Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
5b5379b3
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5b5379b3
编写于
8月 30, 2019
作者:
A
Aurelius84
提交者:
GitHub
8月 30, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add sequence_topk_avg_pooling Op (#19442)
* add topk_avg_pooling * refine api doc and modify api.spec test=develop
上级
1cdd3b69
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
570 addition
and
0 deletion
+570
-0
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
paddle/fluid/operators/sequence_ops/sequence_topk_avg_pooling_op.cc
...id/operators/sequence_ops/sequence_topk_avg_pooling_op.cc
+130
-0
paddle/fluid/operators/sequence_ops/sequence_topk_avg_pooling_op.h
...uid/operators/sequence_ops/sequence_topk_avg_pooling_op.h
+213
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+68
-0
python/paddle/fluid/tests/unittests/test_sequence_topk_avg_pooling.py
...e/fluid/tests/unittests/test_sequence_topk_avg_pooling.py
+158
-0
未找到文件。
paddle/fluid/API.spec
浏览文件 @
5b5379b3
...
@@ -256,6 +256,7 @@ paddle.fluid.layers.maxout (ArgSpec(args=['x', 'groups', 'name'], varargs=None,
...
@@ -256,6 +256,7 @@ paddle.fluid.layers.maxout (ArgSpec(args=['x', 'groups', 'name'], varargs=None,
paddle.fluid.layers.space_to_depth (ArgSpec(args=['x', 'blocksize', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '26decdea9376b6b9a0d3432d82ca207b'))
paddle.fluid.layers.space_to_depth (ArgSpec(args=['x', 'blocksize', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '26decdea9376b6b9a0d3432d82ca207b'))
paddle.fluid.layers.affine_grid (ArgSpec(args=['theta', 'out_shape', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'f85b263b7b6698d000977529a28f202b'))
paddle.fluid.layers.affine_grid (ArgSpec(args=['theta', 'out_shape', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'f85b263b7b6698d000977529a28f202b'))
paddle.fluid.layers.sequence_reverse (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '65c8362e48810b8226e311c5d046db51'))
paddle.fluid.layers.sequence_reverse (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '65c8362e48810b8226e311c5d046db51'))
paddle.fluid.layers.sequence_topk_avg_pooling (ArgSpec(args=['input', 'row', 'col', 'topks', 'channel_num'], varargs=None, keywords=None, defaults=None), ('document', '1cee1bbbba8b567ae50509a38d9ec42a'))
paddle.fluid.layers.affine_channel (ArgSpec(args=['x', 'scale', 'bias', 'data_layout', 'name', 'act'], varargs=None, keywords=None, defaults=(None, None, 'NCHW', None, None)), ('document', '9f303c67538e468a36c5904a0a3aa110'))
paddle.fluid.layers.affine_channel (ArgSpec(args=['x', 'scale', 'bias', 'data_layout', 'name', 'act'], varargs=None, keywords=None, defaults=(None, None, 'NCHW', None, None)), ('document', '9f303c67538e468a36c5904a0a3aa110'))
paddle.fluid.layers.similarity_focus (ArgSpec(args=['input', 'axis', 'indexes', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '18ec2e3afeb90e70c8b73d2b71c40fdb'))
paddle.fluid.layers.similarity_focus (ArgSpec(args=['input', 'axis', 'indexes', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '18ec2e3afeb90e70c8b73d2b71c40fdb'))
paddle.fluid.layers.hash (ArgSpec(args=['input', 'hash_size', 'num_hash', 'name'], varargs=None, keywords=None, defaults=(1, None)), ('document', 'a0b73c21be618cec0281e7903039e5e3'))
paddle.fluid.layers.hash (ArgSpec(args=['input', 'hash_size', 'num_hash', 'name'], varargs=None, keywords=None, defaults=(1, None)), ('document', 'a0b73c21be618cec0281e7903039e5e3'))
...
