From 64ef5708f20e33e4fd7b3cdd6b97b93160ddf503 Mon Sep 17 00:00:00 2001
From: Jeff Wang
@@ -74,7 +74,7 @@ $$\mbox{[小明]}_{\mbox{Agent}}\mbox{[昨天]}_{\mbox{Time}}\mbox{[晚上]}_{\m
使用神经网络模型解决问题的思路通常是:前层网络学习输入的特征表示,网络的最后一层在特征基础上完成最终的任务。在SRL任务中,深层LSTM网络学习输入的特征表示,条件随机场(Conditional Random Filed, CRF)在特征的基础上完成序列标注,处于整个网络的末端。
-CRF是一种概率化结构模型,可以看作是一个概率无向图模型,结点表示随机变量,边表示随机变量之间的概率依赖关系。简单来讲,CRF学习条件概率`$P(X|Y)$`,其中 `$X = (x_1, x_2, ... , x_n)$` 是输入序列,`$Y = (y_1, y_2, ... , y_n)$` 是标记序列;解码过程是给定 `$X$`序列求解令`$P(Y|X)$`最大的`$Y$`序列,即`$Y^* = \mbox{arg max}_{Y} P(Y | X)$`。
+CRF是一种概率化结构模型,可以看作是一个概率无向图模型,结点表示随机变量,边表示随机变量之间的概率依赖关系。简单来讲,CRF学习条件概率$P(X|Y)$,其中 $X = (x_1, x_2, ... , x_n)$ 是输入序列,$Y = (y_1, y_2, ... , y_n)$ 是标记序列;解码过程是给定 $X$序列求解令$P(Y|X)$最大的$Y$序列,即$Y^* = \mbox{arg max}_{Y} P(Y | X)$。
序列标注任务只需要考虑输入和输出都是一个线性序列,并且由于我们只是将输入序列作为条件,不做任何条件独立假设,因此输入序列的元素之间并不存在图结构。综上,在序列标注任务中使用的是如图5所示的定义在链式图上的CRF,称之为线性链条件随机场(Linear Chain Conditional Random Field)。
@@ -83,23 +83,23 @@ CRF是一种概率化结构模型,可以看作是一个概率无向图模型
图5. 序列标注任务中使用的线性链条件随机场
@@ -60,13 +60,13 @@
编码阶段分为三步:
-1. one-hot vector表示:将源语言句子`$x=\left \{ x_1,x_2,...,x_T \right \}$`的每个词`$x_i$`表示成一个列向量`$w_i\epsilon \left \{ 0,1 \right \}^{\left | V \right |},i=1,2,...,T$`。这个向量`$w_i$`的维度与词汇表大小`$\left | V \right |$` 相同,并且只有一个维度上有值1(该位置对应该词在词汇表中的位置),其余全是0。
+1. one-hot vector表示:将源语言句子$x=\left \{ x_1,x_2,...,x_T \right \}$的每个词$x_i$表示成一个列向量$w_i\epsilon \left \{ 0,1 \right \}^{\left | V \right |},i=1,2,...,T$。这个向量$w_i$的维度与词汇表大小$\left | V \right |$ 相同,并且只有一个维度上有值1(该位置对应该词在词汇表中的位置),其余全是0。
-2. 映射到低维语义空间的词向量:one-hot vector表示存在两个问题,1)生成的向量维度往往很大,容易造成维数灾难;2)难以刻画词与词之间的关系(如语义相似性,也就是无法很好地表达语义)。因此,需再one-hot vector映射到低维的语义空间,由一个固定维度的稠密向量(称为词向量)表示。记映射矩阵为`$C\epsilon R^{K\times \left | V \right |}$`,用`$s_i=Cw_i$`表示第`$i$`个词的词向量,`$K$`为向量维度。
+2. 映射到低维语义空间的词向量:one-hot vector表示存在两个问题,1)生成的向量维度往往很大,容易造成维数灾难;2)难以刻画词与词之间的关系(如语义相似性,也就是无法很好地表达语义)。因此,需再one-hot vector映射到低维的语义空间,由一个固定维度的稠密向量(称为词向量)表示。记映射矩阵为$C\epsilon R^{K\times \left | V \right |}$,用$s_i=Cw_i$表示第$i$个词的词向量,$K$为向量维度。
-3. 用RNN编码源语言词序列:这一过程的计算公式为`$h_i=\varnothing _\theta \left ( h_{i-1}, s_i \right )$`,其中`$h_0$`是一个全零的向量,`$\varnothing _\theta$`是一个非线性激活函数,最后得到的`$\mathbf{h}=\left \{ h_1,..., h_T \right \}$`就是RNN依次读入源语言`$T$`个词的状态编码序列。整句话的向量表示可以采用`$\mathbf{h}$`在最后一个时间步`$T$`的状态编码,或使用时间维上的池化(pooling)结果。
+3. 用RNN编码源语言词序列:这一过程的计算公式为$h_i=\varnothing _\theta \left ( h_{i-1}, s_i \right )$,其中$h_0$是一个全零的向量,$\varnothing _\theta$是一个非线性激活函数,最后得到的$\mathbf{h}=\left \{ h_1,..., h_T \right \}$就是RNN依次读入源语言$T$个词的状态编码序列。整句话的向量表示可以采用$\mathbf{h}$在最后一个时间步$T$的状态编码,或使用时间维上的池化(pooling)结果。
