提交 55edceb5 编写于 作者: chrisxu2014's avatar chrisxu2014

release new homepages

上级 c6945d7c
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="description" content="">
<meta name="author" content="">
<title>PaddlePaddle ---- PArallel Distributed Deep LEarning</title>
<!-- Bootstrap Core CSS -->
<link rel="stylesheet" href="css/bootstrap.min.css" type="text/css">
<!-- Custom Fonts -->
<link href='http://fonts.lug.ustc.edu.cn/css?family=Open+Sans:300italic,400italic,600italic,700italic,800italic,400,300,600,700,800' rel='stylesheet' type='text/css'>
<link href='http://fonts.lug.ustc.edu.cn/css?family=Merriweather:400,300,300italic,400italic,700,700italic,900,900italic' rel='stylesheet' type='text/css'>
<link rel="stylesheet" href="font-awesome/css/font-awesome.min.css" type="text/css">
<!-- Plugin CSS -->
<link rel="stylesheet" href="css/animate.min.css" type="text/css">
<!-- Custom CSS -->
<link rel="stylesheet" href="css/main.css" type="text/css">
<!-- HTML5 Shim and Respond.js IE8 support of HTML5 elements and media queries -->
<!-- WARNING: Respond.js doesn't work if you view the page via file:// -->
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
<script src="https://oss.maxcdn.com/libs/respond.js/1.4.2/respond.min.js"></script>
<![endif]-->
<!-- Baidu Analystics -->
<script>
var _hmt = _hmt || [];
(function() {
var hm = document.createElement("script");
hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
var s = document.getElementsByTagName("script")[0];
s.parentNode.insertBefore(hm, s);
})();
</script>
</head>
<body id="page-top">
<nav id="mainNav" class="navbar navbar-default navbar-fixed-top">
<div class="container-fluid">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="pp_logo page-scroll" href="#page-top"></a>
</div>
<!-- Collect the nav links, forms, and other content for toggling -->
<div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
<ul class="nav navbar-nav navbar-right">
<li>
<a class="page-scroll" href="#what">What's PaddlePaddle</a>
</li>
<li>
<a class="page-scroll" href="#feature">Features</a>
</li>
<li style='display:none'>
<a class="page-scroll" href="#portfolio">Portfolio</a>
</li>
<li>
<a class="page-scroll" href="#contact">Contact</a>
</li>
<li>
<a class='page-scroll' href="http://www.paddlepaddle.org/cn/index.html">中文</a>
</li>
</ul>
</div>
<!-- /.navbar-collapse -->
</div>
<!-- /.container-fluid -->
</nav>
<header>
<div class="header-content">
<div class="header-content-inner">
<h1>PaddlePaddle</h1>
<hr>
<p style="color: white; background-color: rgba(0, 0, 0, 0.6);">Open and Easy-to-Use Deep Learning Platform for Enterprise and Research</p>
<a href="http://book.paddlepaddle.org/index.en.html" class="btn btn-primary btn-xl page-scroll btn-pd">Deep Learning 101</a>
<a href="http://paddlepaddle.org/doc/" class="btn btn-primary btn-xl page-scroll btn-pd">Documentation</a>
<a href="https://github.com/baidu/paddle" class="btn btn-primary btn-xl page-scroll btn-pd">Code</a>
</div>
</div>
</header>
<section class="bg-primary" id="what">
<div class="container">
<div class="row">
<div class="col-lg-8 col-lg-offset-2 text-center">
<h2 class="section-heading">What's PaddlePaddle</h2>
<hr class="light">
<p class="text-faded">PaddlePaddle (PArallel Distributed Deep LEarning) is an easy-to-use, efficient, flexible and scalable deep learning platform, which is originally developed by Baidu scientists and engineers for the purpose of applying deep learning to many products at Baidu.