...
paddle/fluid/operators/sequence_ops/sequence_topk_avg_pooling_op.cc
0 → 100644
浏览文件 @
5b5379b3
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/sequence_ops/sequence_topk_avg_pooling_op.h"
#include <memory>
#include <string>
namespace
paddle
{
namespace
operators
{
class
SequenceTopkAvgPoolingOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"X"
),
true
,
"Input(X) of SequencePoolOp should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"ROW"
),
true
,
"Input(ROW) of SequencePoolOp should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"COLUMN"
),
true
,
"Input(COLUMN) of SequencePoolOp should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Out"
),
true
,
"Output(Out) of SequencePoolOp should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"pos"
),
true
,
"pos(out) should not be null"
);
auto
attr
=
ctx
->
Attrs
();
auto
channel_num
=
attr
.
Get
<
int
>
(
"channel_num"
);
auto
topks
=
attr
.
Get
<
std
::
vector
<
int
>>
(
"topks"
);
auto
row_dim
=
ctx
->
GetInputDim
(
"ROW"
);
auto
num_k
=
topks
.
size
();
auto
row_shape_0
=
row_dim
[
0
];
std
::
vector
<
int
>
vec_out_shape
;
vec_out_shape
.
push_back
(
row_shape_0
);
vec_out_shape
.
push_back
(
channel_num
*
num_k
);
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
vec_out_shape
));
ctx
->
ShareLoD
(
"X"
,
"Out"
);
}
};
class
SequenceTopkAvgPoolingOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(LoDTensor) The variable-length input of SequenceTopkPoolingOp"
);
AddInput
(
"ROW"
,
"(LoDTensor) the row info"
);
AddInput
(
"COLUMN"
,
"(LoDTensor) the column info"
);
AddOutput
(
"Out"
,
"(Tensor) The output of SequenceTopkPoolingOp does not contain LoD "
"infomation."
);
AddOutput
(
"pos"
,
"(Tensor<int>) store the topk index "
).
AsIntermediate
();
AddAttr
<
std
::
vector
<
int
>>
(
"topks"
,
"topks"
);
AddAttr
<
int
>
(
"channel_num"
,
"channel number"
);
AddComment
(
R"DOC(
sequecen topk average pooling op
)DOC"
);
}
};
class
SequenceTopkAvgPoolingGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
true
,
"Gradient of Out should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"X"
),
true
,
"The input X should not be null."
);
ctx
->
ShareDim
(
"X"
,
/*->*/
framework
::
GradVarName
(
"X"
));
ctx
->
ShareLoD
(
"X"
,
/*->*/
framework
::
GradVarName
(
"X"
));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
data_type
=
framework
::
GetDataTypeOfVar
(
ctx
.
InputVar
(
"X"
));
return
framework
::
OpKernelType
(
data_type
,
ctx
.
device_context
());
}
};
class
SequenceTopkAvgPoolGradOpMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
op_desc_ptr
=
new
framework
::
OpDesc
();
op_desc_ptr
->
SetType
(
"sequence_topk_avg_pooling_grad"
);
op_desc_ptr
->
SetInput
(
"X"
,
Input
(
"X"
));
op_desc_ptr
->
SetInput
(
"ROW"
,
Input
(
"ROW"
));
op_desc_ptr
->
SetInput
(
"COLUMN"
,
Input
(
"COLUMN"
));
op_desc_ptr
->
SetInput
(
"pos"
,
Output
(
"pos"
));
op_desc_ptr
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
op_desc_ptr
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op_desc_ptr
->
SetAttrMap
(
Attrs
());
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
op_desc_ptr
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
sequence_topk_avg_pooling
,
ops
::
SequenceTopkAvgPoolingOp
,
ops
::
SequenceTopkAvgPoolingOpMaker
,
ops
::
SequenceTopkAvgPoolGradOpMaker
);
REGISTER_OPERATOR
(
sequence_topk_avg_pooling_grad
,
ops
::
SequenceTopkAvgPoolingGradOp
);
REGISTER_OP_CPU_KERNEL
(
sequence_topk_avg_pooling
,
ops
::
SequenceTopkAvgPoolingKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
sequence_topk_avg_pooling_grad
,
ops
::
SequenceTopkAvgPoolingGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
paddle/fluid/operators/sequence_ops/sequence_topk_avg_pooling_op.h
0 → 100644
浏览文件 @
5b5379b3
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <limits>
#include <string>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
template
<
typename
T
>
void
get_topk_pos
(
const
T
*
data
,
int
length
,
int
k
,
int
*
pos
)
{
size_t
real_k
=
k
<
length
?