-第3步也可以使用双向循环神经网络实现更复杂的句编码表示,具体可以用双向GRU实现。前向GRU按照词序列`$(x_1,x_2,...,x_T)$`的顺序依次编码源语言端词,并得到一系列隐层状态`$(\overrightarrow{h_1},\overrightarrow{h_2},...,\overrightarrow{h_T})$`。类似的,后向GRU按照`$(x_T,x_{T-1},...,x_1)$`的顺序依次编码源语言端词,得到`$(\overleftarrow{h_1},\overleftarrow{h_2},...,\overleftarrow{h_T})$`。最后对于词`$x_i$`,通过拼接两个GRU的结果得到它的隐层状态,即`$h_i=\left [ \overrightarrow{h_i^T},\overleftarrow{h_i^T} \right ]^{T}$`。
+第3步也可以使用双向循环神经网络实现更复杂的句编码表示,具体可以用双向GRU实现。前向GRU按照词序列$(x_1,x_2,...,x_T)$的顺序依次编码源语言端词,并得到一系列隐层状态$(\overrightarrow{h_1},\overrightarrow{h_2},...,\overrightarrow{h_T})$。类似的,后向GRU按照$(x_T,x_{T-1},...,x_1)$的顺序依次编码源语言端词,得到$(\overleftarrow{h_1},\overleftarrow{h_2},...,\overleftarrow{h_T})$。最后对于词$x_i$,通过拼接两个GRU的结果得到它的隐层状态,即$h_i=\left [ \overrightarrow{h_i^T},\overleftarrow{h_i^T} \right ]^{T}$。
![encoder_attention](./image/encoder_attention.png)
@@ -77,19 +77,19 @@
机器翻译任务的训练过程中,解码阶段的目标是最大化下一个正确的目标语言词的概率。思路是:
-1. 每一个时刻,根据源语言句子的编码信息(又叫上下文向量,context vector)`$c$`、真实目标语言序列的第`$i$`个词`$u_i$`和`$i$`时刻RNN的隐层状态`$z_i$`,计算出下一个隐层状态`$z_{i+1}$`。计算公式如下:
+1. 每一个时刻,根据源语言句子的编码信息(又叫上下文向量,context vector)$c$、真实目标语言序列的第$i$个词$u_i$和$i$时刻RNN的隐层状态$z_i$,计算出下一个隐层状态$z_{i+1}$。计算公式如下:
$$z_{i+1}=\phi _{\theta '}\left ( c,u_i,z_i \right )$$
-其中`$\phi _{\theta '}$`是一个非线性激活函数;`$c=q\mathbf{h}$`是源语言句子的上下文向量,在不使用[注意力机制](#注意力机制)时,如果[编码器](#编码器)的输出是源语言句子编码后的最后一个元素,则可以定义`$c=h_T$`;`$u_i$`是目标语言序列的第`$i$`个单词,`$u_0$`是目标语言序列的开始标记`
图2. 候选生成网络结构
`,表示解码开始;`$z_i$`是`$i$`时刻解码RNN的隐层状态,`$z_0$`是一个全零的向量。
+其中$\phi _{\theta '}$是一个非线性激活函数;$c=q\mathbf{h}$是源语言句子的上下文向量,在不使用[注意力机制](#注意力机制)时,如果[编码器](#编码器)的输出是源语言句子编码后的最后一个元素,则可以定义$c=h_T$;$u_i$是目标语言序列的第$i$个单词,$u_0$是目标语言序列的开始标记``,表示解码开始;$z_i$是$i$时刻解码RNN的隐层状态,$z_0$是一个全零的向量。
-2. 将`$z_{i+1}$`通过`softmax`归一化,得到目标语言序列的第`$i+1$`个单词的概率分布`$p_{i+1}$`。概率分布公式如下:
+2. 将$z_{i+1}$通过`softmax`归一化,得到目标语言序列的第$i+1$个单词的概率分布$p_{i+1}$。概率分布公式如下:
$$p\left ( u_{i+1}|u_{<i+1},\mathbf{x} \right )=softmax(W_sz_{i+1}+b_z)$$
-其中`$W_sz_{i+1}+b_z$`是对每个可能的输出单词进行打分,再用softmax归一化就可以得到第`$i+1$`个词的概率`$p_{i+1}$`。
+其中$W_sz_{i+1}+b_z$是对每个可能的输出单词进行打分,再用softmax归一化就可以得到第$i+1$个词的概率$p_{i+1}$。
-3. 根据`$p_{i+1}$`和`$u_{i+1}$`计算代价。
+3. 根据$p_{i+1}$和$u_{i+1}$计算代价。
4. 重复步骤1~3,直到目标语言序列中的所有词处理完毕。
机器翻译任务的生成过程,通俗来讲就是根据预先训练的模型来翻译源语言句子。生成过程中的解码阶段和上述训练过程的有所差异,具体介绍请见[柱搜索算法](#柱搜索算法)。
@@ -102,12 +102,12 @@ $$p\left ( u_{i+1}|u_{<i+1},\mathbf{x} \right )=softmax(W_sz_{i+1}+b_z)$$
使用柱搜索算法的解码阶段,目标是最大化生成序列的概率。思路是:
-1. 每一个时刻,根据源语言句子的编码信息`$c$`、生成的第`$i$`个目标语言序列单词`$u_i$`和`$i$`时刻RNN的隐层状态`$z_i$`,计算出下一个隐层状态`$z_{i+1}$`。
