Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
64afa638
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
64afa638
编写于
8月 25, 2022
作者:
R
ronnywang
提交者:
GitHub
8月 25, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] add run_program_op_npu (#45349)
* [NPU] add run_program_op_npu * add run_program_op_npu ut
上级
edd66f2e
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
349 addition
and
2 deletion
+349
-2
paddle/fluid/framework/executor_cache.cc
paddle/fluid/framework/executor_cache.cc
+4
-0
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+1
-1
paddle/fluid/operators/elementwise/elementwise_add_op_npu.cc
paddle/fluid/operators/elementwise/elementwise_add_op_npu.cc
+4
-1
paddle/fluid/operators/run_program_op_npu.cc
paddle/fluid/operators/run_program_op_npu.cc
+29
-0
python/paddle/fluid/tests/unittests/npu/test_run_program_op_npu.py
...ddle/fluid/tests/unittests/npu/test_run_program_op_npu.py
+311
-0
未找到文件。
paddle/fluid/framework/executor_cache.cc
浏览文件 @
64afa638
...
@@ -50,6 +50,10 @@ static ExecutionStrategy GetExecutionStrategy(const platform::Place &place) {
...
@@ -50,6 +50,10 @@ static ExecutionStrategy GetExecutionStrategy(const platform::Place &place) {
execution_strategy
.
num_threads_
=
1
;
execution_strategy
.
num_threads_
=
1
;
break
;
break
;
}
}
case
platform
::
DeviceType
::
NPU
:
{
execution_strategy
.
num_threads_
=
1
;
break
;
}
default:
default:
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"Unsupported Device type %d."
,
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"Unsupported Device type %d."
,
device_type
));
device_type
));
...
...
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
64afa638
...
@@ -106,7 +106,7 @@ set(OP_HEADER_DEPS ${OP_HEADER_DEPS} phi phi_api_utils gather_scatter_kernel bac
...
@@ -106,7 +106,7 @@ set(OP_HEADER_DEPS ${OP_HEADER_DEPS} phi phi_api_utils gather_scatter_kernel bac
register_operators
(
EXCLUDES py_layer_op py_func_op warpctc_op dgc_op load_combine_op lstm_op run_program_op eye_op quantize_linear_op
register_operators
(
EXCLUDES py_layer_op py_func_op warpctc_op dgc_op load_combine_op lstm_op run_program_op eye_op quantize_linear_op
recurrent_op save_combine_op sparse_attention_op sync_batch_norm_op
${
OP_MKL_DEPS
}
DEPS
${
OP_HEADER_DEPS
}
)
recurrent_op save_combine_op sparse_attention_op sync_batch_norm_op
${
OP_MKL_DEPS
}
DEPS
${
OP_HEADER_DEPS
}
)
op_library
(
run_program_op SRCS run_program_op.cc run_program_op.cu.cc DEPS executor_cache
${
OP_HEADER_DEPS
}
)
op_library
(
run_program_op SRCS run_program_op.cc run_program_op.cu.cc
run_program_op_npu.cc
DEPS executor_cache
${
OP_HEADER_DEPS
}
)
target_link_libraries
(
run_program_op cuda_graph_with_memory_pool
)
target_link_libraries
(
run_program_op cuda_graph_with_memory_pool
)
op_library
(
quantize_linear_op DEPS phi
)
op_library
(
quantize_linear_op DEPS phi
)
op_library
(
save_combine_op DEPS string_array
)
op_library
(
save_combine_op DEPS string_array
)
...
...
paddle/fluid/operators/elementwise/elementwise_add_op_npu.cc
浏览文件 @
64afa638
...
@@ -40,7 +40,10 @@ class ElementwiseAddNPUKernel : public framework::OpKernel<T> {
...