</p>
<!--- <a href="#" class="btn btn-default btn-xl">Get Started!</a> -->
</div>
</div>
</div>
</section>
<section id="feature">
<div class="container">
<div class="row">
<div class="col-lg-12 text-center">
<h2 class="section-heading">Supported Features</h2>
<hr class="primary">
</div>
</div>
</div>
<div class="container">
<div class="row">
<div class="col-lg-3 col-md-6 text-center">
<div class="service-box">
<i class="fa fa-5x fa-gamepad wow bounceIn text-primary"></i>
<h3>Ease of use</h3>
<p class="text-muted">PaddlePaddle is designed to be easy to use. It provides an intuitive and yet flexible interface for loading data and specifying model structure.</p>
</div>
</div>
<div class="col-lg-3 col-md-6 text-center">
<div class="service-box">
<i class="fa fa-5x fa-puzzle-piece wow bounceIn text-primary" data-wow-delay=".1s"></i>
<h3>Flexibility</h3>
<p class="text-muted">PaddlePaddle supports a wide range of neural network architectures and optimization algorithms. It is easy to configure complex models such as neural machine translation model with attention mechanism or complex memory connection.</p>
</div>
</div>
<div class="col-lg-3 col-md-6 text-center">
<div class="service-box">
<i class="fa fa-5x fa-bolt wow bounceIn text-primary" data-wow-delay=".2s"></i>
<h3>Efficiency</h3>
<p class="text-muted">In order to unleash the power of heterogeneous computing resource, optimization occurs at different levels of PaddlePaddle, including computing, memory, architecture and communication.</p>
</div>
</div>
<div class="col-lg-3 col-md-6 text-center">
<div class="service-box">
<i class="fa fa-5x fa-cloud wow bounceIn text-primary" data-wow-delay=".3s"></i>
<h3>Scalability</h3>
<p class="text-muted">With PaddlePaddle, it is easy to use many CPUs/GPUs and machines to speed up your training. PaddlePaddle can achieve high throughput and performance via optimized communication.</p>
</div>
</div>
</div>
</div>
</section>
<section class="no-padding" id="portfolio" style="display: none;">
<div class="container-fluid">
<div class="row no-gutter">
<div class="col-lg-4 col-sm-6">
<a href="#" class="portfolio-box">
<img src="img/portfolio/1.jpg" class="img-responsive" alt="">
<div class="portfolio-box-caption">
<div class="portfolio-box-caption-content">
<div class="project-category text-faded">
Category
</div>
<div class="project-name">
Project Name
</div>
</div>
</div>
</a>
</div>
<div class="col-lg-4 col-sm-6">
<a href="#" class="portfolio-box">
<img src="img/portfolio/2.jpg" class="img-responsive" alt="">
<div class="portfolio-box-caption">
<div class="portfolio-box-caption-content">
<div class="project-category text-faded">
Category
</div>
<div class="project-name">
Project Name
</div>
</div>
</div>
</a>
</div>
<div class="col-lg-4 col-sm-6">
<a href="#" class="portfolio-box">
<img src="img/portfolio/3.jpg" class="img-responsive" alt="">
<div class="portfolio-box-caption">
<div class="portfolio-box-caption-content">
<div class="project-category text-faded">
Category
</div>
<div class="project-name">
Project Name
</div>
</div>
</div>
</a>
</div>
<div class="col-lg-4 col-sm-6">
<a href="#" class="portfolio-box">
<img src="img/portfolio/4.jpg" class="img-responsive" alt="">
<div class="portfolio-box-caption">
<div class="portfolio-box-caption-content">
<div class="project-category text-faded">
Category
</div>
<div class="project-name">
Project Name
</div>
</div>
</div>
</a>
</div>
<div class="col-lg-4 col-sm-6">
<a href="#" class="portfolio-box">
<img src="img/portfolio/5.jpg" class="img-responsive" alt="">
<div class="portfolio-box-caption">
<div class="portfolio-box-caption-content">
<div class="project-category text-faded">
Category
</div>
<div class="project-name">
Project Name
</div>
</div>
</div>
</a>
</div>
<div class="col-lg-4 col-sm-6">
<a href="#" class="portfolio-box">
<img src="img/portfolio/6.jpg" class="img-responsive" alt="">
<div class="portfolio-box-caption">
<div class="portfolio-box-caption-content">
<div class="project-category text-faded">