-2. 将`$z_{i+1}$`通过`softmax`归一化,得到目标语言序列的第`$i+1$`个单词的概率分布`$p_{i+1}$`。
-3. 根据`$p_{i+1}$`采样出单词`$u_{i+1}$`。
+1. 每一个时刻,根据源语言句子的编码信息$c$、生成的第$i$个目标语言序列单词$u_i$和$i$时刻RNN的隐层状态$z_i$,计算出下一个隐层状态$z_{i+1}$。
+2. 将$z_{i+1}$通过`softmax`归一化,得到目标语言序列的第$i+1$个单词的概率分布$p_{i+1}$。
+3. 根据$p_{i+1}$采样出单词$u_{i+1}$。
4. 重复步骤1~3,直到获得句子结束标记``(序列的开始)、`
-图2. 时刻`$t$`的LSTM [7] +图2. 时刻$t$的LSTM [7]
LSTM通过给简单的循环神经网络增加记忆及控制门的方式,增强了其处理远距离依赖问题的能力。类似原理的改进还有Gated Recurrent Unit (GRU)\[[8](#参考文献)\],其设计更为简洁一些。**这些改进虽然各有不同,但是它们的宏观描述却与简单的循环神经网络一样(如图2所示),即隐状态依据当前输入及前一时刻的隐状态来改变,不断地循环这一过程直至输入处理完毕:** $$ h_t=Recrurent(x_t,h_{t-1})$$ -其中,`$Recrurent$`可以表示简单的循环神经网络、GRU或LSTM。 +其中,$Recrurent$可以表示简单的循环神经网络、GRU或LSTM。 ### 栈式双向LSTM(Stacked Bidirectional LSTM) -对于正常顺序的循环神经网络,`$h_t$`包含了`$t$`时刻之前的输入信息,也就是上文信息。同样,为了得到下文信息,我们可以使用反方向(将输入逆序处理)的循环神经网络。结合构建深层循环神经网络的方法(深层神经网络往往能得到更抽象和高级的特征表示),我们可以通过构建更加强有力的基于LSTM的栈式双向循环神经网络\[[9](#参考文献)\],来对时序数据进行建模。 +对于正常顺序的循环神经网络,$h_t$包含了$t$时刻之前的输入信息,也就是上文信息。同样,为了得到下文信息,我们可以使用反方向(将输入逆序处理)的循环神经网络。结合构建深层循环神经网络的方法(深层神经网络往往能得到更抽象和高级的特征表示),我们可以通过构建更加强有力的基于LSTM的栈式双向循环神经网络\[[9](#参考文献)\],来对时序数据进行建模。 如图3所示(以三层为例),奇数层LSTM正向,偶数层LSTM反向,高一层的LSTM使用低一层LSTM及之前所有层的信息作为输入,对最高层LSTM序列使用时间维度上的最大池化即可得到文本的定长向量表示(这一表示充分融合了文本的上下文信息,并且对文本进行了深层次抽象),最后我们将文本表示连接至softmax构建分类模型。 diff --git a/doc/fluid/new_docs/beginners_guide/basics/word2vec/index.md b/doc/fluid/new_docs/beginners_guide/basics/word2vec/index.md index e73a6334ca..b0cc52978c 100644 --- a/doc/fluid/new_docs/beginners_guide/basics/word2vec/index.md +++ b/doc/fluid/new_docs/beginners_guide/basics/word2vec/index.md @@ -12,15 +12,15 @@ One-hot vector虽然自然,但是用处有限。比如,在互联网广告系统里,如果用户输入的query是“母亲节”,而有一个广告的关键词是“康乃馨”。虽然按照常理,我们知道这两个词之间是有联系的——母亲节通常应该送给母亲一束康乃馨;但是这两个词对应的one-hot vectors之间的距离度量,无论是欧氏距离还是余弦相似度(cosine similarity),由于其向量正交,都认为这两个词毫无相关性。 得出这种与我们相悖的结论的根本原因是:每个词本身的信息量都太小。所以,仅仅给定两个词,不足以让我们准确判别它们是否相关。要想精确计算相关性,我们还需要更多的信息——从大量数据里通过机器学习方法归纳出来的知识。 -在机器学习领域里,各种“知识”被各种模型表示,词向量模型(word embedding model)就是其中的一类。通过词向量模型可将一个 one-hot vector映射到一个维度更低的实数向量(embedding vector),如`$embedding(Mother's\ Day) = [0.3, 4.2, -1.5, ...], embedding(Carnation) = [0.2, 5.6, -2.3, ...]$`。在这个映射到的实数向量表示中,希望两个语义(或用法)上相似的词对应的词向量“更像”,这样如“母亲节”和“康乃馨”的对应词向量的余弦相似度就不再为零了。 +在机器学习领域里,各种“知识”被各种模型表示,词向量模型(word embedding model)就是其中的一类。通过词向量模型可将一个 one-hot vector映射到一个维度更低的实数向量(embedding vector),如$embedding(Mother's\ Day) = [0.3, 4.2, -1.5, ...], embedding(Carnation) = [0.2, 5.6, -2.3, ...]$。在这个映射到的实数向量表示中,希望两个语义(或用法)上相似的词对应的词向量“更像”,这样如“母亲节”和“康乃馨”的对应词向量的余弦相似度就不再为零了。 -词向量模型可以是概率模型、共生矩阵(co-occurrence matrix)模型或神经元网络模型。在用神经网络求词向量之前,传统做法是统计一个词语的共生矩阵`$X$`。