k
:
length
;
std
::
vector
<
T
>
v
(
data
,
data
+
length
);
std
::
vector
<
int
>
topk_pos
;
T
min_val
=
std
::
numeric_limits
<
T
>::
lowest
();
while
(
topk_pos
.
size
()
<
real_k
)
{
T
max_val
=
min_val
;
int
max_pos
=
-
1
;
for
(
int
i
=
0
;
i
<
length
;
++
i
)
{
if
(
v
[
i
]
>
max_val
)
{
max_pos
=
i
;
max_val
=
v
[
i
];
}
}
assert
(
max_pos
>=
0
);
topk_pos
.
push_back
(
max_pos
);
v
[
max_pos
]
=
min_val
;
}
assert
(
topk_pos
.
size
()
>
0
);
while
(
topk_pos
.
size
()
<
(
size_t
)
k
)
{
topk_pos
.
push_back
(
-
1
);
}
for
(
size_t
i
=
0
;
i
<
topk_pos
.
size
();
++
i
)
{
pos
[
i
]
=
topk_pos
[
i
];
}
}
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
SequenceTopkAvgPoolingKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
row
=
context
.
Input
<
LoDTensor
>
(
"ROW"
);
auto
*
col
=
context
.
Input
<
LoDTensor
>
(
"COLUMN"
);
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
auto
*
pos
=
context
.
Output
<
Tensor
>
(
"pos"
);
auto
channel_num
=
context
.
Attr
<
int
>
(
"channel_num"
);
auto
topks
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"topks"
);
auto
k_num
=
topks
.
size
();
auto
max_k
=
topks
[
topks
.
size
()
-
1
];
std
::
vector
<
int
>
vec_pos_shape
;
auto
in_lod
=
in
->
lod
()[
0
];
auto
row_lod
=
row
->
lod
()[
0
];
auto
col_lod
=
col
->
lod
()[
0
];
int
batch_size
=
row_lod
.
size
()
-
1
;
int
pos_total_size
=
row_lod
[
batch_size
]
*
channel_num
*
max_k
;
vec_pos_shape
.
push_back
(
pos_total_size
);
pos
->
Resize
({
framework
::
make_ddim
(
vec_pos_shape
)});
auto
pos_data
=
pos
->
mutable_data
<
int
>
(
context
.
GetPlace
());
int
offset
=
0
;
framework
::
Vector
<
size_t
>
vec_out_lod
;
vec_out_lod
.
reserve
(
batch_size
+
1
);
for
(
int
i
=
0
;
i
<=
batch_size
;
++
i
)
{
offset
=
row_lod
[
i
];
vec_out_lod
.
push_back
(
offset
);
}
framework
::
LoD
lod_temp
;
lod_temp
.
push_back
(
vec_out_lod
);
out
->
set_lod
(
lod_temp
);
auto
din_data
=
in
->
data
<
T
>
();
auto
dout_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
sum_data
=
new
T
[
max_k
];
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
int
total_size
=
in_lod
[
i
+
1
]
-
in_lod
[
i
];
int
row_size
=
row_lod
[
i
+
1
]
-
row_lod
[
i
];
int
col_size
=
col_lod
[
i
+
1
]
-
col_lod
[
i
];
PADDLE_ENFORCE_EQ
(
total_size
,
channel_num
*
row_size
*
col_size
,
"size wrong in sequence_topk_avg_pooling_op!"
