Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
5a2d15a1
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5a2d15a1
编写于
7月 17, 2020
作者:
Z
zhupengyang
提交者:
GitHub
7月 17, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
arange API: start default is 0, end default is None (#25452)
上级
630f23ce
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
144 addition
and
105 deletion
+144
-105
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+47
-34
python/paddle/fluid/tests/unittests/test_arange.py
python/paddle/fluid/tests/unittests/test_arange.py
+43
-22
python/paddle/tensor/creation.py
python/paddle/tensor/creation.py
+54
-49
未找到文件。
python/paddle/fluid/layers/tensor.py
浏览文件 @
5a2d15a1
...
...
@@ -1322,25 +1322,35 @@ def isfinite(x):
return
out
def
range
(
start
,
end
,
step
,
dtype
):
def
range
(
start
,
end
,
step
,
dtype
,
name
=
None
):
"""
Return evenly spaced values within a given interval.
Values are generated within the half-open interval [start, stop) (in other words,
the interval including start but excluding stop).
Values are generated within the half-open interval [start, stop) (in other
words, the interval including start but excluding stop).
If dtype is float32 or float64, we advise adding a small epsilon to end to
avoid floating point rounding errors when comparing against end.
Parameters:
start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
when start is Variable, it is a 1-D Tensor with shape [1].
end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
value, except in some cases where step is not an integer
and floating point round-off affects the length of out. When end is Variable,
it is a 1-D Tensor with shape [1].
step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
distance between two adjacent values, out[i+1] - out[i].
dtype(str|core.VarDesc.VarType): the data type of the output tensor, can be float32, float64, int32, int64.
Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
start(float|int|Variable): Start of interval. The interval includes
this value. If start is Variable, it is a 1-D Tensor with shape [1],
and it's data type should be one of int32, int64, float32, float64.
end(float|int|Variable): End of interval. The interval does not include
this value. When end is Variable, it is a 1-D Tensor with shape [1],
and it's data type should be int32, int64, float32, float64.
step(float|int|Variable): Spacing between values. For any out, this is
the istance between two adjacent values, out[i+1] - out[i].
When end is Variable, it is a 1-D Tensor with shape [1], and it's
data type should be one of int32, int64, float32, float64.
dtype(str|np.dtype|core.VarDesc.VarType): The data type of the output
tensor, can be float32, float64, int32, int64.
name(str, optional): Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name` .
Default is None.
Returns: a 1-D Tensor which is evenly spaced values within a given interval.
Its data type is set by dtype.
Return type: Variable
...
...
@@ -1349,43 +1359,46 @@ def range(start, end, step, dtype):
.. code-block:: python
import paddle.fluid as fluid
data = fluid.layers.range(0, 10, 2, 'int32')
"""
check_type
(
start
,
'start'
,
(
float
,
int
,
Variable
),
'range'
)
check_type
(
end
,
'end'
,
(
float
,
int
,
Variable
),
'range'
)
check_type
(
step
,
'step'
,
(
float
,
int
,
Variable
),
'range'
)
helper
=
LayerHelper
(
"range"
,
**
locals
())
out1 = fluid.layers.range(0, 10, 2, 'int32')
# [0, 2, 4, 6, 8]
check_dtype
(
dtype
,
'create data type'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'range'
)
start_var = fluid.layers.fill_constant([1], 'int64', 3)
out2 = fluid.layers.range(start_var, 7, 1, 'int64')
# [3, 4, 5, 6]
"""
if
not
isinstance
(
dtype
,
core
.
VarDesc
.
VarType
):
dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
dtype
=
convert_dtype
(
dtype
)
if
not
isinstance
(
start
,
Variable
):
start
=
fill_constant
([
1
],
dtype
,
start
)
elif
convert_dtype
(
start
.
dtype
)
!=
dtype
:
# make sure that start, end, step has the same dtype as
# `dtype`
start
=
cast
(
x
=
start
,
dtype
=
dtype
)
elif
start
.
dtype
!=
dtype
:
start
=
cast
(
start
,
dtype
)
if
not
isinstance
(
end
,
Variable
):
end
=
fill_constant
([
1
],
dtype
,
end
)
elif
convert_dtype
(
end
.
dtype
)
!=
dtype
:
end
=
cast
(
x
=
end
,
dtype
=
dtype
)
elif
end
.
dtype
!=
dtype
:
end
=
cast
(
end
,
dtype
)
if
not
isinstance
(
step
,
Variable
):
step
=
fill_constant
([
1
],
dtype
,
step
)
elif
convert_dtype
(
step
.
dtype
)
!=
dtype
:
step
=
cast
(
x
=
step
,
dtype
=
dtype
)
elif
step
.
dtype
!=
dtype
:
step
=
cast
(
step
,
dtype
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
start
.
dtype
)
if
in_dygraph_mode
():
return
core
.
ops
.
range
(
start
,
end
,
step
)
check_dtype
(
dtype
,
'dtype'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'range/arange'
)
helper
=
LayerHelper
(
'range'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
'range'
,
inputs
=
{
'Start'
:
start
,
'End'
:
end
,
'Step'
:
step
},
outputs
=
{
'Out'
:
[
out
]
})
outputs
=
{
'Out'
:
out
})
out
.
stop_gradient
=
True
return
out
...
