From 6364ebc4dde064cb00360221afc33970f14b756e Mon Sep 17 00:00:00 2001 From: Aurelius84 Date: Thu, 5 Sep 2019 11:10:45 +0800 Subject: [PATCH] Add distributions of Categorical and MultivariateNormal (#18263) * add_distributions_of_normal_and_uniform * paddle/fluid/API.spec * modify API.spec * modified paddle/fluid/API.spec, test=develop * modify paddle/fluid/API.spec, test=develop * modify paddle/fluid/API.spec, test=develop * fix some comment, test=develop * modify API.spec, test=develop * Add distributions of Categorical and MultivariateNormal test=develop * fix pylint codestyle test=develop * fix conflict file test=develop * edit API.spec test=develop * improve sample code test=develop * modify api.spec test=develop --- paddle/fluid/API.spec | 12 + python/paddle/fluid/layers/distributions.py | 207 +++++++++++++++++- .../tests/unittests/test_distributions.py | 161 ++++++++++++++ 3 files changed, 379 insertions(+), 1 deletion(-) diff --git a/paddle/fluid/API.spec b/paddle/fluid/API.spec index c60e31e850..b3b1409366 100755 --- a/paddle/fluid/API.spec +++ b/paddle/fluid/API.spec @@ -439,6 +439,18 @@ paddle.fluid.layers.Normal.entropy (ArgSpec(args=['self'], varargs=None, keyword paddle.fluid.layers.Normal.kl_divergence (ArgSpec(args=['self', 'other'], varargs=None, keywords=None, defaults=None), ('document', '2e8845cdf1129647e6fa6e816876cd3b')) paddle.fluid.layers.Normal.log_prob (ArgSpec(args=['self', 'value'], varargs=None, keywords=None, defaults=None), ('document', 'b79091014ceaffb6a7372a198a341c23')) paddle.fluid.layers.Normal.sample (ArgSpec(args=['self', 'shape', 'seed'], varargs=None, keywords=None, defaults=(0,)), ('document', 'adac334af13f6984e991b3ecf12b8cb7')) +paddle.fluid.layers.Categorical ('paddle.fluid.layers.distributions.Categorical', ('document', '865c9dac8af6190e05588486ba091ee8')) +paddle.fluid.layers.Categorical.__init__ (ArgSpec(args=['self', 'logits'], varargs=None, keywords=None, defaults=None), ('document', '933b96c9ebab8e2c1f6007a50287311e')) +paddle.fluid.layers.Categorical.entropy (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', 'b360a2a7a4da07c2d268b329e09c82c1')) +paddle.fluid.layers.Categorical.kl_divergence (ArgSpec(args=['self', 'other'], varargs=None, keywords=None, defaults=None), ('document', 'c2c4c37376584178025f0a4a61c4b862')) +paddle.fluid.layers.Categorical.log_prob (ArgSpec(args=['self', 'value'], varargs=None, keywords=None, defaults=None), ('document', 'c0edd2e2fc76711477b32dc4da9de768')) +paddle.fluid.layers.Categorical.sample (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '08a2bbcaa20ee176ee7ec3d05737a0f6')) +paddle.fluid.layers.MultivariateNormalDiag ('paddle.fluid.layers.distributions.MultivariateNormalDiag', ('document', 'f6ee0e8b2898796dcff2a68c9fda19f0')) +paddle.fluid.layers.MultivariateNormalDiag.__init__ (ArgSpec(args=['self', 'loc', 'scale'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) +paddle.fluid.layers.MultivariateNormalDiag.entropy (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '3c679b573ba975c5067c8ebfd4354b02')) +paddle.fluid.layers.MultivariateNormalDiag.kl_divergence (ArgSpec(args=['self', 'other'], varargs=None, keywords=None, defaults=None), ('document', 'd9190d29dbd54c81f747a6436c35f062')) +paddle.fluid.layers.MultivariateNormalDiag.log_prob (ArgSpec(args=['self', 'value'], varargs=None, keywords=None, defaults=None), ('document', 'c0edd2e2fc76711477b32dc4da9de768')) +paddle.fluid.layers.MultivariateNormalDiag.sample (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '08a2bbcaa20ee176ee7ec3d05737a0f6')) paddle.fluid.contrib.InitState ('paddle.fluid.contrib.decoder.beam_search_decoder.InitState', ('document', '3afd1f84232718e628e9e566941c5f05')) paddle.fluid.contrib.InitState.