diff --git a/python/paddle/fluid/tests/unittests/test_im2sequence_op.py b/python/paddle/fluid/tests/unittests/test_im2sequence_op.py index a0fb2788d54310aed8ed63230e63dddd80caba7a..c540531e7cffeb6bf46ddd4893902cb86bc9a8f3 100644 --- a/python/paddle/fluid/tests/unittests/test_im2sequence_op.py +++ b/python/paddle/fluid/tests/unittests/test_im2sequence_op.py @@ -15,7 +15,7 @@ from __future__ import print_function import unittest import numpy as np -from op_test import OpTest +from op_test import OpTest, skip_check_grad_ci def get_output_shape(attrs, in_shape, img_real_size): @@ -142,7 +142,6 @@ class TestBlockExpandOp(OpTest): x = np.random.uniform(0.1, 1, [ self.batch_size, self.img_channels, self.img_height, self.img_width ]).astype("float32") - real_size = np.array([]).astype("float32") out = Im2Sequence(x, real_size, self.attrs) self.inputs = {'X': x} @@ -194,6 +193,9 @@ class TestBlockExpandOpCase4(TestBlockExpandOp): } +@skip_check_grad_ci( + reason="Since 'real_size' is used just in forward computation, we don't test the gradient here." +) class TestBlockExpandOpCase5(OpTest): def config(self): self.batch_size = 1 @@ -206,6 +208,7 @@ class TestBlockExpandOpCase5(OpTest): 'paddings': [2, 1, 2, 1], 'out_stride': [2, 2], } + self.real_size = np.array([[8, 10], [5, 8]]).astype("float32") def setUp(self): self.config() @@ -213,16 +216,15 @@ class TestBlockExpandOpCase5(OpTest): x = np.random.uniform(0.1, 1, [ self.batch_size, self.img_channels, self.img_height, self.img_width ]).astype("float32") - real_size = np.array([[8, 10], [5, 8]]).astype("float32") - out = np.array(Im2Sequence(x, real_size, self.attrs)) - self.inputs = {'X': x, 'Y': real_size} #l ?? + out = np.array(Im2Sequence(x, self.real_size, self.attrs)) + self.inputs = {'X': x, 'Y': self.real_size} self.outputs = {'Out': out} def test_check_output(self): self.check_output() -class TestBlockExpandOpCase6(OpTest): +class TestBlockExpandOpCase6(TestBlockExpandOpCase5): def config(self): self.batch_size = 3 self.img_channels = 1 @@ -234,23 +236,10 @@ class TestBlockExpandOpCase6(OpTest): 'paddings': [0, 0, 0, 0], 'out_stride': [1, 1], } - - def setUp(self): - self.config() - self.op_type = "im2sequence" - x = np.random.uniform(0.1, 1, [ - self.batch_size, self.img_channels, self.img_height, self.img_width - ]).astype("float32") - real_size = np.array([[8, 10], [5, 8], [5, 8]]).astype("float32") - out = np.array(Im2Sequence(x, real_size, self.attrs)) - self.inputs = {'X': x, 'Y': real_size} #l ?? - self.outputs = {'Out': out} - - def test_check_output(self): - self.check_output() + self.real_size = np.array([[8, 10], [5, 8], [5, 8]]).astype("float32") -class TestBlockExpandOpCase7(OpTest): +class TestBlockExpandOpCase7(TestBlockExpandOpCase6): def config(self): self.batch_size = 2 self.img_channels = 2 @@ -262,22 +251,8 @@ class TestBlockExpandOpCase7(OpTest): 'paddings': [1, 0, 1, 0], 'out_stride': [2, 2], } - - def setUp(self): - self.config() - self.op_type = "im2sequence" - x = np.random.uniform(0.1, 1, [ - self.batch_size, self.img_channels, self.img_height, self.img_width - ]).astype("float32") - real_size = np.array([[6, 6], [4, 4]]).astype("float32") - out = np.array(Im2Sequence(x, real_size, self.attrs)) - self.inputs = {'X': x, 'Y': real_size} - self.outputs = {'Out': out} - - def test_check_output(self): - self.check_output() + self.real_size = np.array([[6, 6], [4, 4]]).astype("float32") if __name__ == '__main__': unittest.main() -#set shiftwidth=4 set expandtab set tabstop=4