diff --git a/cmake/cuda.cmake b/cmake/cuda.cmake index f373951ccb25b5cf0520e0162b9ff0a5c562bc26..2f4f5449f482d71a2a27957af4b5f17601ab634f 100644 --- a/cmake/cuda.cmake +++ b/cmake/cuda.cmake @@ -216,6 +216,8 @@ endif(WIN32) set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} -w") # Set :expt-relaxed-constexpr to suppress Eigen warnings set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} --expt-relaxed-constexpr") +# Set :expt-extended-lambda to enable HOSTDEVICE annotation on lambdas +set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} --expt-extended-lambda") if(WIN32) set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} -Xcompiler \"/wd4244 /wd4267 /wd4819 \"") diff --git a/paddle/fluid/operators/activation_op.cc b/paddle/fluid/operators/activation_op.cc index 3643fd926d33adbbab60a13d2de1d9fbb851941d..785d6daaecdd28e3a811e2d1002dc4cede980bdf 100644 --- a/paddle/fluid/operators/activation_op.cc +++ b/paddle/fluid/operators/activation_op.cc @@ -1061,7 +1061,7 @@ REGISTER_OPERATOR( ops::ActivationOpDoubleGrad2<ops::ReluGradFunctor<float>::FwdDeps()>, ops::ActivationDoubleGradOpInplaceInferer); -REGISTER_ACTIVATION_CPU_KERNEL(relu, Relu, ReluFunctor, ReluGradFunctor); +REGISTER_ACTIVATION_CPU_KERNEL(relu, Relu, ReluCPUFunctor, ReluGradFunctor); REGISTER_OP_CPU_KERNEL( relu_grad_grad, diff --git a/paddle/fluid/operators/activation_op.cu b/paddle/fluid/operators/activation_op.cu index 36777399174f5d2619fbcd40ebf91be1ed29feec..2033081af224a4e938a7b4f0f619729feea57506 100644 --- a/paddle/fluid/operators/activation_op.cu +++ b/paddle/fluid/operators/activation_op.cu @@ -60,7 +60,7 @@ REGISTER_OP_CUDA_KERNEL( /* ========================================================================== */ /* =========================== relu register ============================ */ -REGISTER_ACTIVATION_CUDA_KERNEL(relu, Relu, ReluFunctor, ReluGradFunctor); +REGISTER_ACTIVATION_CUDA_KERNEL(relu, Relu, ReluCUDAFunctor, ReluGradFunctor); REGISTER_OP_CUDA_KERNEL( relu_grad_grad, diff --git a/paddle/fluid/operators/activation_op.h b/paddle/fluid/operators/activation_op.h index 483f5cc2e5cc267b1e0ca3856b32f37acded8c43..289cc70392a3fd7e22e212edab4d7ef59b6ad0f9 100644 --- a/paddle/fluid/operators/activation_op.h +++ b/paddle/fluid/operators/activation_op.h @@ -318,7 +318,17 @@ struct ExpGradFunctor : public BaseActivationFunctor<T> { // relu(x) = max(x, 0) template <typename T> -struct ReluFunctor : public BaseActivationFunctor<T> { +struct ReluCPUFunctor : public BaseActivationFunctor<T> { + template <typename Device, typename X, typename Out> + void operator()(Device d, X x, Out out) const { + out.device(d) = x.unaryExpr([] HOSTDEVICE(T v) { + return v > static_cast<T>(0) ? v : static_cast<T>(0); + }); + } +}; + +template <typename T> +struct ReluCUDAFunctor : public BaseActivationFunctor<T> { template <typename Device, typename X, typename Out> void operator()(Device d, X x, Out out) const { out.device(d) = x.cwiseMax(static_cast<T>(0)); diff --git a/paddle/fluid/operators/fused/fused_bn_activation_op.cu b/paddle/fluid/operators/fused/fused_bn_activation_op.cu index 32eaf1180977a070bd14b3eb79eaaa2357bdb2b0..9339ae8e470de897749c1795a98baeb41ddddaba 100644 --- a/paddle/fluid/operators/fused/fused_bn_activation_op.cu +++ b/paddle/fluid/operators/fused/fused_bn_activation_op.cu @@ -93,7 +93,7 @@ class FusedBatchNormActKernel<platform::CUDADeviceContext, T> auto y_v = framework::EigenVector<T>::Flatten(*y); auto &dev = *dev_ctx.eigen_device(); if (act_type == "relu") { - ReluFunctor<T>()(dev, x_v, y_v); + ReluCUDAFunctor<T>()(dev, x_v, y_v); } else { PADDLE_THROW( platform::errors::Unimplemented("Unsupported activation type")); diff --git a/paddle/fluid/operators/gru_unit_op.h b/paddle/fluid/operators/gru_unit_op.h index 4865a02c5292ffb9d079d0711f0bf7d6e927c441..2d1a89f9ae471017d30f3278955498de71c053aa 100644 --- a/paddle/fluid/operators/gru_unit_op.h +++ b/paddle/fluid/operators/gru_unit_op.h @@ -18,6 +18,7 @@ limitations under the License. */ #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/activation_op.h" #include "paddle/fluid/operators/math/blas.h" +#include "paddle/fluid/platform/place.h" namespace paddle { namespace operators { @@ -37,19 +38,24 @@ template <typename DeviceContext, typename T> class GRUUnitKernel : public framework::OpKernel<T> { public: template <typename Device, typename X, typename Y> - void ActCompute(const int act_type, const Device& d, X x, Y y) const { - if (act_type == identity) + void ActCompute(const int act_type, const Device& d, X x, Y y, + platform::Place place) const { + if (act_type == identity) { y.device(d) = x; - else if (act_type == sigmoid) + } else