__init__ (ArgSpec(args=['self', 'init', 'shape', 'value', 'init_boot', 'need_reorder', 'dtype'], varargs=None, keywords=None, defaults=(None, None, 0.0, None, False, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.contrib.StateCell ('paddle.fluid.contrib.decoder.beam_search_decoder.StateCell', ('document', 'ecd0066c02867d445d7b461e28220c50')) diff --git a/python/paddle/fluid/layers/distributions.py b/python/paddle/fluid/layers/distributions.py index 51d134179b..fd67706b99 100644 --- a/python/paddle/fluid/layers/distributions.py +++ b/python/paddle/fluid/layers/distributions.py @@ -22,7 +22,7 @@ import math import numpy as np import warnings -__all__ = ['Uniform', 'Normal'] +__all__ = ['Uniform', 'Normal', 'Categorical', 'MultivariateNormalDiag'] class Distribution(object): @@ -396,3 +396,208 @@ class Normal(Distribution): t1 = (self.loc - other.loc) / other.scale t1 = (t1 * t1) return 0.5 * (var_ratio + t1 - 1. - nn.log(var_ratio)) + + +class Categorical(Distribution): + """ + Categorical distribution is a discrete probability distribution that + describes the possible results of a random variable that can take on + one of K possible categories, with the probability of each category + separately specified. + + Args: + logits(list|numpy.ndarray|Variable): The logits input of categorical distribution. + + Examples: + .. code-block:: python + + import numpy as np + from paddle.fluid import layers + from paddle.fluid.layers import Categorical + + a_logits_npdata = np.array([-0.602,-0.602], dtype="float32") + a_logits_tensor = layers.create_tensor(dtype="float32") + layers.assign(a_logits_npdata, a_logits_tensor) + + b_logits_npdata = np.array([-0.102,-0.112], dtype="float32") + b_logits_tensor = layers.create_tensor(dtype="float32") + layers.assign(b_logits_npdata, b_logits_tensor) + + a = Categorical(a_logits_tensor) + b = Categorical(b_logits_tensor) + + a.entropy() + # [0.6931472] with shape: [1] + + b.entropy() + # [0.6931347] with shape: [1] + + a.kl_divergence(b) + # [1.2516975e-05] with shape: [1] + + """ + + def __init__(self, logits): + """ + Args: + logits: A float32 tensor + """ + if self._validate_args(logits): + self.logits = logits + else: + self.logits = self._to_variable(logits)[0] + + def kl_divergence(self, other): + """The KL-divergence between two Categorical distributions. + + Args: + other (Categorical): instance of Categorical. + + Returns: + Variable: kl-divergence between two Categorical distributions. + + """ + assert isinstance(other, Categorical) + + logits = self.logits - nn.reduce_max(self.logits, dim=-1, keep_dim=True) + other_logits = other.logits - nn.reduce_max( + other.logits, dim=-1, keep_dim=True) + e_logits = ops.exp(logits) + other_e_logits = ops.exp(other_logits) + z = nn.reduce_sum(e_logits, dim=-1, keep_dim=True) + other_z = nn.reduce_sum(other_e_logits, dim=-1, keep_dim=True) + prob = e_logits / z + kl = nn.reduce_sum( + prob * (logits - nn.log(z) - other_logits + nn.log(other_z)), + dim=-1, + keep_dim=True) + + return kl + + def entropy(self): + """Shannon entropy in nats. + + Returns: + Variable: Shannon entropy of Categorical distribution. + + """ + logits = self.logits - nn.reduce_max(self.logits, dim=-1, keep_dim=True) + e_logits = ops.exp(logits) + z = nn.reduce_sum(e_logits, dim=-1, keep_dim=True) + prob = e_logits / z + entropy = -1.0 * nn.reduce_sum( + prob * (logits - nn.log(z)), dim=-1, keep_dim=True) + + return entropy + + +class MultivariateNormalDiag(Distribution): + """ + A multivariate normal (also called Gaussian) distribution parameterized by a mean vector + and a covariance matrix. + + Args: + loc(list|numpy.ndarray|Variable): The mean of multivariateNormal distribution. + scale(list|numpy.ndarray|Variable): The positive definite diagonal covariance matrix of + multivariateNormal distribution. + + Examples: + .. code-block:: python + + import numpy as np + from paddle.fluid import layers + from paddle.fluid.layers import MultivariateNormalDiag + + a_loc_npdata = np.array([0.3,0.5],dtype="float32") + a_loc_tensor = layers.create_tensor(dtype="float32") + layers.assign(a_loc_npdata, a_loc_tensor) + + + a_scale_npdata = np.array([[0.4,0],[0,0.5]],dtype="float32") + a_scale_tensor = layers.create_tensor(dtype="float32") + layers.assign(a_scale_npdata, a_scale_tensor) + + b_loc_npdata = np.array([0.2,0.4],dtype="float32") + b_loc_tensor = layers.create_tensor(dtype="float32") + layers.assign(b_loc_npdata, b_loc_tensor) + + b_scale_npdata = np.array([[0.3,0],[0,0.4]],dtype="float32") + b_scale_tensor = layers.create_tensor(dtype="float32") + layers.assign(b_scale_npdata, b_scale_tensor) + + a = MultivariateNormalDiag(a_loc_tensor, a_scale_tensor) + b = MultivariateNormalDiag(b_loc_tensor, b_scale_tensor) + + a.entropy() + # [2.033158] with shape: [1] + b.entropy() + # [1.7777451] with shaoe: [1] + + a.kl_divergence(b) + # [0.06542051] with shape: [1] + + """ + + def __init__(self, loc, scale): + if self._validate_args(loc, scale): + self.loc = loc + self.scale = scale + else: + self.loc, self.scale = self._to_variable(loc, scale) + + def _det(self, value): + + batch_shape = list(value.shape) + one_all = tensor.ones(shape=batch_shape, dtype=self.loc.dtype) + one_diag = tensor.diag( + tensor.ones( + shape=[batch_shape[0]], dtype=self.loc.dtype)) + det_diag = nn.reduce_prod(value + one_all - one_diag) + + return det_diag + + def _inv(self, value): + + batch_shape = list(value.shape) + one_all = tensor.ones(shape=batch_shape, dtype=self.loc.dtype) + one_diag = tensor.diag( + tensor.ones( + shape=[batch_shape[0]], dtype=self.loc.dtype)) + inv_diag = nn.elementwise_pow(value, (one_all - 2 * one_diag)) + + return inv_diag + + def entropy(self): + """Shannon entropy in nats. + + Returns: + Variable: Shannon entropy of Multivariate Normal distribution. + + """ + entropy = 0.5 * ( + self.scale.shape[0] * + (1.0 + math.log(2 * math.pi)) + nn.log(self._det(self.scale))) + + return entropy + + def kl_divergence(self, other): + """The KL-divergence between two Multivariate Normal distributions. + + Args: + other (MultivariateNormalDiag): instance of Multivariate Normal. + + Returns: + Variable: kl-divergence between two Multivariate Normal distributions. + + """ + assert isinstance(other, MultivariateNormalDiag) + + tr_cov_matmul = nn.reduce_sum(self._inv(other.scale) * self.scale) + loc_matmul_cov = nn.matmul((other.loc - self.loc), + self._inv(other.scale)) + tri_matmul = nn.matmul(loc_matmul_cov, (other.loc - self.loc)) + k = list(self.scale.shape)[0] + ln_cov = nn.log(self._det(other.scale)) - nn.log(self._det(self.scale)) + kl = 0.5 * (tr_cov_matmul + tri_matmul - k + ln_cov) + + return kl diff --git a/python/paddle/fluid/tests/unittests/test_distributions.py b/python/paddle/fluid/tests/unittests/test_distributions.py index 7102c8ad53..bf001a04ec 100644 --- a/python/paddle/fluid/tests/unittests/test_distributions.py +++ b/python/paddle/fluid/tests/unittests/test_distributions.py @@ -88,6 +88,68 @@ class NormalNumpy(DistributionNumpy): return 0.5 * (var_ratio + t1 - 1 - np.log(var_ratio)) +class CategoricalNumpy(DistributionNumpy): + def __init__(self, logits): + self.logits = np.array(logits).astype('float32') + + def entropy(self): + logits = self.logits - np.max(self.logits, axis=-1, keepdims=True) + e_logits = np.exp(logits) + z = np.sum(e_logits, axis=-1, keepdims=True) + prob = e_logits / z + return -1. * np.sum(prob * (logits - np.log(z)), axis=-1, keepdims=True) + + def kl_divergence(self, other): + logits = self.logits - np.max(self.logits, axis=-1, keepdims=True) + other_logits = other.logits - np.max( + other.logits, axis=-1, keepdims=True) + e_logits = np.exp(logits) + other_e_logits = np.exp(other_logits) + z = np.sum(e_logits, axis=-1, keepdims=True) + other_z = np.sum(other_e_logits, axis=-1, keepdims=True) + prob = e_logits / z + return np.sum(prob * (logits - np.log(z) - other_logits \ + + np.log(other_z)), axis=-1, keepdims=True) + + +class MultivariateNormalDiagNumpy(DistributionNumpy): + def __init__(self, loc, scale): + self.loc = np.array(loc).astype('float32') + self.scale = np.array(scale).astype('float32') + + def _det(self, value): + batch_shape = list(value.shape) + one_all = np.ones(shape=batch_shape, dtype='float32') + one_diag = np.eye(batch_shape[0], dtype='float32') + det_diag = np.prod(value + one_all - one_diag) + + return det_diag + + def _inv(self, value): + batch_shape = list(value.shape) + one_all = np.ones(shape=batch_shape, dtype='float32') + one_diag = np.eye(batch_shape[0], dtype='float32') + inv_diag = np.power(value, (one_all - 2 * one_diag)) + + return inv_diag + + def entropy(self): + return 0.5 * (self.scale.shape[0] * + (1.0 + np.log(np.array(2 * math.pi).astype('float32')) + ) + np.log(self._det(self.scale))) + + def kl_divergence(self, other): + tr_cov_matmul = np.sum(self._inv(other.scale) * self.scale) + loc_matmul_cov = np.matmul((other.loc - self.loc), + self._inv(other.scale)) + tri_matmul = np.matmul(loc_matmul_cov, (other.loc - self.loc)) + k = list(self.scale.shape)[0] + ln_cov = np.log(self._det(other.scale)) - np.log(self._det(self.scale)) + kl = 0.5 * (tr_cov_matmul + tri_matmul - k + ln_cov) + + return kl + + class DistributionTest(unittest.TestCase): def setUp(self, use_gpu=False): self.use_gpu = use_gpu @@ -410,6 +472,105 @@ class DistributionTest(unittest.TestCase): np.testing.assert_allclose( output_lp_variable, gt_lp, rtol=tolerance, atol=tolerance) + def test_categorical_distribution(self, + batch_size=2, + dims=3, + tolerance=1e-6): + test_program = fluid.Program() + + logits_np = np.random.randn(batch_size, dims).astype('float32') + other_logits_np = np.random.randn(batch_size, dims).astype('float32') + + with fluid.program_guard(test_program): + logits = layers.data(name='logits', shape=[dims], dtype='float32') + other_logits = layers.data( + name='other_logits', shape=[dims], dtype='float32') + + categorical_np = Categorical(logits_np) + other_categorical_np = Categorical(other_logits_np) + + entropy_np = categorical_np.entropy() + kl_np = categorical_np.kl_divergence(other_categorical_np) + + self.executor.run(fluid.default_main_program()) + + np_categorical = CategoricalNumpy(logits_np) + np_other_categorical = CategoricalNumpy(other_logits_np) + gt_entropy_np = np_categorical.entropy() + gt_kl_np = np_categorical.kl_divergence(np_other_categorical) + + # result calculated by paddle + [output_entropy_np, + output_kl_np] = self.executor.run(program=test_program, + feed={'logits': logits_np}, + fetch_list=[entropy_np, kl_np]) + np.testing.assert_allclose( + output_entropy_np, gt_entropy_np, rtol=tolerance) + np.testing.assert_allclose(output_kl_np, gt_kl_np, rtol=tolerance) + + def test_multivariateNormalDiag_distribution(self, + batch_size=2, + tolerance=1e-6): + test_program = fluid.Program() + + loc_np = np.random.random(batch_size, ).astype('float32') + scale_np = np.diag(np.random.random(batch_size, )).astype('float32') + other_loc_np = np.random.random(batch_size, ).astype('float32') + other_scale_np = np.diag(np.random.random(batch_size, )).astype( + 'float32') + + with fluid.program_guard(test_program): + loc = layers.data( + name='loc', + shape=[batch_size, ], + dtype='float32', + append_batch_size=False) + scale = layers.data( + name='scale', + shape=[batch_size, batch_size], + dtype='float32', + append_batch_size=False) + other_loc = layers.data( + name='other_loc', + shape=[batch_size, ], + dtype='float32', + append_batch_size=False) + other_scale = layers.data( + name='other_scale', + shape=[batch_size, batch_size], + dtype='float32', + append_batch_size=False) + + multivariate_np = MultivariateNormalDiag(loc, scale) + other_multivariate_np = MultivariateNormalDiag(other_loc, + other_scale) + + entropy_np = multivariate_np.entropy() + other_entropy_np = other_multivariate_np.entropy() + kl_np = multivariate_np.kl_divergence(other_multivariate_np) + + self.executor.run(fluid.default_main_program()) + + np_multivariate = MultivariateNormalDiagNumpy(loc_np, scale_np) + np_other_multivariate = MultivariateNormalDiagNumpy(other_loc_np, + other_scale_np) + gt_entropy_np = np_multivariate.entropy() + gt_kl_np = np_multivariate.kl_divergence(np_other_multivariate) + + # result calculated by paddle + [output_entropy_np, + output_kl_np] = self.executor.run(program=test_program, + feed={ + 'loc': loc_np, + 'scale': scale_np, + 'other_loc': other_loc_np, + 'other_scale': other_scale_np + }, + fetch_list=[entropy_np, kl_np]) + np.testing.assert_allclose( + output_entropy_np, gt_entropy_np, rtol=tolerance) + np.testing.assert_allclose(output_kl_np, gt_kl_np, rtol=tolerance) + if __name__ == '__main__': unittest.main() -- GitLab