Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
6125a588
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6125a588
编写于
6月 23, 2019
作者:
Y
Yibing Liu
提交者:
GitHub
6月 23, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix ema's example & fp16 update (#18273) (#18275)
test=release/1.5
上级
575bc572
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
63 addition
and
33 deletion
+63
-33
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+63
-33
未找到文件。
python/paddle/fluid/optimizer.py
浏览文件 @
6125a588
...
@@ -2459,12 +2459,16 @@ class ExponentialMovingAverage(object):
...
@@ -2459,12 +2459,16 @@ class ExponentialMovingAverage(object):
.. code-block:: python
.. code-block:: python
import numpy
import paddle
import paddle.fluid as fluid
import paddle.fluid as fluid
data = fluid.layers.data(name='x', shape=[5], dtype='float32')
data = fluid.layers.data(name='x', shape=[5], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
hidden = fluid.layers.fc(input=data, size=10)
cost = fluid.layers.mean(hidden)
cost = fluid.layers.mean(hidden)
test_program = fluid.default_main_program().clone(for_test=True)
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
optimizer.minimize(cost)
optimizer.minimize(cost)
...
@@ -2472,21 +2476,31 @@ class ExponentialMovingAverage(object):
...
@@ -2472,21 +2476,31 @@ class ExponentialMovingAverage(object):
ema = fluid.optimizer.ExponentialMovingAverage(0.999, thres_steps=global_steps)
ema = fluid.optimizer.ExponentialMovingAverage(0.999, thres_steps=global_steps)
ema.update()
ema.update()
# pseudo code
place = fluid.CPUPlace()
for pass_id in range(args.pass_num):
exe = fluid.Executor(place)
for data in train_reader():
exe.run(fluid.default_startup_program())
exe.run(fluid.default_main_program()...)
for pass_id in range(3):
for batch_id in range(6):
data = numpy.random.random(size=(10, 5)).astype('float32')
exe.run(program=fluid.default_main_program(),
feed={'x': data},
fetch_list=[cost.name])
# usage 1
# usage 1
with ema.apply(exe):
with ema.apply(exe):
for data in test_reader():
data = numpy.random.random(size=(10, 5)).astype('float32')
exe.run(inference_program...)
exe.run(program=test_program,
feed={'x': data},
fetch_list=[hidden.name])
# usage 2
# usage 2
with ema.apply(exe, need_restore=False):
with ema.apply(exe, need_restore=False):
for data in test_reader():
data = numpy.random.random(size=(10, 5)).astype('float32')
exe.run(inference_program...)
exe.run(program=test_program,
...
feed={'x': data},
fetch_list=[hidden.name])
ema.restore(exe)
ema.restore(exe)
"""
"""
...
@@ -2576,14 +2590,30 @@ class ExponentialMovingAverage(object):
...
@@ -2576,14 +2590,30 @@ class ExponentialMovingAverage(object):
Update Exponential Moving Average. Should only call this method in
Update Exponential Moving Average. Should only call this method in
train program.
train program.
"""
"""
param_master_emas
=
[]
for
param
,
tmp
in
self
.
_params_tmps
:
for
param
,
tmp
in
self
.
_params_tmps
:
with
param
.
block
.
program
.
_optimized_guard
(
with
param
.
block
.
program
.
_optimized_guard
(
[
param
,
tmp
]),
name_scope
(
'moving_average'
):
[
param
,
tmp
]),
name_scope
(
'moving_average'
):
param_ema
=
self
.
_ema_vars
[
param
.
name
]
param_ema
=
self
.
_ema_vars
[
param
.
name
]
ema_t
=
param_ema
*
self
.
_decay_var
+
param
*
(
1
-
if
self
.
_ema_vars
.
has_key
(
param
.
name
+
'.master'
):
self
.
_decay_var
)
master_ema
=
self
.
_ema_vars
[
param
.
name
+
'.master'
]
param_master_emas
.
append
([
param_ema
,
master_ema
])
else
:
ema_t
=
param_ema
*
self
.
_decay_var
+
param
*
(
1
-
self
.
_decay_var
)
layers
.
assign
(
input
=
ema_t
,
output
=
param_ema
)
layers
.
assign
(
input
=
ema_t
,
output
=
param_ema
)
# for fp16 params
for
param_ema
,
master_ema
in
param_master_emas
:
default_main_program
().
global_block
().
append_op
(
type
=
"cast"
,
inputs
=
{
"X"
:
master_ema
},
outputs
=
{
"Out"
:
param_ema
},
attrs
=
{
"in_dtype"
:
master_ema
.
dtype
,
"out_dtype"
:
param_ema
.
dtype
})
@
signature_safe_contextmanager
@
signature_safe_contextmanager
def
apply
(
self
,
executor
,
need_restore
=
True
):
def
apply
(
self
,
executor
,
need_restore
=
True
):
"""
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录