);
int
feature_num
=
row_size
*
col_size
;
for
(
int
j
=
0
;
j
<
channel_num
;
++
j
)
{
auto
input_offset_feature_data
=
din_data
+
in_lod
[
i
]
+
j
*
feature_num
;
for
(
int
r
=
0
;
r
<
row_size
;
++
r
)
{
auto
row_data
=
input_offset_feature_data
+
r
*
col_size
;
auto
pos_slice_data
=
pos_data
+
row_lod
[
i
]
*
channel_num
*
max_k
+
r
*
channel_num
*
max_k
+
j
*
max_k
;
auto
out_slice_data
=
dout_data
+
row_lod
[
i
]
*
channel_num
*
k_num
+
r
*
channel_num
*
k_num
+
j
*
k_num
;
get_topk_pos
<
T
>
(
row_data
,
col_size
,
max_k
,
pos_slice_data
);
if
(
pos_slice_data
[
0
]
==
-
1
)
{
sum_data
[
0
]
=
0.0
;
}
else
{
sum_data
[
0
]
=
row_data
[
pos_slice_data
[
0
]];
}
for
(
int
k
=
1
;
k
<
max_k
;
++
k
)
{
if
(
pos_slice_data
[
k
]
==
-
1
)
{
sum_data
[
k
]
=
sum_data
[
k
-
1
];
}
else
{
sum_data
[
k
]
=
sum_data
[
k
-
1
]
+
row_data
[
pos_slice_data
[
k
]];
}
}
for
(
size_t
k
=
0
;
k
<
k_num
;
++
k
)
{
out_slice_data
[
k
]
=
sum_data
[
topks
[
k
]
-
1
]
/
topks
[
k
];
}
}
}
}
delete
[]
sum_data
;
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
SequenceTopkAvgPoolingGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
d_out
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_in
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
pos_input
=
context
.
Input
<
Tensor
>
(
"pos"
);
auto
*
row_input
=
context
.
Input
<
LoDTensor
>
(
"ROW"
);
auto
*
col_input
=
context
.
Input
<
LoDTensor
>
(
"COLUMN"
);
auto
*
forward_input
=
context
.
Input
<
LoDTensor
>
(
"X"
);
int
batch_size
=
row_input
->
lod
()[
0
].
size
()
-
1
;
auto
channel_num
=
context
.
Attr
<
int
>
(
"channel_num"
);
auto
topks
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"topks"
);
auto
k_num
=
topks
.
size
();
auto
max_k
=
topks
[
k_num
-
1
];
auto
out_lod
=
forward_input
->
lod
();
d_in
->
set_lod
(
out_lod
);
d_in
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
pos_data
=
pos_input
->
data
<
int
>
();
auto
dout_data
=
d_out
->
data
<
T
>
();
auto
&
dev_ctx
=
context
.
template
device_context
<
platform
::
CPUDeviceContext
>();
math
::
SetConstant
<
paddle
::
platform
::
CPUDeviceContext
,
T
>
zero
;
zero
(
dev_ctx
,
d_in
,
static_cast
<
T
>
(
0.0
));
auto
din_data
=
d_in
->
data
<
T
>
();
auto
out_offset
=
out_lod
[
0
];
auto
row_lod
=
row_input
->
lod
()[
0
];
auto
col_lod
=
col_input
->
lod
()[
0
];
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
int
row_size
=
row_lod
[
i
+
1
]
-
row_lod
[
i
];
int
col_size
=
col_lod
[
i
+
1
]
-
col_lod
[
i
];
int
feature_num
=
row_size
*
col_size
;
for
(
int
j
=
0
;
j
<
channel_num
;
++
j
)
{
auto
in_offset_feature_data
=
din_data
+
out_offset
[
i
]
+
j
*
feature_num
;
for
(
int
r
=
0
;
r
<
row_size
;
r
++
)
{
auto
row_data
=
dout_data
+
row_lod
[
i
]
*
channel_num
*
k_num
+
r
*
channel_num
*
k_num
+
j
*
k_num
;
auto
pos_slice_data
=
pos_data
+
row_lod
[
i
]
*
channel_num
*
max_k
+
r
*
channel_num
*
max_k
+
j
*
max_k
;
auto
in_slice_data
=
in_offset_feature_data
+
r
*
col_size
;
for
(
size_t
m
=
0
;
m
<
k_num
;
++
m
)
{
for
(
int
k
=
0
;
k
<
topks
[
m
];
++
k
)
{
if
(
pos_slice_data
[
k
]
==
-
1
)
{
break
;
}
else
{
in_slice_data
[
pos_slice_data
[
k
]]
+=
row_data
[
m
]
/
topks
[
m
];
}
}
}
}
}
}
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/layers/nn.py
浏览文件 @
5b5379b3
...