Category
</div>
<div class="project-name">
Project Name
</div>
</div>
</div>
</a>
</div>
</div>
</div>
</section>
<aside class="bg-dark">
<div class="container text-center">
<div class="call-to-action">
<h2>Fork me on github now!</h2>
<a href="https://github.com/baidu/paddle#fork-destination-box" class="btn btn-default btn-xl wow tada">Fork!</a>
</div>
</div>
</aside>
<section id="contact">
<div class="container">
<div class="row">
<div class="col-lg-8 col-lg-offset-2 text-center">
<h2 class="section-heading">Let's Get In Touch!</h2>
<hr class="primary">
<p>If you have any problems using PaddlePaddle, please contact paddle-dev@baidu.com.</p>
</div>
</div>
</div>
</section>
<!-- jQuery -->
<script src="js/jquery.js"></script>
<!-- Bootstrap Core JavaScript -->
<script src="js/bootstrap.min.js"></script>
<!-- Plugin JavaScript -->
<script src="js/jquery.easing.min.js"></script>
<script src="js/jquery.fittext.js"></script>
<script src="js/wow.min.js"></script>
<!-- Custom Theme JavaScript -->
<script src="js/creative.js"></script>
</body>
</html>
<!DOCTYPE html> <html lang=en> <head> <meta charset=UTF-8> <title>PaddlePaddle</title> <link rel=stylesheet href=./css/home.css> </head> <body> <header class=site-header> <nav class=row> <div class=logo> <img src=> </div> <nav class=top-nav> <ul class=site-links> <li><a class=active>Home</a></li> <li><a href=http://book.paddlepaddle.org/index.en.html target=_blank>Quick Start</a></li> <li><a href=http://www.paddlepaddle.org/doc/howto/index_en.html target=_blank>Documents</a></li> <li><a href=https://github.com/PaddlePaddle/Paddle/blob/develop/doc/about/index_en.rst target=_blank>About Us</a></li> </ul> <div class=language-switcher> <a>English<i class=fa aria-hidden=true></i></a> <ul> <li><a href=./index.html>English</a></li> <li><a href=./index_cn.html>中文</a></li> </ul> </div> <div class=github-fork> <a href=https://github.com/PaddlePaddle/Paddle target=_blank> <i class="fa fa-github" aria-hidden=true></i> <span>Fork me on Github</span> </a> </div> </nav> </nav> <div class="row banner"> <h1>Easy to learn and Use Distributed Deep Learning Platform</h1> <p>Providing deep learning algorithms for 100+ products</p> <div> <a class=quick-start href=http://book.paddlepaddle.org/index.en.html target=_blank>Quick Start</a> </div> <div> <div class=github-counter> <span><i class="fa fa-star" aria-hidden=true></i>Star</span> <span id=star-counter></span> </div> <div class=github-counter> <span><i class="fa fa-code-fork" aria-hidden=true></i>Fork</span> <span id=fork-counter></span> </div> </div> </div> </header> <section class=services> <div class=row> <h2><span>Extensive Algorithmic Service</span></h2> </div> <div class=row> <div> <img class=service-icon src=./images/service-1.png> </div> <div> <div class=service-desc> <h3>Machine Vision</h3> <p>The convoluted neural network can identify the main object in the image and output the classification result</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/03.image_classification/index.en.html target=_blank>Read more</a> </div> </div> </div> </div> <div class=row> <div> <div class=service-desc> <h3>Natural Language Understanding</h3> <p>Using the LSTM network to analyze the positive and negative aspects of the commenter's emotions from IMDB film review</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/06.understand_sentiment/index.en.html target=_blank>Read more</a> </div> </div> </div> <div> <img class=service-icon src=./images/service-2.png> </div> </div> <div class=row> <div> <img class=service-icon src=./images/service-3.png> </div> <div> <div class=service-desc> <h3>Search Engine Ranking</h3> <p>Analyze user characteristics, movie features, rating scores, predict new users' ratings for different movies</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/05.recommender_system/index.en.html target=_blank>Read more</a> </div> </div> </div> </div> </section> <section class=features> <div class=row> <h2><span>Technology and Service Advantages</span></h2> </div> <div class=row> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>Ease of use</h3> <p>Provids an intuitive and flexible interface for loading data and specifying model structure.