@@ -40,7 +40,10 @@ class ElementwiseAddNPUKernel : public framework::OpKernel<T> {
auto
x_dims
=
x
->
dims
();
auto
x_dims
=
x
->
dims
();
auto
y_dims
=
y
->
dims
();
auto
y_dims
=
y
->
dims
();
axis
=
(
axis
==
-
1
?
std
::
abs
(
x_dims
.
size
()
-
y_dims
.
size
())
:
axis
);
axis
=
(
axis
==
-
1
?
std
::
abs
(
x_dims
.
size
()
-
y_dims
.
size
())
:
axis
);
if
(
x_dims
.
size
()
>=
y_dims
.
size
())
{
if
(
x_dims
.
size
()
==
y_dims
.
size
())
{
direct_compute
=
true
;
}
else
if
(
x_dims
.
size
()
>
y_dims
.
size
())
{
direct_compute
=
x_dims
.
size
()
==
(
y_dims
.
size
()
+
axis
);
direct_compute
=
x_dims
.
size
()
==
(
y_dims
.
size
()
+
axis
);
}
else
{
}
else
{
direct_compute
=
y_dims
.
size
()
==
(
x_dims
.
size
()
+
axis
);
direct_compute
=
y_dims
.
size
()
==
(
x_dims
.
size
()
+
axis
);
...
...
paddle/fluid/operators/run_program_op_npu.cc
0 → 100644
浏览文件 @
64afa638
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/operators/run_program_op.h"
#include "paddle/fluid/platform/float16.h"
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
/* see [Why use single type kernel] */
REGISTER_OP_NPU_KERNEL
(
run_program
,
ops
::
RunProgramOpKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
);
REGISTER_OP_NPU_KERNEL
(
run_program_grad
,
ops
::
RunProgramGradOpKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
);
#endif
python/paddle/fluid/tests/unittests/npu/test_run_program_op_npu.py
0 → 100644
浏览文件 @
64afa638
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
contextlib
import
unittest
import
numpy
as
np
import
six
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
from
paddle
import
_C_ops
import
paddle.fluid
as
fluid
from
paddle
import
compat
as
cpt
from
paddle.fluid
import
core
,
framework
,
executor
from
paddle.fluid.layers.utils
import
_hash_with_id
from
paddle.fluid.framework
import
_in_eager_mode_
paddle
.
enable_static
()
np
.
random
.
seed
(
1243
)
@
contextlib
.
contextmanager
def
program_scope_guard
():
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
scope
):
with
fluid
.
program_guard
(
prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
yield
# NOTE: Because RunProgramOp has a special output of type std::vector<Scope *>,
# the OpTest cannot be used in RunProgramOp. The variable type cannot be specified
# when creating output variables in OpTest, default type is LoDTensor
# NOTE: the gradient test method in OpTest also cannot be used for RunProgramOp,
# because it hold BlockDesc type attr, OperatorFactory can't parse this attr type
# when create Operator, so here compare gradients with static graph
# NOTE: Here rewrite a simple unittest framework for RunProgramOp
class
RunProgramNPUOpTest
(
unittest
.
TestCase
):
def
build_model
(
self
):
raise
NotImplementedError
(
"RunProgramOp test should implement build_model"
)
def
check_output
(
self
):
places
=
[
fluid
.
NPUPlace
(
0
)]
for
place
in
places
:
# TODO: RunProgramOp is not recommended for use in static mode now
self
.
expect_outs
=
self
.
run_static_model
(
place
,
is_test
=
True
)
self
.
check_output_with_place
(
place
)
def
check_grad
(
self
):
places
=
[
fluid
.
NPUPlace
(
0
)]
for
place
in
places
:
# TODO: RunProgramOp is not recommended for use in static mode now
self
.
expect_grads
=
self
.
run_static_model
(
place
,
is_test
=
False
)
self
.
check_grad_with_place
(
place
)
def
run_static_model
(
self
,
place
,
is_test
=
True
):
with
program_scope_guard
():
startup_program
=
fluid
.
default_startup_program
()
main_program
=
fluid
.
default_main_program
()
self
.
build_model
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_program
)
if
is_test
:
fetch_list
=
self
.
output_names
[
'Out'
]
else
:
fetch_list
=
self
.
get_param_grad_names
()
outs
=
exe
.
run
(
main_program
,
feed
=
self
.
inputs
[
'X'
],
fetch_list
=
fetch_list
)
return
outs
def
get_program_desc
(
self
):
with
program_scope_guard
():
fwd_op_num
=
self
.
build_model
()
return
fluid
.
default_main_program
().
desc
,
fwd_op_num
def
prepare_attrs
(
self
):
return
(
'global_block'
,
self
.
program_desc
.