`$X$`是一个`$|V| \times |V|$` 大小的矩阵,`$X_{ij}$`表示在所有语料中,词汇表`V`(vocabulary)中第i个词和第j个词同时出现的词数,`$|V|$`为词汇表的大小。对`$X$`做矩阵分解(如奇异值分解,Singular Value Decomposition \[[5](#参考文献)\]),得到的`$U$`即视为所有词的词向量: +词向量模型可以是概率模型、共生矩阵(co-occurrence matrix)模型或神经元网络模型。在用神经网络求词向量之前,传统做法是统计一个词语的共生矩阵$X$。$X$是一个$|V| \times |V|$ 大小的矩阵,$X_{ij}$表示在所有语料中,词汇表`V`(vocabulary)中第i个词和第j个词同时出现的词数,$|V|$为词汇表的大小。对$X$做矩阵分解(如奇异值分解,Singular Value Decomposition \[[5](#参考文献)\]),得到的$U$即视为所有词的词向量: $$X = USV^T$$ 但这样的传统做法有很多问题:@@ -91,17 +91,17 @@ $$\frac{1}{T}\sum_t f(w_t, w_{t-1}, ..., w_{t-n+1};\theta) + R(\theta)$$
图2展示了N-gram神经网络模型,从下往上看,该模型分为以下几个部分: -- 对于每个样本,模型输入`$w_{t-n+1},...w_{t-1}$`, 输出句子第t个词为字典中`|V|`个词的概率。 +- 对于每个样本,模型输入$w_{t-n+1},...w_{t-1}$, 输出句子第t个词为字典中`|V|`个词的概率。 -每个输入词`$w_{t-n+1},...w_{t-1}$`首先通过映射矩阵映射到词向量`$C(w_{t-n+1}),...C(w_{t-1})$`。 +每个输入词$w_{t-n+1},...w_{t-1}$首先通过映射矩阵映射到词向量$C(w_{t-n+1}),...C(w_{t-1})$。 - 然后所有词语的词向量连接成一个大向量,并经过一个非线性映射得到历史词语的隐层表示: $$g=Utanh(\theta^Tx + b_1) + Wx + b_2$$ -其中,`$x$`为所有词语的词向量连接成的大向量,表示文本历史特征;`$\theta$`、`$U$`、`$b_1$`、`$b_2$`和`$W$`分别为词向量层到隐层连接的参数。`$g$`表示未经归一化的所有输出单词概率,`$g_i$`表示未经归一化的字典中第`$i$`个单词的输出概率。 +其中,$x$为所有词语的词向量连接成的大向量,表示文本历史特征;$\theta$、$U$、$b_1$、$b_2$和$W$分别为词向量层到隐层连接的参数。$g$表示未经归一化的所有输出单词概率,$g_i$表示未经归一化的字典中第$i$个单词的输出概率。 -- 根据softmax的定义,通过归一化`$g_i$`, 生成目标词`$w_t$`的概率为: +- 根据softmax的定义,通过归一化$g_i$, 生成目标词$w_t$的概率为: $$P(w_t | w_1, ..., w_{t-n+1}) = \frac{e^{g_{w_t}}}{\sum_i^{|V|} e^{g_i}}$$ @@ -109,7 +109,7 @@ $$P(w_t | w_1, ..., w_{t-n+1}) = \frac{e^{g_{w_t}}}{\sum_i^{|V|} e^{g_i}}$$ $$J(\theta) = -\sum_{i=1}^N\sum_{c=1}^{|V|}y_k^{i}log(softmax(g_k^i))$$ -其中`$y_k^i$`表示第`$i$`个样本第`$k$`类的真实标签(0或1),`$softmax(g_k^i)$`表示第i个样本第k类softmax输出的概率。 +其中$y_k^i$表示第$i$个样本第$k$类的真实标签(0或1),$softmax(g_k^i)$表示第i个样本第k类softmax输出的概率。 @@ -126,7 +126,7 @@ CBOW模型通过一个词的上下文(各N个词)预测当前词。当N=2时 $$context = \frac{x_{t-1} + x_{t-2} + x_{t+1} + x_{t+2}}{4}$$ -其中`$x_t$`为第`$t$`个词的词向量,分类分数(score)向量 `$z=U*context$`,最终的分类`$y$`采用softmax,损失函数采用多类分类交叉熵。 +其中$x_t$为第$t$个词的词向量,分类分数(score)向量 $z=U*context$,最终的分类$y$采用softmax,损失函数采用多类分类交叉熵。 ### Skip-gram model @@ -137,7 +137,7 @@ CBOW的好处是对上下文词语的分布在词向量上进行了平滑,去 图4. Skip-gram模型 -如上图所示,Skip-gram模型的具体做法是,将一个词的词向量映射到`$2n$`个词的词向量(`$2n$`表示当前输入词的前后各`$n$`个词),然后分别通过softmax得到这`$2n$`个词的分类损失值之和。 +如上图所示,Skip-gram模型的具体做法是,将一个词的词向量映射到$2n$个词的词向量($2n$表示当前输入词的前后各$n$个词),然后分别通过softmax得到这$2n$个词的分类损失值之和。 ## 数据准备 diff --git a/doc/fluid/new_docs/beginners_guide/quick_start/fit_a_line/README.cn.md b/doc/fluid/new_docs/beginners_guide/quick_start/fit_a_line/README.cn.md index ba43ada510..8886a8307c 100644 --- a/doc/fluid/new_docs/beginners_guide/quick_start/fit_a_line/README.cn.md +++ b/doc/fluid/new_docs/beginners_guide/quick_start/fit_a_line/README.cn.md @@ -7,11 +7,11 @@ 本教程源代码目录在[book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/book/blob/develop/README.cn.md#运行这本书)。 ## 背景介绍 -给定一个大小为`$n$`的数据集 `${\{y_{i}, x_{i1}, ..., x_{id}\}}_{i=1}^{n}$`,其中`$x_{i1}, \ldots, x_{id}$`是第`$i$`个样本`$d$`个属性上的取值,`$y_i$`是该样本待预测的目标。线性回归模型假设目标`$y_i$`可以被属性间的线性组合描述,即 +给定一个大小为$n$的数据集 ${\{y_{i}, x_{i1}, ..., x_{id}\}}_{i=1}^{n}$,其中$x_{i1}, \ldots, x_{id}$是第$i$个样本$d$个属性上的取值,$y_i$是该样本待预测的目标。线性回归模型假设目标$y_i$可以被属性间的线性组合描述,即 $$y_i = \omega_1x_{i1} + \omega_2x_{i2} + \ldots + \omega_dx_{id} + b, i=1,\ldots,n$$ -例如,在我们将要建模的房价预测问题里,`$x_{ij}$`是描述房子`$i$`的各种属性(比如房间的个数、周围学校和医院的个数、交通状况等),而 `$y_i$`是房屋的价格。 +例如,在我们将要建模的房价预测问题里,$x_{ij}$是描述房子$i$的各种属性(比如房间的个数、周围学校和医院的个数、交通状况等),而 $y_i$是房屋的价格。 初看起来,这个假设实在过于简单了,变量间的真实关系很难是线性的。但由于线性回归模型有形式简单和易于建模分析的优点,它在实际问题中得到了大量的应用。很多经典的统计学习、机器学习书籍\[[2,3,4](#参考文献)\]也选择对线性模型独立成章重点讲解。 @@ -25,24 +25,24 @@ $$y_i = \omega_1x_{i1} + \omega_2x_{i2} + \ldots + \omega_dx_{id} + b, i=1,\ldo ### 模型定义 -在波士顿房价数据集中,和房屋相关的值共有14个:前13个用来描述房屋相关的各种信息,即模型中的 `$x_i$`;最后一个值为我们要预测的该类房屋价格的中位数,即模型中的 `$y_i$`。因此,我们的模型就可以表示成: +在波士顿房价数据集中,和房屋相关的值共有14个:前13个用来描述房屋相关的各种信息,即模型中的 $x_i$;最后一个值为我们要预测的该类房屋价格的中位数,即模型中的 $y_i$。因此,我们的模型就可以表示成: $$\hat{Y} = \omega_1X_{1} + \omega_2X_{2} + \ldots + \omega_{13}X_{13} + b$$ -`$\hat{Y}$` 表示模型的预测结果,用来和真实值`$Y$`区分。模型要学习的参数即:`$\omega_1, \ldots, \omega_{13}, b$`。 +$\hat{Y}$ 表示模型的预测结果,用来和真实值$Y$区分。模型要学习的参数即:$\omega_1, \ldots, \omega_{13}, b$。 -建立模型后,我们需要给模型一个优化目标,使得学到的参数能够让预测值`$\hat{Y}$`尽可能地接近真实值`$Y$`。这里我们引入损失函数([Loss Function](https://en.wikipedia.org/wiki/Loss_function),或Cost Function)这个概念。 输入任意一个数据样本的目标值`$y_{i}$`和模型给出的预测值`$\hat{y_{i}}$`,损失函数输出一个非负的实值。这个实值通常用来反映模型误差的大小。 +建立模型后,我们需要给模型一个优化目标,使得学到的参数能够让预测值$\hat{Y}$尽可能地接近真实值$Y$。这里我们引入损失函数([Loss Function](https://en.wikipedia.org/wiki/Loss_function),或Cost Function)这个概念。 输入任意一个数据样本的目标值$y_{i}$和模型给出的预测值$\hat{y_{i}}$,损失函数输出一个非负的实值。这个实值通常用来反映模型误差的大小。 对于线性回归模型来讲,最常见的损失函数就是均方误差(Mean Squared Error, [MSE](https://en.wikipedia.org/wiki/Mean_squared_error))了,它的形式是: $$MSE=\frac{1}{n}\sum_{i=1}^{n}{(\hat{Y_i}-Y_i)}^2$$ -即对于一个大小为`$n$`的测试集,`$MSE$`是`$n$`个数据预测结果误差平方的均值。 +即对于一个大小为$n$的测试集,$MSE$是$n$个数据预测结果误差平方的均值。 ### 训练过程 定义好模型结构之后,我们要通过以下几个步骤进行模型训练 -1. 初始化参数,其中包括权重`$\omega_i$`和偏置`$b$`,对其进行初始化(如0均值,1方差)。 +1. 初始化参数,其中包括权重$\omega_i$和偏置$b$,对其进行初始化(如0均值,1方差)。 2. 网络正向传播计算网络输出和损失函数。 3. 根据损失函数进行反向误差传播 ([backpropagation](https://en.wikipedia.org/wiki/Backpropagation)),将网络误差从输出层依次向前传递, 并更新网络中的参数。 