diff --git a/paddle/fluid/framework/details/fuse_vars_op_handle.cc b/paddle/fluid/framework/details/fuse_vars_op_handle.cc index 32415c192f0be51bf0850fe533c212c635779a30..018c9bff71e553d8a3641f06f10b350453676b24 100644 --- a/paddle/fluid/framework/details/fuse_vars_op_handle.cc +++ b/paddle/fluid/framework/details/fuse_vars_op_handle.cc @@ -42,7 +42,7 @@ void FuseVarsOpHandle::RunImpl() { out_t->ShareDataWith(out_tensor->Slice(s, s + numel)); s += numel; } - this->RunAndRecordEvent([this] {}); + this->RunAndRecordEvent([] {}); } std::string FuseVarsOpHandle::Name() const { return "fuse vars"; } diff --git a/paddle/fluid/operators/crf_decoding_op.cc b/paddle/fluid/operators/crf_decoding_op.cc index 40f43936db662f2b18ffa540da4794755b5d6fc7..a8d78311220b1e8c41dbe0142374792908a6a9ea 100644 --- a/paddle/fluid/operators/crf_decoding_op.cc +++ b/paddle/fluid/operators/crf_decoding_op.cc @@ -54,20 +54,20 @@ The output of this operator changes according to whether Input(Label) is given: 1. Input(Label) is given: -This happens in training. This operator is used to co-work with the chunk_eval -operator. + This happens in training. This operator is used to co-work with the chunk_eval + operator. -When Input(Label) is given, the crf_decoding operator returns a row vector -with shape [N x 1] whose values are fixed to be 0, indicating an incorrect -prediction, or 1 indicating a tag is correctly predicted. Such an output is the -input to chunk_eval operator. + When Input(Label) is given, the crf_decoding operator returns a row vector + with shape [N x 1] whose values are fixed to be 0, indicating an incorrect + prediction, or 1 indicating a tag is correctly predicted. Such an output is the + input to chunk_eval operator. 2. Input(Label) is not given: -This is the standard decoding process. + This is the standard decoding process. The crf_decoding operator returns a row vector with shape [N x 1] whose values -range from 0 to maximum tag number - 1. Each element indicates an index of a +range from 0 to maximum tag number - 1, Each element indicates an index of a predicted tag. )DOC"); } diff --git a/paddle/fluid/operators/roi_pool_op.cc b/paddle/fluid/operators/roi_pool_op.cc index 293abb0ea4f1ac03c3889ce2937ef8fa0845db73..cb8982e57fe2c0afff8ea81a1693c812f48e49c8 100644 --- a/paddle/fluid/operators/roi_pool_op.cc +++ b/paddle/fluid/operators/roi_pool_op.cc @@ -141,6 +141,16 @@ class ROIPoolOpMaker : public framework::OpProtoAndCheckerMaker { AddComment(R"DOC( ROIPool operator +Region of interest pooling (also known as RoI pooling) is to perform +is to perform max pooling on inputs of nonuniform sizes to obtain +fixed-size feature maps (e.g. 7*7). + +The operator has three steps: +1. Dividing each region proposal into equal-sized sections with + the pooled_width and pooled_height +2. Finding the largest value in each section +3. Copying these max values to the output buffer + ROI Pooling for Faster-RCNN. The link below is a further introduction: https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn )DOC"); diff --git a/paddle/fluid/operators/scale_op.cc b/paddle/fluid/operators/scale_op.cc index 4687e21e7155fc7309fb28c881c0d47152df9ad5..24c217adcb9379fca29041d8c204701917d7f666 100644 --- a/paddle/fluid/operators/scale_op.cc +++ b/paddle/fluid/operators/scale_op.cc @@ -42,6 +42,7 @@ class ScaleOpMaker : public framework::OpProtoAndCheckerMaker { AddOutput("Out", "(Tensor) Output tensor of scale operator."); AddComment(R"DOC( Scale operator +Multiply the input tensor with a float scalar to scale the input tensor. $$Out = scale*X$$ )DOC"); diff --git a/python/paddle/fluid/layers/io.py b/python/paddle/fluid/layers/io.py index a56f3ea9db6b9fabf9d78f102d394a0817a44a98..cff074faff19b0f5687f3f438ef3e4fa4e554174 100644 --- a/python/paddle/fluid/layers/io.py +++ b/python/paddle/fluid/layers/io.py @@ -108,10 +108,35 @@ class BlockGuardServ(BlockGuard): class ListenAndServ(object): """ - ListenAndServ class. + ListenAndServ layer. - ListenAndServ class is used to wrap listen_and_serv op to create a server - which can receive variables from clients and run a block. + ListenAndServ is used to create a rpc server bind and listen + on specific TCP port, this server will run the sub-block when + received variables from clients. + + Args: + endpoint(string): IP:port string which the server will listen on. + inputs(list): a list of variables that the server will get from clients. + fan_in(int): how many client are expected to report to this server, default: 1. + optimizer_mode(bool): whether to run the server as a parameter server, default: True. + + Examples: + .. code-block:: python + + with fluid.program_guard(main): + serv = layers.ListenAndServ( + "127.0.0.1:6170", ["X"], optimizer_mode=False) + with serv.do(): + x = layers.data( + shape=[32, 32], + dtype='float32', + name="X", + append_batch_size=False) + fluid.initializer.Constant(value=1.0)(x, main.global_block()) + layers.scale(x=x, scale=10.0, out=out_var) + + self.server_exe = fluid.Executor(place) + self.server_exe.run(main) """ def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True): diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index