未验证 提交 593bc4e2 编写于 作者: G GGBond8488 提交者: GitHub

remove no used fluid beam_search_decoder (#48096)

上级 a7d306af
...@@ -13,8 +13,7 @@ ...@@ -13,8 +13,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from . import decoder
from .decoder import *
from . import memory_usage_calc from . import memory_usage_calc
from .memory_usage_calc import * from .memory_usage_calc import *
from . import op_frequence from . import op_frequence
...@@ -36,7 +35,7 @@ from . import sparsity ...@@ -36,7 +35,7 @@ from . import sparsity
from .sparsity import * from .sparsity import *
__all__ = [] __all__ = []
__all__ += decoder.__all__
__all__ += memory_usage_calc.__all__ __all__ += memory_usage_calc.__all__
__all__ += op_frequence.__all__ __all__ += op_frequence.__all__
__all__ += quantize.__all__ __all__ += quantize.__all__
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from . import beam_search_decoder
from .beam_search_decoder import *
__all__ = beam_search_decoder.__all__
...@@ -13,5 +13,3 @@ add_subdirectory(book) ...@@ -13,5 +13,3 @@ add_subdirectory(book)
add_subdirectory(custom_op) add_subdirectory(custom_op)
add_subdirectory(custom_kernel) add_subdirectory(custom_kernel)
add_subdirectory(custom_runtime) add_subdirectory(custom_runtime)
set_tests_properties(test_beam_search_decoder PROPERTIES TIMEOUT 120)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A simple machine translation demo using beam search decoder.
"""
import contextlib
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.fluid.layers as layers
from paddle.fluid.executor import Executor
from paddle.fluid.contrib.decoder.beam_search_decoder import (
BeamSearchDecoder,
InitState,
StateCell,
TrainingDecoder,
)
import unittest
paddle.enable_static()
dict_size = 30000
source_dict_dim = target_dict_dim = dict_size
src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size)
hidden_dim = 32
word_dim = 32
decoder_size = hidden_dim
IS_SPARSE = True
batch_size = 2
max_length = 8
topk_size = 50
trg_dic_size = 10000
beam_size = 2
def encoder():
# encoder
src_word = layers.data(
name="src_word", shape=[1], dtype='int64', lod_level=1
)
src_embedding = layers.embedding(
input=src_word,
size=[dict_size, word_dim],
dtype='float32',
is_sparse=IS_SPARSE,
)
fc1 = layers.fc(input=src_embedding, size=hidden_dim * 4, act='tanh')
lstm_hidden0, lstm_0 = layers.dynamic_lstm(input=fc1, size=hidden_dim * 4)
encoder_out = layers.sequence_last_step(input=lstm_hidden0)
return encoder_out
def decoder_state_cell(context):
h = InitState(init=context, need_reorder=True)
state_cell = StateCell(inputs={'x': None}, states={'h': h}, out_state='h')
@state_cell.state_updater
def updater(state_cell):
current_word = state_cell.get_input('x')
prev_h = state_cell.get_state('h')
# make sure lod of h heritted from prev_h
h = layers.fc(
input=[prev_h, current_word], size=decoder_size, act='tanh'
)
state_cell.set_state('h', h)
return state_cell
def decoder_train(state_cell):
# decoder
trg_language_word = layers.data(
name="target_word", shape=[1], dtype='int64', lod_level=1
)
trg_embedding = layers.embedding(
input=trg_language_word,
size=[dict_size, word_dim],
dtype='float32',
is_sparse=IS_SPARSE,
)
decoder = TrainingDecoder(state_cell)
with decoder.block():
current_word = decoder.step_input(trg_embedding)
decoder.state_cell.compute_state(inputs={'x': current_word})
current_score = layers.fc(
input=decoder.state_cell.get_state('h'),
size=target_dict_dim,
act='softmax',
)
decoder.state_cell.update_states()
decoder.output(current_score)
return decoder()
def decoder_decode(state_cell):
init_ids = layers.data(
name="init_ids", shape=[1], dtype="int64", lod_level=2
)
init_scores = layers.data(
name="init_scores", shape=[1], dtype="float32", lod_level=2
)
decoder = BeamSearchDecoder(
state_cell=state_cell,
init_ids=init_ids,
init_scores=init_scores,
target_dict_dim=target_dict_dim,
word_dim=word_dim,
input_var_dict={},
topk_size=topk_size,
sparse_emb=IS_SPARSE,
max_len=max_length,
beam_size=beam_size,
end_id=1,
name=None,
)
decoder.decode()
translation_ids, translation_scores = decoder()
return translation_ids, translation_scores
def train_main(use_cuda):