4. 重复2~3步骤,直至网络训练误差达到规定的程度或训练轮次达到设定值。 @@ -138,7 +138,7 @@ $$MSE=\frac{1}{n}\sum_{i=1}^{n}{(\hat{Y_i}-Y_i)}^2$$ ### 数据预处理 #### 连续值与离散值 -观察一下数据,我们的第一个发现是:所有的13维属性中,有12维的连续值和1维的离散值(CHAS)。离散值虽然也常使用类似0、1、2这样的数字表示,但是其含义与连续值是不同的,因为这里的差值没有实际意义。例如,我们用0、1、2来分别表示红色、绿色和蓝色的话,我们并不能因此说“蓝色和红色”比“绿色和红色”的距离更远。所以通常对一个有`$d$`个可能取值的离散属性,我们会将它们转为`$d$`个取值为0或1的二值属性或者将每个可能取值映射为一个多维向量。不过就这里而言,因为CHAS本身就是一个二值属性,就省去了这个麻烦。 +观察一下数据,我们的第一个发现是:所有的13维属性中,有12维的连续值和1维的离散值(CHAS)。离散值虽然也常使用类似0、1、2这样的数字表示,但是其含义与连续值是不同的,因为这里的差值没有实际意义。例如,我们用0、1、2来分别表示红色、绿色和蓝色的话,我们并不能因此说“蓝色和红色”比“绿色和红色”的距离更远。所以通常对一个有$d$个可能取值的离散属性,我们会将它们转为$d$个取值为0或1的二值属性或者将每个可能取值映射为一个多维向量。不过就这里而言,因为CHAS本身就是一个二值属性,就省去了这个麻烦。 #### 属性的归一化 另外一个稍加观察即可发现的事实是,各维属性的取值范围差别很大(如图2所示)。例如,属性B的取值范围是[0.32, 396.90],而属性NOX的取值范围是[0.3850, 0.8170]。这里就要用到一个常见的操作-归一化(normalization)了。归一化的目标是把各位属性的取值范围放缩到差不多的区间,例如[-0.5,0.5]。这里我们使用一种很常见的操作方法:减掉均值,然后除以原取值范围。 @@ -152,7 +152,7 @@ $$MSE=\frac{1}{n}\sum_{i=1}^{n}{(\hat{Y_i}-Y_i)}^2$$图2. 各维属性的取值范围
#### 整理训练集与测试集 -我们将数据集分割为两份:一份用于调整模型的参数,即进行模型的训练,模型在这份数据集上的误差被称为**训练误差**;另外一份被用来测试,模型在这份数据集上的误差被称为**测试误差**。我们训练模型的目的是为了通过从训练数据中找到规律来预测未知的新数据,所以测试误差是更能反映模型表现的指标。分割数据的比例要考虑到两个因素:更多的训练数据会降低参数估计的方差,从而得到更可信的模型;而更多的测试数据会降低测试误差的方差,从而得到更可信的测试误差。我们这个例子中设置的分割比例为`$8:2$` +我们将数据集分割为两份:一份用于调整模型的参数,即进行模型的训练,模型在这份数据集上的误差被称为**训练误差**;另外一份被用来测试,模型在这份数据集上的误差被称为**测试误差**。我们训练模型的目的是为了通过从训练数据中找到规律来预测未知的新数据,所以测试误差是更能反映模型表现的指标。分割数据的比例要考虑到两个因素:更多的训练数据会降低参数估计的方差,从而得到更可信的模型;而更多的测试数据会降低测试误差的方差,从而得到更可信的测试误差。我们这个例子中设置的分割比例为$8:2$ 在更复杂的模型训练过程中,我们往往还会多使用一种数据集:验证集。因为复杂的模型中常常还有一些超参数([Hyperparameter](https://en.wikipedia.org/wiki/Hyperparameter_optimization))需要调节,所以我们会尝试多种超参数的组合来分别训练多个模型,然后对比它们在验证集上的表现选择相对最好的一组超参数,最后才使用这组参数下训练的模型在测试集上评估测试误差。由于本章训练的模型比较简单,我们暂且忽略掉这个过程。 diff --git a/doc/fluid/new_docs/beginners_guide/quick_start/recognize_digits/README.cn.md b/doc/fluid/new_docs/beginners_guide/quick_start/recognize_digits/README.cn.md index c04a949a3f..2996d3702c 100644 --- a/doc/fluid/new_docs/beginners_guide/quick_start/recognize_digits/README.cn.md +++ b/doc/fluid/new_docs/beginners_guide/quick_start/recognize_digits/README.cn.md @@ -20,21 +20,21 @@ Yann LeCun早先在手写字符识别上做了很多研究,并在研究过程 ## 模型概览 基于MNIST数据训练一个分类器,在介绍本教程使用的三个基本图像分类网络前,我们先给出一些定义: -- `$X$`是输入:MNIST图片是`$28\times28$` 的二维图像,为了进行计算,我们将其转化为`$784$`维向量,即`$X=\left ( x_0, x_1, \dots, x_{783} \right )$`。 -- `$Y$`是输出:分类器的输出是10类数字(0-9),即`$Y=\left ( y_0, y_1, \dots, y_9 \right )$`,每一维`$y_i$`代表图片分类为第`$i$`类数字的概率。 -- `$L$`是图片的真实标签:`$L=\left ( l_0, l_1, \dots, l_9 \right )$`也是10维,但只有一维为1,其他都为0。 +- $X$是输入:MNIST图片是$28\times28$ 的二维图像,为了进行计算,我们将其转化为$784$维向量,即$X=\left ( x_0, x_1, \dots, x_{783} \right )$。 +- $Y$是输出:分类器的输出是10类数字(0-9),即$Y=\left ( y_0, y_1, \dots, y_9 \right )$,每一维$y_i$代表图片分类为第$i$类数字的概率。 +- $L$是图片的真实标签:$L=\left ( l_0, l_1, \dots, l_9 \right )$也是10维,但只有一维为1,其他都为0。 ### Softmax回归(Softmax Regression) 最简单的Softmax回归模型是先将输入层经过一个全连接层得到的特征,然后直接通过softmax 函数进行多分类\[[9](#参考文献)\]。 -输入层的数据`$X$`传到输出层,在激活操作之前,会乘以相应的权重 `$W$` ,并加上偏置变量 `$b$` ,具体如下: +输入层的数据$X$传到输出层,在激活操作之前,会乘以相应的权重 $W$ ,并加上偏置变量 $b$ ,具体如下: $$ y_i = \text{softmax}(\sum_j W_{i,j}x_j + b_i) $$ -其中 `$ \text{softmax}(x_i) = \frac{e^{x_i}}{\sum_j e^{x_j}} $` +其中 $ \text{softmax}(x_i) = \frac{e^{x_i}}{\sum_j e^{x_j}} $ -对于有 `$N$` 个类别的多分类问题,指定 `$N$` 个输出节点,`$N$` 维结果向量经过softmax将归一化为 `$N$` 个[0,1]范围内的实数值,分别表示该样本属于这 `$N$` 个类别的概率。此处的 `$y_i$` 即对应该图片为数字 `$i$` 的预测概率。 +对于有 $N$ 个类别的多分类问题,指定 $N$ 个输出节点,$N$ 维结果向量经过softmax将归一化为 $N$ 个[0,1]范围内的实数值,分别表示该样本属于这 $N$ 个类别的概率。此处的 $y_i$ 即对应该图片为数字 $i$ 的预测概率。 在分类问题中,我们一般采用交叉熵代价损失函数(cross entropy),公式如下: @@ -49,9 +49,9 @@ $$ \text{crossentropy}(label, y) = -\sum_i label_ilog(y_i) $$ Softmax回归模型采用了最简单的两层神经网络,即只有输入层和输出层,因此其拟合能力有限。为了达到更好的识别效果,我们考虑在输入层和输出层中间加上若干个隐藏层\[[10](#参考文献)\]。 -1. 经过第一个隐藏层,可以得到 `$ H_1 = \phi(W_1X + b_1) $`,其中`$\phi$`代表激活函数,常见的有sigmoid、tanh或ReLU等函数。 -2. 经过第二个隐藏层,可以得到 `$ H_2 = \phi(W_2H_1 + b_2) $`。 -3. 最后,再经过输出层,得到的`$Y=\text{softmax}(W_3H_2 + b_3)$`,即为最后的分类结果向量。 +1. 经过第一个隐藏层,可以得到 $ H_1 = \phi(W_1X + b_1) $,其中$\phi$代表激活函数,常见的有sigmoid、tanh或ReLU等函数。 +2. 经过第二个隐藏层,可以得到 $ H_2 = \phi(W_2H_1 + b_2) $。 +3. 最后,再经过输出层,得到的$Y=\text{softmax}(W_3H_2 + b_3)$,即为最后的分类结果向量。 图3为多层感知器的网络结构图,图中权重用蓝线表示、偏置用红线表示、+1代表偏置参数的系数为1。 @@ -73,13 +73,13 @@ Softmax回归模型采用了最简单的两层神经网络,即只有输入层 ![cnn](https://raw.githubusercontent.com/PaddlePaddle/book/develop/02.recognize_digits/image/conv_layer.png)图5. 卷积层图片
-图5给出一个卷积计算过程的示例图,输入图像大小为`$H=5,W=5,D=3$`,即`$5 \times 5$`大小的3通道(RGB,也称作深度)彩色图像。这个示例图中包含两(用`$K$`表示)组卷积核,即图中滤波器`$W_0$`和`$W_1$`。在卷积计算中,通常对不同的输入通道采用不同的卷积核,如图示例中每组卷积核包含(`$D=3$`)个`$3 \times 3$`(用`$F \times F$`表示)大小的卷积核。另外,这个示例中卷积核在图像的水平方向(`$W$`方向)和垂直方向(`$H$`方向)的滑动步长为2(用`$S$`表示);对输入图像周围各填充1(用`$P$`表示)个0,即图中输入层原始数据为蓝色部分,灰色部分是进行了大小为1的扩展,用0来进行扩展。经过卷积操作得到输出为`$3 \times 3 \times 2$`(用`$H_{o} \times W_{o} \times K$`表示)大小的特征图,即`$3 \times 3$`大小的2通道特征图,其中`$H_o$`计算公式为:`$H_o = (H - F + 2 \times P)/S + 1$`,`$W_o$`同理。 而输出特征图中的每个像素,是每组滤波器与输入图像每个特征图的内积再求和,再加上偏置`$b_o$`,偏置通常对于每个输出特征图是共享的。输出特征图`$o[:,:,0]$`中的最后一个`$-2$`计算如图5右下角公式所示。 +图5给出一个卷积计算过程的示例图,输入图像大小为$H=5,W=5,D=3$,即$5 \times 5$大小的3通道(RGB,也称作深度)彩色图像。这个示例图中包含两(用$K$表示)组卷积核,即图中滤波器$W_0$和$W_1$。