...
python/paddle/fluid/tests/unittests/test_arange.py
浏览文件 @
5a2d15a1
...
...
@@ -15,7 +15,8 @@
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
from
paddle
import
program_guard
,
Program
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
...
...
@@ -44,47 +45,67 @@ class TestArangeOp(OpTest):
self
.
check_output
()
class
TestFloatArangeOp
Case0
(
TestArangeOp
):
class
TestFloatArangeOp
(
TestArangeOp
):
def
init_config
(
self
):
self
.
dtype
=
np
.
float32
self
.
case
=
(
0
,
5
,
1
)
class
TestInt32ArangeOp
Case0
(
TestArangeOp
):
class
TestInt32ArangeOp
(
TestArangeOp
):
def
init_config
(
self
):
self
.
dtype
=
np
.
int32
self
.
case
=
(
0
,
5
,
2
)
class
Test
Int32ArangeOpCase1
(
TestArangeOp
):
class
Test
Float64ArangeOp
(
TestArangeOp
):
def
init_config
(
self
):
self
.
dtype
=
np
.
int32
self
.
dtype
=
np
.
float64
self
.
case
=
(
10
,
1
,
-
2
)
class
TestInt
32ArangeOpCase2
(
TestArangeOp
):
class
TestInt
64ArangeOp
(
TestArangeOp
):
def
init_config
(
self
):
self
.
dtype
=
np
.
int
32
self
.
dtype
=
np
.
int
64
self
.
case
=
(
-
1
,
-
10
,
-
2
)
class
TestArangeOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
self
.
assertRaises
(
TypeError
,
paddle
.
arange
,
10
,
dtype
=
'int8'
)
class
TestArangeAPI
(
unittest
.
TestCase
):
def
test_out
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
data
=
paddle
.
arange
(
0
,
5
,
1
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
result
,
=
exe
.
run
(
fetch_list
=
[
data
])
with
program_guard
(
Program
(),
Program
()):
x1
=
paddle
.
arange
(
0
,
5
,
1
,
'float32'
)
place
=
paddle
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
paddle
.
CPUPlace
()
exe
=
paddle
.
Executor
(
place
)
out
=
exe
.
run
(
fetch_list
=
[
x1
])
expected_data
=
np
.
arange
(
0
,
5
,
1
).
astype
(
np
.
float32
)
self
.
assertEqual
((
result
==
expected_data
).
all
(),
True
)
with
fluid
.
program_guard
(
fluid
.
Program
()):
data
=
paddle
.
arange
(
0.0
,
5.0
,
1.0
,
'int32'
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
result
,
=
exe
.
run
(
fetch_list
=
[
data
])
expected_data
=
np
.
arange
(
0
,
5
,
1
).
astype
(
np
.
int32
)
self
.
assertEqual
((
result
==
expected_data
).
all
(),
True
)
self
.
assertEqual
((
out
==
expected_data
).
all
(),
True
)
class
TestArangeImperative
(
unittest
.
TestCase
):
def
test_out
(
self
):
place
=
paddle
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
paddle
.
CPUPlace
()
with
paddle
.
imperative
.
guard
(
place
):
x1
=
paddle
.
arange
(
0
,
5
,
1
)
x2
=
paddle
.
tensor
.
arange
(
5
)
x3
=
paddle
.
tensor
.
creation
.
arange
(
5
)
start
=
paddle
.
imperative
.
to_variable
(
np
.
array
([
0
],
'float32'
))
end
=
paddle
.
imperative
.
to_variable
(
np
.
array
([
5
],
'float32'
))
step
=
paddle
.
imperative
.
to_variable
(
np
.
array
([
1
],
'float32'
))
x4
=
paddle
.
arange
(
start
,
end
,
step
,
'int64'
)
expected_data
=
np
.
arange
(
0
,
5
,
1
).
astype
(
np
.
int64
)
for
i
in
[
x1
,
x2
,
x3
,
x4
]:
self
.
assertEqual
((
i
.
numpy
()
==
expected_data
).
all
(),
True
)
if
__name__
==
"__main__"
:
...
...
python/paddle/tensor/creation.py
浏览文件 @
5a2d15a1
...
...
