v. + # Try to reconstruct the initializer of w by initializing g and v. + # Set the initializers of g and v as below, then the distribution + # of w is the same as initializing w with the given initializer. + # For Data-Dependent Initialization, please compute the init-values + # of g and v in external and then feed the values to g and v by + # executing an extra program. + g_param = self.startup_program.global_block().create_parameter( + dtype=dtype, + shape=g_param_shape, + **g_param_attr._to_kwargs(with_initializer=False)) + v_param = self.startup_program.global_block().create_parameter( + dtype=dtype, + shape=v_param_shape, + **v_param_attr._to_kwargs(with_initializer=True)) + __norm_except_dim( + x=v_param, + out=g_param, + dim=attr.dim, + block=self.startup_program.global_block()) + + # Add weight normalization to main_program + g_param = self.main_program.global_block().create_parameter( + dtype=dtype, shape=g_param_shape, **g_param_attr._to_kwargs()) + v_param = self.main_program.global_block().create_parameter( + dtype=dtype, shape=v_param_shape, **v_param_attr._to_kwargs()) + w_param = __weight_normalize(g_param, v_param, dim=attr.dim) + return w_param + + # TODO: hide the func after we move the layers to Layers + def create_parameter(self, + attr, + shape, + dtype, + is_bias=False, + default_initializer=None): + """Create parameters for this layers. + + Args: + attr: [ParamAttr] should be the parameter attribute for this parameter + shape: shape of the paramter + dtype: data type of this parameter + is_bias: if this is a bias parameter + default_initializer: set the default initializer for this parameter + + Returns created parameter Variable. + """ + # Deepcopy the attr so that parameters can be shared in program + attr = copy.deepcopy(attr) + if attr is None: + attr = ParamAttr._to_attr(attr) + assert isinstance(attr, ParamAttr) + suffix = 'b' if is_bias else 'w' + if attr.name is None: + attr.name = unique_name.generate(".".join([self.name, suffix])) + + if default_initializer is None and attr.initializer is None: + if isinstance(dtype, core.VarDesc.VarType): + if dtype != core.VarDesc.VarType.FP32 and \ + dtype != core.VarDesc.VarType.FP64 and \ + dtype != core.VarDesc.VarType.FP16: + raise TypeError( + "Can not create parameter with default initializer when dtype is not float type. Set default_initializer to fit the parameter dtype!" + ) + else: + if not (dtype.startswith("float") or dtype == "double"): + raise TypeError( + "Can not create parameter with default initializer when dtype is not float type. Set default_initializer to fit the parameter dtype!" + ) + if is_bias: + attr._set_default_bias_initializer() + else: + attr._set_default_param_initializer() + else: + attr._set_default_initializer(default_initializer) + + # If weight normalization is set, insert extra parameters and ops. + # Refer to https://arxiv.org/pdf/1602.07868.pdf + if isinstance(attr, WeightNormParamAttr): + param = self._create_weight_normalize(attr, shape, dtype) + WeightNormParamAttr.params_with_weight_norm.append(param) + return param + if _in_imperative_mode(): + # In imperative mode, we want the returned parameter to be + # initialized so that it can be used imperatively. + return self.main_program.global_block().create_parameter( + dtype=dtype, + shape=shape, + **attr._to_kwargs(with_initializer=True)) + else: + self.startup_program.global_block().create_parameter( + dtype=dtype, + shape=shape, + **attr._to_kwargs(with_initializer=True)) + return self.main_program.global_block().create_parameter( + dtype=dtype, shape=shape, **attr._to_kwargs()) + + def create_variable_for_type_inference(self, dtype, stop_gradient=False): + """Create a temporary variable that should be type inferred layer. + + Note: + The default type will be set to LOD_TENSOR. However, when + the var is used as operator output, its type will be updated + based on operator's `VarTypeInference` implementation in + infer_var_type. + """ + return self.main_program.current_block().create_var( + name=unique_name.generate(".".join([self.name, 'tmp'])), + dtype=dtype, + type=core.VarDesc.VarType.LOD_TENSOR, + persistable=False, + stop_gradient=stop_gradient) + + def