@@ -184,6 +184,7 @@ __all__ = [
...
@@ -184,6 +184,7 @@ __all__ = [
'space_to_depth'
,
'space_to_depth'
,
'affine_grid'
,
'affine_grid'
,
'sequence_reverse'
,
'sequence_reverse'
,
'sequence_topk_avg_pooling'
,
'affine_channel'
,
'affine_channel'
,
'similarity_focus'
,
'similarity_focus'
,
'hash'
,
'hash'
,
...
@@ -11133,6 +11134,73 @@ def sequence_reverse(x, name=None):
...
@@ -11133,6 +11134,73 @@ def sequence_reverse(x, name=None):
return
out
return
out
def
sequence_topk_avg_pooling
(
input
,
row
,
col
,
topks
,
channel_num
):
"""
The :attr:`topks` is a list with incremental values in this function. For each topk,
it will average the topk features as an output feature for each channel of every
input sequence. Both :attr:`row` and :attr:`col` are LodTensor, which provide height
and width information for :attr:`input` tensor. If feature size of input sequence is less
than topk, it will padding 0 at the back.
.. code-block:: text
If channel_num is 2 and given row LoDTensor and col LoDTensor as follows:
row.lod = [[5, 4]]
col.lod = [[6, 7]]
input is a LoDTensor with input.lod[0][i] = channel_num * row.lod[0][i] * col.lod[0][i]
input.lod = [[60, 56]] # where 60 = channel_num * 5 * 6
input.dims = [116, 1] # where 116 = 60 + 56
If topks is [1, 3, 5], then we get a 1-level LoDTensor:
out.lod = [[5, 4]] # share Lod info with row LodTensor
out.dims = [9, 6] # where 6 = len(topks) * channel_num
Args:
input (Variable): The input should be 2D LodTensor with dims[1] equals 1.
row (Variable): The row shoud be 1-level LodTensor to provide the height information
of the input tensor data.
col (Variable): The col shoud be 1-level LodTensor to provide the width information
of the input tensor data.
topks (list): A list of incremental value to average the topk feature.
channel_num (int): The number of input channel.
Returns:
Variable: output LodTensor specified by this layer.
Examples:
.. code-block:: python
import numpy as np
from paddle.fluid import layers
x_lod_tensor = layers.data(name='x', shape=[1], lod_level=1)
row_lod_tensor = layers.data(name='row', shape=[6], lod_level=1)
col_lod_tensor = layers.data(name='col', shape=[6], lod_level=1)
out = layers.sequence_topk_avg_pooling(input=x_lod_tensor,
row=row_lod_tensor,
col=col_lod_tensor,
topks=[1, 3, 5],
channel_num=5)
"""
helper
=
LayerHelper
(
'sequence_topk_avg_pooling'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
pos
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
(),
stop_gradient
=
True
)
helper
.
append_op
(
type
=
'sequence_topk_avg_pooling'
,
inputs
=
{
'X'
:
input
,
'ROW'
:
row
,
'COLUMN'
:
col
},
outputs
=
{
'Out'
:
out
,
'pos'
:
pos
},
attrs
=
{
'topks'
:
topks
,
'channel_num'
:
channel_num
})
return
out
def
affine_channel
(
x
,
def
affine_channel
(
x
,
scale
=
None
,
scale
=
None
,
bias
=
None
,
bias
=
None
,
...
