提交 5b9450ae 编写于 作者: H hedaoyuan

follow comments

上级 4426573a
......@@ -119,14 +119,14 @@ void CrossMapNormalGrad<DEVICE_TYPE_CPU>(real* inputsGrad,
*
* The original formula is:
*
* Input(x, y)
* Output(x, y) = ---------------------------------------------
* Input(i, x, y)
* Output(i, x, y) = ----------------------------------------------
* -- upper
* (k + alpha * > (Input(x, y))^2) ^ (beta)
* -- lower
* (k + alpha * > (Input(j, x, y))^2) ^ (beta)
* -- j = lower
*
* upper is `min(F, f-[N/2] + N)`
* lower if `max(0, f-[N/2])`
* upper is `min(C, c + N/2)`
* lower if `max(0, c - N/2)`
*
* Function implementation:
*
......@@ -134,8 +134,12 @@ void CrossMapNormalGrad<DEVICE_TYPE_CPU>(real* inputsGrad,
* And the meaning of each dimension(0-3) is respectively batch size,
* feature maps, rows and columns.
*
* Input and Output in the above formula is for each map of one image, and
* Input(x, y), Output(x, y) represents an element in an image.
* Input and Output in the above formula is for each map(i) of one image, and
* Input(i, x, y), Output(i, x, y) represents an element in an image.
*
* C is the number of feature maps of one image, and N is a hyper-parameters
* is configured when Function is initialized. The sum in the denominator
* is the sum of the same position in the neighboring maps.
*
* In the implementation of Function, k is equal to 1,
* so Function has no argument for k.
......@@ -199,20 +203,26 @@ private:
/**
* \brief Backward calculation for normalization with across maps.
*
* Function implementation:
*
* The implementation of this Function is derived from the
* CrossMapNormalFunc implementation.
*
* InputGrad = OutputGrad * denoms ^ (-beta)
* /
* + | (OutputGrad * OutputValue * (-2 * alpha * beta) / denoms) * InputValue
* /
* -- upper
* + > (OutputGrad * OutputValue * (-2 * alpha * beta) / denoms) * InputValue
* -- lower
*
* Argument in the Function:
* The data of inputs/outputs format is the same as the forward interface
* and is NCHW.
*
* The upper and lower is the same as forward. The logic of the sum
* is also the same as forward.
*
* Function Arguments:
*
* \param size_ represent N
* \param scale_ represent alpha / N
* \param scale_ represent alpha
* \param pow_ represent beta
* \param inputs[0] represent InputValue, inputs[0] of CrossMapNormalFunc
* \param inputs[1] represent OutputValue, outputs[0] of CrossMapNormalFunc
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册