create_variable(self, *args, **kwargs): + """Create Variable for this layers. + Returns created Variable. + """ + return self.main_program.current_block().create_var(*args, **kwargs) + + def create_global_variable(self, persistable=False, *args, **kwargs): + """ + create global variable, note that there is no initializer for this global variable. + Args: + persistable(bool): True if it is a checkpoint value. + *args: See create_var's documentation + **kwargs: See create_var's documentation + + Returns(Variable): the created variable. + """ + return self.main_program.global_block().create_var( + *args, persistable=persistable, **kwargs) + + def create_or_get_global_variable(self, name, *args, **kwargs): + """ + Creates a global variable if not exists and returns the variable and + a boolean flag which is true when it is a new variable. + """ + if self.main_program.global_block().has_var(name): + return self.main_program.global_block().var(name), False + else: + return self.create_global_variable(name=name, *args, **kwargs), True + + def set_variable_initializer(self, var, initializer): + """Set target Variable's initializer + + Args: + var: target Variable + initializer: initializer to use + """ + assert isinstance(var, Variable) + if _in_imperative_mode(): + initializer(var, var.block) + else: + self.startup_program.global_block().create_var( + name=var.name, + type=var.type, + dtype=var.dtype, + shape=var.shape, + persistable=True, + initializer=initializer) diff --git a/python/paddle/fluid/optimizer.py b/python/paddle/fluid/optimizer.py index cb799b6396..86b7716664 100644 --- a/python/paddle/fluid/optimizer.py +++ b/python/paddle/fluid/optimizer.py @@ -379,7 +379,7 @@ class Optimizer(object): self._dtype = loss.dtype program = loss.block.program optimize_ops = [] - if imperative_base.enabled(): + if framework._in_imperative_mode(): if parameter_list is not None: parameters = parameter_list else: diff --git a/python/paddle/fluid/tests/unittests/test_base_layer.py b/python/paddle/fluid/tests/unittests/test_base_layer.py index caf9750e58..b12aaea321 100644 --- a/python/paddle/fluid/tests/unittests/test_base_layer.py +++ b/python/paddle/fluid/tests/unittests/test_base_layer.py @@ -16,27 +16,17 @@ import unittest import numpy as np import paddle.fluid as fluid -from paddle.fluid.layer_helper import LayerHelper class L1(fluid.imperative.Layer): def __init__(self, prefix): super(L1, self).__init__(prefix) - self._helper = LayerHelper( - self.full_name(), - param_attr=fluid.ParamAttr( - initializer=fluid.initializer.Constant(value=0.1))) - - self.w1 = self._helper.create_parameter( - attr=self._helper.param_attr, - shape=[2, 2], - dtype='float32', - is_bias=False) - self.w2 = self._helper.create_parameter( - attr=self._helper.param_attr, - shape=[2, 2], - dtype='float32', - is_bias=False) + self._param_attr = fluid.ParamAttr( + initializer=fluid.initializer.Constant(value=0.1)) + self.w1 = self.create_parameter( + attr=self._param_attr, shape=[2, 2], dtype='float32', is_bias=False) + self.w2 = self.create_parameter( + attr=self._param_attr, shape=[2, 2], dtype='float32', is_bias=False) def forward(self): return self.w1 + self.w2 @@ -67,8 +57,8 @@ class TestBaseLayer(unittest.TestCase): with fluid.imperative.guard(): l = L1('test_one_level') ret = l() - self.assertEqual(l.w1.name, "test_one_level/L1_0_0.w_0") - self.assertEqual(l.w2.name, "test_one_level/L1_0_0.w_1") + self.assertEqual(l.w1.name, "test_one_level/L1_0.w_0") + self.assertEqual(l.w2.name, "test_one_level/L1_0.w_1") self.assertTrue(np.allclose(ret._numpy(), 0.2 * np.ones([2, 2]))) def test_three_level(self): @@ -76,12 +66,12 @@ class TestBaseLayer(unittest.TestCase): l = L3('test_three_level') names = [p.name for p in l.parameters()] ret = l() - self.assertEqual(names[0], "test_three_level/L3_0/L2_0/L1_0_0.w_0") - self.assertEqual(names[1], "test_three_level/L3_0/L2_0/L1_0_0.w_1") - self.assertEqual(names[2], "test_three_level/L3_0/L2_0/L1_1_0.w_0") - self.assertEqual(names[3], "test_three_level/L3_0/L2_0/L1_1_0.w_1") - self.assertEqual(names[4], "test_three_level/L3_0/L2_1/L1_0_0.w_0") - self.assertEqual(names[5], "test_three_level/L3_0/L2_1/L1_0_0.w_1") + self.assertEqual(names[0], "test_three_level/L3_0/L2_0/L1_0.w_0") + self.assertEqual(names[1], "test_three_level/L3_0/L2_0/L1_0.w_1") + self.assertEqual(names[2], "test_three_level/L3_0/L2_0/L1_1.w_0") + self.assertEqual(names[3], "test_three_level/L3_0/L2_0/L1_1.w_1") + self.assertEqual(names[4], "test_three_level/L3_0/L2_1/L1_0.w_0") + self.assertEqual(names[5], "test_three_level/L3_0/L2_1/L1_0.w_1") self.assertTrue(np.allclose(ret._numpy(), 0.8 * np.ones([2, 2]))) diff --git a/python/paddle/fluid/tests/unittests/test_imperative_basic.py b/python/paddle/fluid/tests/unittests/test_imperative_basic.py index dae0c466ee..97fc1eab3d 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_basic.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_basic.py @@ -53,11 +53,15 @@ class MLP(fluid.imperative.Layer): super(MLP, self).__init__(name_scope) self._fc1 = FC(self.full_name(), 3, - fluid.ParamAttr( + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Constant(value=0.1)), + bias_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=0.1))) self._fc2 = FC(self.full_name(), 4, - fluid.ParamAttr( + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Constant(value=0.1)), + bias_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=0.1))) def forward(self, inputs): @@ -74,41 +78,37 @@ class SimpleRNNCell(fluid.imperative.Layer): self.step_input_size = step_input_size self.hidden_size = hidden_size self.output_size = output_size - self._dype = core.VarDesc.VarType.FP32 - from paddle.fluid.layer_helper import LayerHelper - self._helper = LayerHelper( - 'SimpleRNNCell', act="tanh", param_attr=param_attr) + self._dtype = core.VarDesc.VarType.FP32 + self.param_attr = param_attr def _build_once(self, inputs, pre_hidden): i2h_param_shape = [self.step_input_size, self.hidden_size] h2h_param_shape = [self.hidden_size, self.hidden_size] h2o_param_shape = [self.output_size, self.hidden_size] - self._i2h_w = self._helper.create_parameter( - attr=self._helper.param_attr, + self._i2h_w = self.create_parameter( + attr=self.param_attr, shape=i2h_param_shape, dtype=self._dtype, is_bias=False) - self._h2h_w = self._helper.create_parameter( - attr=self._helper.param_attr, + self._h2h_w = self.create_parameter( + attr=self.param_attr, shape=h2h_param_shape, dtype=self._dtype, is_bias=False) - self._h2o_w = self._helper.create_parameter( - attr=self._helper.param_attr, + self._h2o_w = self.create_parameter( + attr=self.param_attr, shape=h2o_param_shape, dtype=self._dtype, is_bias=False) def forward(self, input, pre_hidden): - tmp_i2h = self._helper.create_variable_for_type_inference(self._dtype) - tmp_h2h = self._helper.create_variable_for_type_inference(self._dtype) - hidden = self._helper.create_variable_for_type_inference(self._dype) - out = self._helper.create_variable_for_type_inference(self._dype) - softmax_out = self._helper.create_variable_for_type_inference( - self._dtype) - reduce_out = self._helper.create_variable_for_type_inference( - self._dtype) + tmp_i2h = self.create_variable(dtype=self._dtype) + tmp_h2h = self.create_variable(dtype=self._dtype) + hidden = self.create_variable(dtype=self._dtype) + out = self.create_variable(dtype=self._dtype) + softmax_out = self.create_variable(dtype=self._dtype) + reduce_out = self.create_variable(dtype=self._dtype) self._helper.append_op( type="mul", inputs={"X": input, @@ -132,7 +132,7 @@ class SimpleRNNCell(fluid.imperative.Layer): outputs={'Out': hidden}, attrs={'axis': -1, 'use_mkldnn': False}) - hidden = self._helper.append_activation(hidden) + hidden = self._helper.append_activation(hidden, act='tanh') self._helper.append_op( type="mul", @@ -174,7 +174,7 @@ class SimpleRNN(fluid.imperative.Layer): outs = list() pre_hiddens = list() - init_hidden = fluid.layers.tensor.create_parameter( + init_hidden = self.create_parameter( attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=0.1)), shape=[1, 3], @@ -337,10 +337,10 @@ class TestImperative(unittest.TestCase): self.assertTrue(np.allclose(dy_grad, static_grad)) params = mlp.parameters(True) - self.assertEqual("mlp/MLP_0/FC_0_0.w_0", params[0].name) - self.assertEqual("mlp/MLP_0/FC_0_0.b_0", params[1].name) - self.assertEqual("mlp/MLP_0/FC_1_0.w_0", params[2].name) - self.assertEqual("mlp/MLP_0/FC_1_0.b_0", params[3].name) + self.assertEqual("mlp/MLP_0/FC_0.w_0", params[0].name) + self.assertEqual("mlp/MLP_0/FC_0.b_0", params[1].name) + self.assertEqual("mlp/MLP_0/FC_1.w_0", params[2].name) + self.assertEqual("mlp/MLP_0/FC_1.b_0", params[3].name) self.assertEqual(len(params), 4) sublayers = mlp.sublayers(True) diff --git a/python/paddle/fluid/tests/unittests/test_imperative_optimizer.py b/python/paddle/fluid/tests/unittests/test_imperative_optimizer.py index 7afbf61472..5b3c250501 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_optimizer.