@@ -21,6 +21,7 @@ from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtyp
from
..fluid.framework
import
convert_np_dtype_to_dtype_
,
in_dygraph_mode
,
_varbase_creator
,
device_guard
,
OpProtoHolder
from
..fluid.layers
import
fill_constant
from
paddle.common_ops_import
import
*
import
paddle
# TODO: define functions to get create a tensor
from
..fluid.layers
import
crop_tensor
#DEFINE_ALIAS
...
...
@@ -413,76 +414,80 @@ def full(shape, fill_value, dtype=None, name=None):
return
fill_constant
(
shape
=
shape
,
dtype
=
dtype
,
value
=
fill_value
,
name
=
name
)
def
arange
(
start
,
end
,
step
=
1
,
dtype
=
None
,
name
=
None
):
def
arange
(
start
=
0
,
end
=
None
,
step
=
1
,
dtype
=
None
,
name
=
None
):
"""
:alias_main: paddle.arange
:alias: paddle.arange,paddle.tensor.arange,paddle.tensor.creation.arange
Return evenly spaced values within a given interval.
Values are generated within the half-open interval [start, stop) (in other words,
the interval including start but excluding stop).
Values are generated into the half-open interval [start, stop) with the step.
(the interval including start but excluding stop).
If dtype is float32 or float64, we advise adding a small epsilon to end to
avoid floating point rounding errors when comparing against end.
Parameters:
start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
when start is Variable, it is a 1-D Tensor with shape [1].
end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
value, except in some cases where step is not an integer
and floating point round-off affects the length of out. When end is Variable,
it is a 1-D Tensor with shape [1].
step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
distance between two adjacent values, out[i+1] - out[i].
dtype(str|core.VarDesc.VarType): the data type of the output tensor, can be float32, float64, int32, int64.
Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
start(float|int|Variable): Start of interval. The interval includes
this value. If end is None, the half-open interval is [0, start).
If start is Variable, it is a 1-D Tensor with shape [1], and it's
data type should be one of int32, int64, float32, float64. Default
is 0.
end(float|int|Variable, optional): End of interval. The interval does
not include this value. When end is Variable, it is a 1-D Tensor
with shape [1], and it's data type should be one of int32, int64,
float32, float64. If end is None, the half-open interval is [0, start).
Default is None.
step(float|int|Variable, optional): Spacing between values. For any
out, this is the istance between two adjacent values, out[i+1] - out[i].
When end is Variable, it is a 1-D Tensor with shape [1], and it's
data type should be one of int32, int64, float32, float64. Default is 1.
dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
the output tensor, can be float32, float64, int32, int64. If dtype
is `None` , the data type of out tensor is `int64` . Defaule is None
name(str, optional): Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name` .
Default is None.
Returns: a 1-D Tensor which is evenly spaced values within a given interval.
Its data type is set by dtype.
Return type: Variable
Raises:
TypeError: If dtype is not float32, float64, int32 or int64.
examples:
.. code-block:: python
import paddle
# expected out put: [0, 2, 4, 6, 8]
data = paddle.arange(0, 10, 2, 'int32')
#dygraph mode
import paddle
import paddle.fluid as fluid
with fluid.dygraph.guard():
x = paddle.arange(0, 6, 2)
# x: [0, 2, 4]
# x dtype: float32
"""
helper
=
LayerHelper
(
"range"
,
**
locals
())
import numpy as np
if
dtype
is
None
:
dtype
=
'float32'
paddle.enable_imperative()
check_dtype
(
dtype
,
'create data type'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'range'
)
out1 = paddle.arange(5)
# [0, 1, 2, 3, 4]
dtype
=
convert_dtype
(
dtype
)
if
not
isinstance
(
start
,
Variable
):
start
=
fill_constant
([
1
],
dtype
,
start
)
out2 = paddle.arange(3, 9, 2.0)
# [3, 5, 7]
if
not
isinstance
(
end
,
Variable
):
end
=
fill_constant
([
1
],
dtype
,
end
)
# use 4.999 instead of 5.0 to avoid floating point rounding errors
out3 = paddle.arange(4.999, dtype='float32')
# [0., 1., 2., 3., 4.]
if
not
isinstance
(
step
,
Variable
):
step
=
fill_constant
([
1
],
dtype
,
step
)
start_var = paddle.imperative.to_variable(np.array([3]))
out4 = paddle.arange(start_var, 7)
# [3, 4, 5, 6]
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
start
.
dtype
)
"""
if
dtype
is
None
:
dtype
=
'int64'
if
end
is
None
:
end
=
start
start
=
0
helper
.
append_op
(
type
=
'range'
,
inputs
=
{
'Start'
:
start
,
'End'
:
end
,
'Step'
:
step
},
outputs
=
{
'Out'
:
[
out
]})
out
.
stop_gradient
=
True
return
out
return
paddle
.
fluid
.
layers
.
range
(
start
,
end
,
step
,
dtype
,
name
)
def
_tril_triu_op
(
helper
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录