</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>Flexibility</h3> <p>Supports CNN, RNN and other neural network. Easy to configure complex models.</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>Efficiency</h3> <p>Efficient optimization of computing, memory, communications and architecture.</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>Scalability</h3> <p>Easy to use many CPUs/GPUs and machines to speed up your training and handle large-scale data easily.</p> </div> </div> </section> <section class=get-started> <div class=row> <h2>Start Using PaddlePaddle</h2> <p>Easy to learn and Use Distributed Deep Learning Platform</p> <div> <a role=button class=quick-start href=http://book.paddlepaddle.org/index.en.html target=_blank>Quick Start</a> </div> </div> </section> <footer class=footer-nav> <div class=row> <div class=contact-us> <img src=> <span>Contact:</span> <img src=./images/email-pic.png> </div> </div> <div class=row> <ul class=friendly-links> <li><a href=http://ai.baidu.com/ target=_blank>Baidu Brain</a></li> <li><a href=http://idl.baidu.com/ target=_blank>Baidu IDL</a></li> <li><a href=http://bdl.baidu.com/ target=_blank>Baidu BDL</a></li> <li><a href=http://yuyin.baidu.com/ target=_blank>Baidu Speech</a></li> <li><a href=http://api.fanyi.baidu.com/ target=_blank>Baidu translation open platform</a></li> <li><a href=http://nlp.baidu.com/ target=_blank>NLPC</a></li> <li><a href=http://erised.baidu.com/ target=_blank>User Profile</a></li> <li><a href=http://kg.baidu.com/ target=_blank>Baidu KG</a></li> <li><a href=http://idmapping.baidu.com/ target=_blank>ID-Mapping</a></li> </ul> <ul class=friendly-links> <li><a href=http://session.baidu.com/ target=_blank>Global Session(Odin)</a></li> <li><a href=http://recsys.baidu.com/ target=_blank>Recsys</a></li> <li><a href=http://offlinedata.baidu.com/ target=_blank>GOD</a></li> <li><a href=http://gravity.baidu.com target=_blank>Big Data KG</a></li> <li><a href=http://pie.baidu.com/ target=_blank>PIE</a></li> <li><a href=http://kg.baidu.com/ target=_blank>KG open</a></li> </ul> </div> <div class=row> <p class=copyright>©Copyright 2017, PaddlePaddle developers.</p> </div> </footer> <script src=./js/common.bundle.js></script> <script src=./js/home.bundle.js></script> </body> </html>
\ No newline at end of file
<!DOCTYPE html> <html lang=en> <head> <meta charset=UTF-8> <title>PaddlePaddle</title> <link rel=stylesheet href=./css/home.css> </head> <body> <header class=site-header> <nav class=row> <div class=logo> <img src=> </div> <nav class=top-nav> <ul class=site-links> <li><a class=active>Home</a></li> <li><a href=http://book.paddlepaddle.org/index.en.html target=_blank>Quick Start</a></li> <li><a href=http://www.paddlepaddle.org/doc/howto/index_en.html target=_blank>Documents</a></li> <li><a href=https://github.com/PaddlePaddle/Paddle/blob/develop/doc/about/index_en.rst target=_blank>About Us</a></li> </ul> <div class=language-switcher> <a>English<i class=fa aria-hidden=true></i></a> <ul> <li><a href=./index.html>English</a></li> <li><a href=./index_cn.html>中文</a></li> </ul> </div> <div class=github-fork> <a href=https://github.com/PaddlePaddle/Paddle target=_blank> <i class="fa fa-github" aria-hidden=true></i> <span>Fork me on Github</span> </a> </div> </nav> </nav> <div class="row banner"> <h1>Easy to learn and Use Distributed Deep Learning Platform</h1> <p>Providing deep learning algorithms for 100+ products</p> <div> <a class=quick-start href=http://book.paddlepaddle.org/index.en.html target=_blank>Quick Start</a> </div> <div> <div class=github-counter> <span><i class="fa fa-star" aria-hidden=true></i>Star</span> <span id=star-counter></span> </div> <div class=github-counter> <span><i class="fa fa-code-fork" aria-hidden=true></i>Fork</span> <span id=fork-counter></span> </div> </div> </div> </header> <section