block
(
0
),
'start_op_index'
,
0
,
'end_op_index'
,
self
.
fwd_op_num
,
'program_id'
,
_hash_with_id
(
self
.
program_desc
,
self
))
def
get_param_grad_names
(
self
):
grad_names
=
[]
for
var_name
in
self
.
inputs
[
'Params'
]:
grad_names
.
append
(
var_name
+
core
.
grad_var_suffix
())
return
grad_names
def
check_output_with_place
(
self
,
place
):
# Step 1. run op
actual_outs
=
self
.
calc_dygraph_output
(
place
)
# Step 2. compare output
for
expect_v
,
actual_v
in
six
.
moves
.
zip
(
self
.
expect_outs
,
actual_outs
):
np
.
testing
.
assert_allclose
(
expect_v
,
actual_v
.
numpy
(),
rtol
=
1e-05
,
atol
=
1e-05
)
def
check_grad_with_place
(
self
,
place
):
# Step 1. calc grads
actual_grads
=
self
.
calc_dygraph_grad
(
place
)
# Step 2. compare grads
for
expect_v
,
actual_v
in
six
.
moves
.
zip
(
self
.
expect_grads
,
actual_grads
):
np
.
testing
.
assert_array_almost_equal
(
expect_v
,
actual_v
)
np
.
testing
.
assert_allclose
(
expect_v
,
actual_v
,
rtol
=
1e-05
,
atol
=
1e-05
)
def
prepare_dygraph_input
(
self
,
place
,
return_param_list
=
False
):
def
create_var_base
(
is_input
,
name
,
np_value
,
stop_gradient
):
if
_in_eager_mode_
:
var
=
core
.
eager
.
Tensor
(
value
=
np_value
,
name
=
name
,
place
=
place
,
zero_copy
=
True
)
else
:
var
=
core
.
VarBase
(
value
=
np_value
,
name
=
name
,
place
=
place
,
zero_copy
=
True
)
var
.
stop_gradient
=
stop_gradient
return
var
# build inputs
inputs
=
{}
param_list
=
[]
inputs
[
'X'
]
=
[]
for
name
,
np_value
in
self
.
inputs
[
'X'
].
items
():
var
=
create_var_base
(
True
,
name
,
np_value
,
True
)
inputs
[
'X'
].
append
(
var
)
inputs
[
'Params'
]
=
[]
for
name
,
np_value
in
self
.
inputs
[
'Params'
].
items
():
var
=
create_var_base
(
True
,
name
,
np_value
,
False
)
inputs
[
'Params'
].
append
(
var
)
if
return_param_list
:
param_list
.
append
(
var
)
if
return_param_list
:
return
inputs
,
param_list
return
inputs
def
prepare_dygraph_output
(
self
):
def
create_var_base
(
is_input
,
name
):
var
=
framework
.
_varbase_creator
(
dtype
=
None
,
shape
=
None
,
name
=
name
)
var
.
stop_gradient
=
False
return
var
# build outputs
outputs
=
{}
outputs
[
'Out'
]
=
[]
for
name
in
self
.
output_names
[
'Out'
]:
outputs
[
'Out'
].
append
(
create_var_base
(
False
,
name
))
if
_in_eager_mode_
:
outputs
[
'OutScope'
]
=
[
core
.
Scope
()]
else
:
outputs
[
'OutScope'
]
=
framework
.
_varbase_creator
(
type
=
core
.
VarDesc
.
VarType
.
STEP_SCOPES
,
name
=
"program_out_scope"
,
persistable
=
True
)
inner_scope
=
core
.
Scope
()
outputs
[
'OutScope'
].
value
().
set_scope
(
inner_scope
)
outputs
[
'DOut'
]
=
[
create_var_base
(
False
,
"Fake_var"
)]
return
outputs
def
calc_dygraph_output
(
self
,
place
):
self
.
program_desc
,
self
.
fwd_op_num
=
self
.
get_program_desc
()
self
.
attrs
=
self
.
prepare_attrs
()
with
fluid
.
dygraph
.
guard
(
place
):
inputs
=
self
.
prepare_dygraph_input
(
place
)
outputs
=
self
.
prepare_dygraph_output
()
_C_ops
.