ddaeb415af4320c233aa7d01130fe1da2cdcbfa8..a1b350374670cfc97ec123f7e1c5871fb47622fe 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -869,10 +869,17 @@ def crf_decoding(input, param_attr, label=None): return viterbi_path +@templatedoc() def cos_sim(X, Y): """ - This function performs the cosine similarity between two tensors - X and Y and returns that as the output. + ${comment} + + Args: + X(${X_type}): ${X_comment} + Y(${Y_type}): ${Y_comment} + + Returns: + A Variable contains the output of this layer. """ helper = LayerHelper('cos_sim', **locals()) out = helper.create_tmp_variable(dtype=X.dtype) @@ -1059,14 +1066,25 @@ def square_error_cost(input, label): return square_out +@templatedoc() def chunk_eval(input, label, chunk_scheme, num_chunk_types, excluded_chunk_types=None): """ - This function computes and outputs the precision, recall and - F1-score of chunk detection. + ${comment} + + Args: + input(Variable): ${Inference_comment} + label(Variable): ${Label_comment} + chunk_scheme(${chunk_scheme_type}): ${chunk_scheme_comment} + num_chunk_types(${num_chunk_types_type}): ${num_chunk_types_comment} + excluded_chunk_types(${excluded_chunk_types_type}): ${excluded_chunk_types_comment} + + Returns(typle): a tuple of variables: + (precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks) + """ helper = LayerHelper("chunk_eval", **locals()) @@ -1737,6 +1755,7 @@ def beam_search_decode(ids, scores, name=None): return sentence_ids, sentence_scores +@templatedoc() def conv2d_transpose(input, num_filters, output_size=None, @@ -1760,7 +1779,7 @@ def conv2d_transpose(input, Parameters(dilations, strides, paddings) are two elements. These two elements represent height and width, respectively. The details of convolution transpose layer, please refer to the following explanation and references - `therein `_. + `here `_. For each input :math:`X`, the equation is: @@ -1774,7 +1793,7 @@ def conv2d_transpose(input, * :math:`W`: Filter value, a tensor with MCHW format. * :math:`\\ast` : Convolution transpose operation. * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be - different. + different. Example: @@ -2781,6 +2800,7 @@ def edit_distance(input, label, normalized=True, ignored_tokens=None, def ctc_greedy_decoder(input, blank, name=None): """ This op is used to decode sequences by greedy policy by below steps: + 1. Get the indexes of max value for each row in input. a.k.a. numpy.argmax(input, axis=0). 2. For each sequence in result of step1, merge repeated tokens between two @@ -3451,8 +3471,9 @@ def one_hot(input, depth): def autoincreased_step_counter(counter_name=None, begin=1, step=1): """ - NOTE: The counter will be automatically increased by 1 every mini-batch - Return the run counter of the main program, which is started with 1. + Create an auto-increase variable + which will be automatically increased by 1 every mini-batch + Return the run counter of the main program, default is started from 1. Args: counter_name(str): The counter name, default is '@STEP_COUNTER@'. @@ -3866,34 +3887,20 @@ def label_smooth(label, return smooth_label +@templatedoc() def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0): """ - Region of interest pooling (also known as RoI pooling) is to perform - is to perform max pooling on inputs of nonuniform sizes to obtain - fixed-size feature maps (e.g. 7*7). - The operator has three steps: - 1. Dividing each region proposal into equal-sized sections with - the pooled_width and pooled_height - 2. Finding the largest value in each section - 3. Copying these max values to the output buffer + ${comment} Args: - input (Variable): The input for ROI pooling. - rois (Variable): ROIs (Regions of Interest) to pool over. It should - be a 2-D one level LoTensor of shape [num_rois, 4]. - The layout is [x1, y1, x2, y2], where (x1, y1) - is the top left coordinates, and (x2, y2) is the - bottom right coordinates. The num_rois is the - total number of ROIs in this batch data. - pooled_height (integer): The pooled output height. Default: 1 - pooled_width (integer): The pooled output width. Default: 1 - spatial_scale (float): Multiplicative spatial scale factor. To - translate ROI coords from their input scale - to the scale used when pooling. Default: 1.0 + input (Variable): ${X_comment} + rois (Variable): ${ROIs_comment} + pooled_height (integer): ${pooled_height_comment} Default: 1 + pooled_width (integer): ${pooled_width_comment} Default: 1 + spatial_scale (float): ${spatial_scale_comment} Default: 1.0 Returns: - pool_out (Variable): The output is a 4-D tensor of the shape - (num_rois, channels, pooled_h, pooled_w). + pool_out (Variable): ${Out_comment}. Examples: .. code-block:: python diff --git a/python/paddle/fluid/layers/ops.py b/python/paddle/fluid/layers/ops.py index 69cfde852dd087bb9192da1f7582f925582dbce4..24b8b86dcf80c7e6132403fd757c9928ac4b40ca 100644 --- a/python/paddle/fluid/layers/ops.py +++ b/python/paddle/fluid/layers/ops.py @@ -73,6 +73,7 @@ __all__ = [ 'sum', 'polygon_box_transform', 'shape', + 'iou_similarity', ] + __activations__ for _OP in set(__all__):