if use_cuda and not fluid.core.is_compiled_with_cuda():
return
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
context = encoder()
state_cell = decoder_state_cell(context)
rnn_out = decoder_train(state_cell)
label = layers.data(
name="target_next_word", shape=[1], dtype='int64', lod_level=1
)
cost = layers.cross_entropy(input=rnn_out, label=label)
avg_cost = paddle.mean(x=cost)
optimizer = fluid.optimizer.Adagrad(learning_rate=1e-3)
optimizer.minimize(avg_cost)
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.wmt14.train(dict_size), buf_size=1000
),
batch_size=batch_size,
)
feed_order = ['src_word', 'target_word', 'target_next_word']
exe = Executor(place)
def train_loop(main_program):
exe.run(framework.default_startup_program())
feed_list = [
main_program.global_block().var(var_name) for var_name in feed_order
]
feeder = fluid.DataFeeder(feed_list, place)
for pass_id in range(1):
for batch_id, data in enumerate(train_reader()):
outs = exe.run(
main_program, feed=feeder.feed(data), fetch_list=[avg_cost]
)
avg_cost_val = np.array(outs[0])
print(
'pass_id='
+ str(pass_id)
+ ' batch='
+ str(batch_id)
+ " avg_cost="
+ str(avg_cost_val)
)
if batch_id > 3:
break
train_loop(framework.default_main_program())
def decode_main(use_cuda):
if use_cuda and not fluid.core.is_compiled_with_cuda():
return
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
context = encoder()
state_cell = decoder_state_cell(context)
translation_ids, translation_scores = decoder_decode(state_cell)
exe = Executor(place)
exe.run(framework.default_startup_program())
init_ids_data = np.array([0 for _ in range(batch_size)], dtype='int64')
init_scores_data = np.array(
[1.0 for _ in range(batch_size)], dtype='float32'
)
init_ids_data = init_ids_data.reshape((batch_size, 1))
init_scores_data = init_scores_data.reshape((batch_size, 1))
init_lod = [1] * batch_size
init_lod = [init_lod, init_lod]
init_ids = fluid.create_lod_tensor(init_ids_data, init_lod, place)
init_scores = fluid.create_lod_tensor(init_scores_data, init_lod, place)
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.wmt14.train(dict_size), buf_size=1000
),
batch_size=batch_size,
)
feed_order = ['src_word']
feed_list = [
framework.default_main_program().global_block().var(var_name)
for var_name in feed_order
]
feeder = fluid.DataFeeder(feed_list, place)
data = next(train_reader())
feed_dict = feeder.feed([[x[0]] for x in data])
feed_dict['init_ids'] = init_ids
feed_dict['init_scores'] = init_scores
result_ids, result_scores = exe.run(
framework.default_main_program(),
feed=feed_dict,
fetch_list=[translation_ids, translation_scores],
return_numpy=False,
)
print(result_ids.lod())
class TestBeamSearchDecoder(unittest.TestCase):
pass
@contextlib.contextmanager
def scope_prog_guard():
prog = fluid.Program()
startup_prog = fluid.Program()
scope = fluid.core.Scope()
with fluid.scope_guard(scope):
with fluid.program_guard(prog, startup_prog):
yield
def inject_test_train(use_cuda):
f_name = 'test_{0}_train'.format('cuda' if use_cuda else 'cpu')
def f(*args):
with scope_prog_guard():
train_main(use_cuda)
setattr(TestBeamSearchDecoder, f_name, f)
def inject_test_decode(use_cuda, decorator=None):
f_name = 'test_{0}_decode'.format('cuda' if use_cuda else 'cpu')
def f(*args):
with scope_prog_guard():
decode_main(use_cuda)
if decorator is not None:
f = decorator(f)
setattr(TestBeamSearchDecoder, f_name, f)
for _use_cuda_ in (False, True):
inject_test_train(_use_cuda_)
for _use_cuda_ in (False, True):
_decorator_ = None
inject_test_decode(use_cuda=_use_cuda_, decorator=_decorator_)
if __name__ == '__main__':
unittest.main()
...@@ -340,7 +340,6 @@ packages=['paddle', ...@@ -340,7 +340,6 @@ packages=['paddle',
'paddle.fluid.layers', 'paddle.fluid.layers',
'paddle.fluid.dataloader', 'paddle.fluid.dataloader',
'paddle.fluid.contrib', 'paddle.fluid.contrib',
'paddle.fluid.contrib.decoder',
'paddle.fluid.contrib.quantize', 'paddle.fluid.contrib.quantize',
'paddle.fluid.contrib.slim', 'paddle.fluid.contrib.slim',
'paddle.fluid.contrib.slim.quantization', 'paddle.fluid.contrib.slim.quantization',
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册