if (act_type == sigmoid) { SigmoidFunctor<T>()(d, x, y); - else if (act_type == tanh) + } else if (act_type == tanh) { TanhFunctor<T>()(d, x, y); - else if (act_type == relu) - ReluFunctor<T>()(d, x, y); - else + } else if (act_type == relu) { + if (place == platform::CPUPlace()) + ReluCPUFunctor<T>()(d, x, y); + else + ReluCUDAFunctor<T>()(d, x, y); + } else { PADDLE_THROW(platform::errors::Unimplemented( "Unsupported activation type, only supports identity, sigmoid, tanh " "and relu.")); + } } void Compute(const framework::ExecutionContext& context) const override { @@ -97,11 +103,13 @@ class GRUUnitKernel : public framework::OpKernel<T> { Eigen::array<int, 2> extents{{batch_size, frame_size}}; Eigen::array<int, 2> u_offsets{{0, 0}}; ActCompute(context.Attr<int>("gate_activation"), place, - g.slice(u_offsets, extents), g.slice(u_offsets, extents)); + g.slice(u_offsets, extents), g.slice(u_offsets, extents), + context.GetPlace()); auto u = g.slice(u_offsets, extents); // update gate Eigen::array<int, 2> r_offsets{{0, frame_size}}; ActCompute(context.Attr<int>("gate_activation"), place, - g.slice(r_offsets, extents), g.slice(r_offsets, extents)); + g.slice(r_offsets, extents), g.slice(r_offsets, extents), + context.GetPlace()); auto r = g.slice(r_offsets, extents); // reset gate r_h_p.device(place) = r * h_p; // reset previous hidden state blas.GEMM(false, false, batch_size, frame_size, frame_size, 1, @@ -111,7 +119,8 @@ class GRUUnitKernel : public framework::OpKernel<T> { Eigen::array<int, 2> c_offsets{{0, frame_size * 2}}; ActCompute(context.Attr<int>("activation"), place, - g.slice(c_offsets, extents), g.slice(c_offsets, extents)); + g.slice(c_offsets, extents), g.slice(c_offsets, extents), + context.GetPlace()); auto c = g.slice(c_offsets, extents); // output candidate // calculate final output diff --git a/paddle/fluid/operators/lstmp_op.h b/paddle/fluid/operators/lstmp_op.h index a2d1d5295be82f1e4c328c84005c9c676ccd06aa..5a6ac42f457852308bbe83bc824c21575d4640c8 100644 --- a/paddle/fluid/operators/lstmp_op.h +++ b/paddle/fluid/operators/lstmp_op.h @@ -22,6 +22,7 @@ limitations under the License. */ #include "paddle/fluid/operators/math/detail/activation_functions.h" #include "paddle/fluid/operators/math/lstm_compute.h" #include "paddle/fluid/operators/math/sequence2batch.h" +#include "paddle/fluid/platform/place.h" #include "paddle/fluid/platform/transform.h" namespace paddle { @@ -81,18 +82,22 @@ class LSTMPKernel : public framework::OpKernel<T> { public: template <typename Device, typename X, typename Y> void ActCompute(const math::detail::ActivationType act_type, const Device& d, - X x, Y y) const { - if (act_type == math::detail::ActivationType::kIdentity) + X x, Y y, platform::Place place) const { + if (act_type == math::detail::ActivationType::kIdentity) { y.device(d) = x; - else if (act_type == math::detail::ActivationType::kSigmoid) + } else if (act_type == math::detail::ActivationType::kSigmoid) { SigmoidFunctor<T>()(d, x, y); - else if (act_type == math::detail::ActivationType::kTanh) + } else if (act_type == math::detail::ActivationType::kTanh) { TanhFunctor<T>()(d, x, y); - else if (act_type == math::detail::ActivationType::kReLU) - ReluFunctor<T>()(d, x, y); - else + } else if (act_type == math::detail::ActivationType::kReLU) { + if (place == platform::CPUPlace()) + ReluCPUFunctor<T>()(d, x, y); + else + ReluCUDAFunctor<T>()(d, x, y); + } else { PADDLE_THROW( platform::errors::InvalidArgument("unsupported activation type")); + } } void Compute(const framework::ExecutionContext& ctx) const override { @@ -225,7 +230,7 @@ class LSTMPKernel : public framework::OpKernel<T> { &proj_t, static_cast<T>(0.0)); if (proj_act != math::detail::ActivationType::kIdentity) { auto proj_t_dev = EigenMatrix<T>::From(proj_t); - ActCompute(cell_act, place, proj_t_dev, proj_t_dev); + ActCompute(cell_act, place, proj_t_dev, proj_t_dev, ctx.GetPlace()); } if (proj_clip && proj_clip > 0.0) { T* x_data = proj_t.data<T>(); diff --git a/paddle/fluid/operators/rnn_op.h b/paddle/fluid/operators/rnn_op.h index b993f5ac17479544e127f669c94ce0606ab47399..2b223e24cf8e63082fff221301cbe5000962a84f 100644 --- a/paddle/fluid/operators/rnn_op.h +++ b/paddle/fluid/operators/rnn_op.h @@ -979,7 +979,7 @@ class RNNCPUKernel : public framework::OpKernel<T> { } else if (is_rnn_relu(ctx)) { gate_num = 1; RnnFunc< - SimpleRNNCell<T, ReluFunctor, math::detail::ActivationType::kReLU>, + SimpleRNNCell<T, ReluCPUFunctor, math::detail::ActivationType::kReLU>, Layer, SingleLayer, BidirLayer, T>( ctx, input, weight_list, pre_state[0], nullptr, sequence_length, state[0], nullptr, output, dropout_mask, num_layers, gate_num,