...
python/paddle/fluid/tests/unittests/test_sequence_topk_avg_pooling.py
0 → 100644
浏览文件 @
5b5379b3
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
from
copy
import
deepcopy
class
TestSequenceTopkAvgPoolingOp
(
OpTest
):
def
setUp
(
self
):
self
.
init_op_type
()
self
.
set_data
()
self
.
compute
()
def
init_op_type
(
self
):
self
.
op_type
=
"sequence_topk_avg_pooling"
def
set_data
(
self
):
topks
=
[
2
]
channel_num
=
3
dim
=
10
row
=
[
2
,
4
]
col
=
[
3
,
2
]
self
.
init_data
(
topks
,
channel_num
,
row
,
col
,
dim
)
def
init_data
(
self
,
topks
,
channel_num
,
row
,
col
,
dim
=
10
):
self
.
attrs
=
{
"topks"
:
topks
,
"channel_num"
:
channel_num
}
feature
=
[
row
[
i
]
*
col
[
i
]
for
i
in
range
(
len
(
row
))]
numel
=
sum
(
feature
)
*
channel_num
x_data
=
np
.
random
.
random
((
numel
,
)).
astype
(
'float32'
)
x_lod
=
[[
x
*
channel_num
for
x
in
feature
]]
row_data
=
np
.
random
.
random
((
sum
(
row
),
dim
)).
astype
(
'float32'
)
col_data
=
np
.
random
.
random
((
sum
(
col
),
dim
)).
astype
(
'float32'
)
self
.
inputs
=
{
'X'
:
(
x_data
,
x_lod
),
'ROW'
:
(
row_data
,
[
row
]),
'COLUMN'
:
(
col_data
,
[
col
])
}
def
compute
(
self
):
topks
=
self
.
attrs
[
'topks'
]
max_k
=
topks
[
-
1
]
x_data
,
x_lod
=
self
.
inputs
[
'X'
]
row_data
,
row_lod
=
self
.
inputs
[
'ROW'
]
col_data
,
col_lod
=
self
.
inputs
[
'COLUMN'
]
channel_num
=
self
.
attrs
[
'channel_num'
]
out
=
np
.
zeros
((
0
,
len
(
topks
)
*
channel_num
),
dtype
=
x_data
.
dtype
)
pos
=
np
.
zeros
((
0
,
),
dtype
=
'int32'
)
out_lod
=
deepcopy
(
row_lod
)
offset
=
0
for
idx
in
range
(
len
(
x_lod
[
0
])):
x_len
=
x_lod
[
0
][
idx
]
self
.
assertTrue
(
x_len
==
channel_num
*
row_lod
[
0
][
idx
]
*
col_lod
[
0
][
idx
],
"x_len: %s can't mod channel_num: %s"
%
(
x_len
,
channel_num
))
# feature = x_len / channel_num
out_tmp
=
np
.
zeros
((
0
,
),
dtype
=
x_data
.
dtype
)
pos_tmp
=
np
.
zeros
((
0
,
),
dtype
=
'int32'
)
for
ch
in
range
(
channel_num
):
for
r_id
in
range
(
row_lod
[
0
][
idx
]):
x_sub
=
x_data
[
offset
:(
offset
+
col_lod
[
0
][
idx
])]
topk_val
,
topk_pos
=
self
.
get_topk
(
x_sub
,
max_k
)
sum_data
=
self
.
topk_sum
(
topk_val
,
topk_pos
,
max_k
)
new_feature
=
np
.
array
(
[
sum_data
[
topk
]
/
topk
for
topk
in
topks
])
out_tmp
=
np
.