run_program
(
inputs
[
'X'
],
inputs
[
'Params'
],
outputs
[
'Out'
],
outputs
[
'OutScope'
],
outputs
[
'DOut'
],
None
,
*
self
.
attrs
)
return
outputs
[
'Out'
]
def
calc_dygraph_grad
(
self
,
place
):
self
.
program_desc
,
self
.
fwd_op_num
=
self
.
get_program_desc
()
self
.
attrs
=
self
.
prepare_attrs
()
with
fluid
.
dygraph
.
guard
(
place
):
# Step 1. run forward
inputs
,
input_param_list
=
self
.
prepare_dygraph_input
(
place
,
True
)
outputs
=
self
.
prepare_dygraph_output
()
_C_ops
.
run_program
(
inputs
[
'X'
],
inputs
[
'Params'
],
outputs
[
'Out'
],
outputs
[
'OutScope'
],
outputs
[
'DOut'
],
None
,
*
self
.
attrs
)
for
param
in
input_param_list
:
var_type
=
self
.
_get_grad_vartype
(
param
.
name
)
if
var_type
is
None
:
continue
param
.
_set_grad_type
(
var_type
)
# Step 2. run backward
# NOTE: in unittest, only support single output now
actual_outs
=
outputs
[
'Out'
]
assert
len
(
actual_outs
)
==
1
actual_outs
[
0
].
backward
()
# Step 3. prepare grads
grads
=
[]
for
param
in
input_param_list
:
grad
=
param
.
gradient
()
grads
.
append
(
grad
)
return
grads
def
_get_grad_vartype
(
self
,
name
):
assert
self
.
program_desc
is
not
None
grad_name
=
name
+
core
.
grad_var_suffix
()
for
i
in
six
.
moves
.
range
(
self
.
program_desc
.
num_blocks
()):
block
=
self
.
program_desc
.
block
(
i
)
var_desc
=
block
.
find_var_recursive
(
cpt
.
to_bytes
(
grad_name
))
return
var_desc
.
type
()
if
var_desc
is
not
None
else
None
class
TestRunProgramOpWithFC
(
RunProgramNPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
"run_program"
self
.
dtype
=
np
.
float32
self
.
input_names
=
{
'X'
:
[
'img'
],
'Params'
:
[
'weight_param'
,
'bias_param'
]
}
self
.
output_names
=
{
'Out'
:
[
'fc_0.tmp_2'
]}
self
.
inputs
=
{
'X'
:
{
self
.
input_names
[
'X'
][
0
]:
np
.
random
.
random
((
32
,
1
,
28
,
28
)).
astype
(
self
.
dtype
)
},
'Params'
:
{
self
.
input_names
[
'Params'
][
0
]:
np
.
random
.
random
((
784
,
10
)).
astype
(
self
.
dtype
),
self
.
input_names
[
'Params'
][
1
]:
np
.
random
.
random
((
32
,
10
)).
astype
(
self
.
dtype
)
}
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
()
def
build_model
(
self
):
# 1. simple model
img
=
fluid
.
data
(
name
=
self
.
input_names
[
'X'
][
0
],
shape
=
[
None
,
1
,
28
,
28
],
dtype
=
'float32'
)
weight_attr
=
fluid
.
ParamAttr
(
name
=
self
.
input_names
[
'Params'
][
0
],
learning_rate
=
0.5
,
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
self
.
inputs
[
'Params'
][
self
.
input_names
[
'Params'
][
0
]]),
trainable
=
True
)
bias_attr
=
fluid
.
ParamAttr
(
name
=
self
.
input_names
[
'Params'
][
1
],
learning_rate
=
0.5
,
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
self
.
inputs
[
'Params'
][
self
.
input_names
[
'Params'
][
1
]]),
trainable
=
True
)
pred
=
fluid
.
layers
.
fc
(
input
=
img
,
size
=
10
,
param_attr
=
weight_attr
,
bias_attr
=
bias_attr
,
act
=
'relu'
)
# 2. get forward op num
fwd_op_num
=
fluid
.
default_main_program
().
global_block
().
desc
.
op_size
()
# 3. append backward
grads
=
fluid
.
backward
.
gradients
(
targets
=
[
pred
],
inputs
=
[
img
])
return
fwd_op_num
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录