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_optimizer.py @@ -78,7 +78,7 @@ class SimpleImgConvPool(fluid.imperative.Layer): class MNIST(fluid.imperative.Layer): - def __init__(self, name_scope, param_attr=None, bias_attr=None): + def __init__(self, name_scope): super(MNIST, self).__init__(name_scope) self._simple_img_conv_pool_1 = SimpleImgConvPool( diff --git a/python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py b/python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py index 878c27d934..3b602303ae 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py @@ -41,19 +41,17 @@ class SimpleLSTMRNN(fluid.imperative.Layer): self._dropout = dropout self._input = None self._num_steps = num_steps - from paddle.fluid.layer_helper import LayerHelper - self._helper = LayerHelper('SimpleLSTMRNN', act="tanh") + self.cell_array = [] + self.hidden_array = [] def _build_once(self, input_embedding, init_hidden=None, init_cell=None): self.weight_1_arr = [] self.weight_2_arr = [] self.bias_arr = [] - self.hidden_array = [] - self.cell_array = [] self.mask_array = [] for i in range(self._num_layers): - weight_1 = self._helper.create_parameter( + weight_1 = self.create_parameter( attr=fluid.ParamAttr( initializer=fluid.initializer.UniformInitializer( low=-self._init_scale, high=self._init_scale)), @@ -62,7 +60,7 @@ class SimpleLSTMRNN(fluid.imperative.Layer): default_initializer=fluid.initializer.UniformInitializer( low=-self._init_scale, high=self._init_scale)) self.weight_1_arr.append(weight_1) - bias_1 = self._helper.create_parameter( + bias_1 = self.create_parameter( attr=fluid.ParamAttr( initializer=fluid.initializer.UniformInitializer( low=-self._init_scale, high=self._init_scale)), @@ -71,6 +69,11 @@ class SimpleLSTMRNN(fluid.imperative.Layer): default_initializer=fluid.initializer.Constant(0.0)) self.bias_arr.append(bias_1) + def forward(self, input_embedding, init_hidden=None, init_cell=None): + self.cell_array = [] + self.hidden_array = [] + + for i in range(self._num_layers): pre_hidden = fluid.layers.slice( init_hidden, axes=[0], starts=[i], ends=[i + 1]) pre_cell = fluid.layers.slice( @@ -82,7 +85,6 @@ class SimpleLSTMRNN(fluid.imperative.Layer): self.hidden_array.append(pre_hidden) self.cell_array.append(pre_cell) - def forward(self, input_embedding, init_hidden=None, init_cell=None): res = [] for index in range(self._num_steps): self._input = fluid.layers.slice( @@ -145,8 +147,6 @@ class PtbModel(fluid.imperative.Layer): self.num_layers = num_layers self.num_steps = num_steps self.dropout = dropout - from paddle.fluid.layer_helper import LayerHelper - self._helper = LayerHelper('PtbModel', act="tanh") self.simple_lstm_rnn = SimpleLSTMRNN( self.full_name(), hidden_size, @@ -163,13 +163,13 @@ class PtbModel(fluid.imperative.Layer): name='embedding_para', initializer=fluid.initializer.UniformInitializer( low=-init_scale, high=init_scale))) - self.softmax_weight = self._helper.create_parameter( + self.softmax_weight = self.create_parameter( attr=fluid.ParamAttr(), shape=[self.hidden_size, self.vocab_size], dtype="float32", default_initializer=fluid.initializer.UniformInitializer( low=-self.init_scale, high=self.init_scale)) - self.softmax_bias = self._helper.create_parameter( + self.softmax_bias = self.create_parameter( attr=fluid.ParamAttr(), shape=[self.vocab_size], dtype="float32", @@ -180,7 +180,6 @@ class PtbModel(fluid.imperative.Layer): pass def forward(self, input, label, init_hidden, init_cell): - init_h = fluid.layers.reshape( init_hidden, shape=[self.num_layers, -1, self.hidden_size]) -- GitLab