在卷积计算中,通常对不同的输入通道采用不同的卷积核,如图示例中每组卷积核包含($D=3$)个$3 \times 3$(用$F \times F$表示)大小的卷积核。另外,这个示例中卷积核在图像的水平方向($W$方向)和垂直方向($H$方向)的滑动步长为2(用$S$表示);对输入图像周围各填充1(用$P$表示)个0,即图中输入层原始数据为蓝色部分,灰色部分是进行了大小为1的扩展,用0来进行扩展。经过卷积操作得到输出为$3 \times 3 \times 2$(用$H_{o} \times W_{o} \times K$表示)大小的特征图,即$3 \times 3$大小的2通道特征图,其中$H_o$计算公式为:$H_o = (H - F + 2 \times P)/S + 1$,$W_o$同理。 而输出特征图中的每个像素,是每组滤波器与输入图像每个特征图的内积再求和,再加上偏置$b_o$,偏置通常对于每个输出特征图是共享的。输出特征图$o[:,:,0]$中的最后一个$-2$计算如图5右下角公式所示。 -在卷积操作中卷积核是可学习的参数,经过上面示例介绍,每层卷积的参数大小为`$D \times F \times F \times K$`。在多层感知器模型中,神经元通常是全部连接,参数较多。而卷积层的参数较少,这也是由卷积层的主要特性即局部连接和共享权重所决定。 +在卷积操作中卷积核是可学习的参数,经过上面示例介绍,每层卷积的参数大小为$D \times F \times F \times K$。在多层感知器模型中,神经元通常是全部连接,参数较多。而卷积层的参数较少,这也是由卷积层的主要特性即局部连接和共享权重所决定。 - 局部连接:每个神经元仅与输入神经元的一块区域连接,这块局部区域称作感受野(receptive field)。在图像卷积操作中,即神经元在空间维度(spatial dimension,即上图示例H和W所在的平面)是局部连接,但在深度上是全部连接。对于二维图像本身而言,也是局部像素关联较强。这种局部连接保证了学习后的过滤器能够对于局部的输入特征有最强的响应。局部连接的思想,也是受启发于生物学里面的视觉系统结构,视觉皮层的神经元就是局部接受信息的。 -- 权重共享:计算同一个深度切片的神经元时采用的滤波器是共享的。例如图4中计算`$o[:,:,0]$`的每个每个神经元的滤波器均相同,都为`$W_0$`,这样可以很大程度上减少参数。共享权重在一定程度上讲是有意义的,例如图片的底层边缘特征与特征在图中的具体位置无关。但是在一些场景中是无意的,比如输入的图片是人脸,眼睛和头发位于不同的位置,希望在不同的位置学到不同的特征 (参考[斯坦福大学公开课]( http://cs231n.github.io/convolutional-networks/))。请注意权重只是对于同一深度切片的神经元是共享的,在卷积层,通常采用多组卷积核提取不同特征,即对应不同深度切片的特征,不同深度切片的神经元权重是不共享。另外,偏重对同一深度切片的所有神经元都是共享的。 +- 权重共享:计算同一个深度切片的神经元时采用的滤波器是共享的。例如图4中计算$o[:,:,0]$的每个每个神经元的滤波器均相同,都为$W_0$,这样可以很大程度上减少参数。共享权重在一定程度上讲是有意义的,例如图片的底层边缘特征与特征在图中的具体位置无关。但是在一些场景中是无意的,比如输入的图片是人脸,眼睛和头发位于不同的位置,希望在不同的位置学到不同的特征 (参考[斯坦福大学公开课]( http://cs231n.github.io/convolutional-networks/))。请注意权重只是对于同一深度切片的神经元是共享的,在卷积层,通常采用多组卷积核提取不同特征,即对应不同深度切片的特征,不同深度切片的神经元权重是不共享。另外,偏重对同一深度切片的所有神经元都是共享的。 通过介绍卷积计算过程及其特性,可以看出卷积是线性操作,并具有平移不变性(shift-invariant),平移不变性即在图像每个位置执行相同的操作。卷积层的局部连接和权重共享使得需要学习的参数大大减小,这样也有利于训练较大卷积神经网络。 @@ -93,13 +93,13 @@ Softmax回归模型采用了最简单的两层神经网络,即只有输入层 更详细的关于卷积神经网络的具体知识可以参考[斯坦福大学公开课]( http://cs231n.github.io/convolutional-networks/ )和[图像分类](https://github.com/PaddlePaddle/book/blob/develop/image_classification/README.md)教程。 ### 常见激活函数介绍 -- sigmoid激活函数: `$ f(x) = sigmoid(x) = \frac{1}{1+e^{-x}} $` +- sigmoid激活函数: $ f(x) = sigmoid(x) = \frac{1}{1+e^{-x}} $ -- tanh激活函数: `$ f(x) = tanh(x) = \frac{e^x-e^{-x}}{e^x+e^{-x}} $` +- tanh激活函数: $ f(x) = tanh(x) = \frac{e^x-e^{-x}}{e^x+e^{-x}} $ 实际上,tanh函数只是规模变化的sigmoid函数,将sigmoid函数值放大2倍之后再向下平移1个单位:tanh(x) = 2sigmoid(2x) - 1 。 -- ReLU激活函数: `$ f(x) = max(0, x) $` +- ReLU激活函数: $ f(x) = max(0, x) $ 更详细的介绍请参考[维基百科激活函数](https://en.wikipedia.org/wiki/Activation_function)。 -- GitLab