hstack
((
out_tmp
,
new_feature
))
pos_tmp
=
np
.
hstack
((
pos_tmp
,
topk_pos
))
offset
+=
col_lod
[
0
][
idx
]
out_tmp
=
out_tmp
.
reshape
([
channel_num
,
-
1
,
len
(
topks
)]).
transpose
(
1
,
0
,
2
)
pos_tmp
=
pos_tmp
.
reshape
([
channel_num
,
-
1
,
max_k
]).
transpose
(
1
,
0
,
2
)
out
=
np
.
vstack
(
(
out
,
out_tmp
.
reshape
([
-
1
,
len
(
topks
)
*
channel_num
])))
pos
=
np
.
hstack
((
pos
,
pos_tmp
.
flatten
()))
self
.
outputs
=
{
'Out'
:
(
out
.
astype
(
'float32'
),
out_lod
),
'pos'
:
pos
}
def
get_topk
(
self
,
x
,
topk
):
real_topk
=
topk
if
topk
<
len
(
x
)
else
len
(
x
)
topk_pos
=
np
.
array
(
x
).
argsort
()[
-
topk
:][::
-
1
]
topk_val
=
np
.
array
(
x
)[
topk_pos
]
if
real_topk
<
topk
:
topk_pos
=
np
.
hstack
((
topk_pos
,
np
.
full
((
topk
-
real_topk
,
),
-
1
)))
topk_val
=
np
.
hstack
((
topk_val
,
np
.
full
((
topk
-
real_topk
,
),
0.0
)))
return
topk_val
,
topk_pos
def
topk_sum
(
self
,
x
,
pos
,
max_k
):
sum_data
=
[
0.
]
*
(
max_k
+
1
)
for
i
in
range
(
1
,
max_k
+
1
):
if
pos
[
i
-
1
]
==
-
1
:
sum_data
[
i
]
=
sum_data
[
i
-
1
]
else
:
sum_data
[
i
]
=
sum_data
[
i
-
1
]
+
x
[
i
-
1
]
return
sum_data
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
,
max_relative_error
=
0.005
)
class
TestSequenceTopkAvgPoolingOpCase1
(
TestSequenceTopkAvgPoolingOp
):
def
set_data
(
self
):
topks
=
[
2
,
3
]
channel_num
=
3
dim
=
10
row
=
[
3
]
col
=
[
4
]
self
.
init_data
(
topks
,
channel_num
,
row
,
col
,
dim
)
def
test_api
(
self
):
import
paddle.fluid
as
fluid
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
1
],
lod_level
=
1
)
row
=
fluid
.
layers
.
data
(
name
=
'row'
,
shape
=
[
10
],
lod_level
=
1
)
col
=
fluid
.
layers
.
data
(
name
=
'col'
,
shape
=
[
10
],
lod_level
=
1
)
topk_avg
=
fluid
.
layers
.
sequence_topk_avg_pooling
(
input
=
x
,
row
=
row
,
col
=
col
,
topks
=
[
1
,
3
,
5
],
channel_num
=
5
)
place
=
fluid
.
CPUPlace
()
x_tensor
=
fluid
.
create_lod_tensor
(
np
.
random
.
rand
(
45
,
1
).
astype
(
'float32'
),
[[
30
,
15
]],
place
)
row_tensor
=
fluid
.
create_lod_tensor
(
np
.
random
.
rand
(
5
,
10
).
astype
(
'float32'
),
[[
2
,
3
]],
place
)
col_tensor
=
fluid
.
create_lod_tensor
(
np
.
random
.
rand
(
4
,
10
).
astype
(
'float32'
),
[[
3
,
1
]],
place
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
ret
=
exe
.
run
(
feed
=
{
'x'
:
x_tensor
,
'row'
:
row_tensor
,
'col'
:
col_tensor
},
fetch_list
=
[
topk_avg
],
return_numpy
=
False
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录