class=services> <div class=row> <h2><span>Extensive Algorithmic Service</span></h2> </div> <div class=row> <div> <img class=service-icon src=./images/service-1.png> </div> <div> <div class=service-desc> <h3>Machine Vision</h3> <p>The convoluted neural network can identify the main object in the image and output the classification result</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/03.image_classification/index.en.html target=_blank>Read more</a> </div> </div> </div> </div> <div class=row> <div> <div class=service-desc> <h3>Natural Language Understanding</h3> <p>Using the LSTM network to analyze the positive and negative aspects of the commenter's emotions from IMDB film review</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/06.understand_sentiment/index.en.html target=_blank>Read more</a> </div> </div> </div> <div> <img class=service-icon src=./images/service-2.png> </div> </div> <div class=row> <div> <img class=service-icon src=./images/service-3.png> </div> <div> <div class=service-desc> <h3>Search Engine Ranking</h3> <p>Analyze user characteristics, movie features, rating scores, predict new users' ratings for different movies</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/05.recommender_system/index.en.html target=_blank>Read more</a> </div> </div> </div> </div> </section> <section class=features> <div class=row> <h2><span>Technology and Service Advantages</span></h2> </div> <div class=row> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>Ease of use</h3> <p>Provids an intuitive and flexible interface for loading data and specifying model structure.</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>Flexibility</h3> <p>Supports CNN, RNN and other neural network. Easy to configure complex models.</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>Efficiency</h3> <p>Efficient optimization of computing, memory, communications and architecture.</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>Scalability</h3> <p>Easy to use many CPUs/GPUs and machines to speed up your training and handle large-scale data easily.</p> </div> </div> </section> <section class=get-started> <div class=row> <h2>Start Using PaddlePaddle</h2> <p>Easy to learn and Use Distributed Deep Learning Platform</p> <div> <a role=button class=quick-start href=http://book.paddlepaddle.org/index.en.html target=_blank>Quick Start</a> </div> </div> </section> <footer class=footer-nav> <div class=row> <div class=contact-us> <img src=> <span>Contact:</span> <img src=./images/email-pic.png> </div> </div> <div class=row> <ul class=friendly-links> <li><a href=http://ai.baidu.com/ target=_blank>Baidu Brain</a></li> <li><a href=http://idl.baidu.com/ target=_blank>Baidu IDL</a></li> <li><a href=http://bdl.baidu.com/ target=_blank>Baidu BDL</a></li> <li><a href=http://yuyin.baidu.com/ target=_blank>Baidu Speech</a></li> <li><a href=http://api.fanyi.baidu.com/ target=_blank>Baidu translation open platform</a></li> <li><a href=http://nlp.baidu.com/ target=_blank>NLPC</a></li> <li><a href=http://erised.baidu.com/ target=_blank>User Profile</a></li> <li><a href=http://kg.baidu.com/ target=_blank>Baidu KG</a></li> <li><a href=http://idmapping.baidu.com/ target=_blank>ID-Mapping</a></li> </ul> <ul class=friendly-links> <li><a href=http://session.baidu.com/ target=_blank>Global Session(Odin)</a></li> <li><a href=http://recsys.baidu.com/ target=_blank>Recsys</a></li> <li><a href=http://offlinedata.baidu.com/ target=_blank>GOD</a></li> <li><a href=http://gravity.baidu.com target=_blank>Big Data KG</a></li> <li><a href=http://pie.baidu.com/ target=_blank>PIE</a></li> <li><a href=http://kg.baidu.com/ target=_blank>KG open</a></li> </ul> </div> <div class=row> <p class=copyright>©Copyright 2017, PaddlePaddle developers.</p> </div> </footer> <script src=./js/common.bundle.js></script> <script src=./js/home.bundle.js></script> </body> </html>
\ No newline at end of file
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright 2013-2015 Iron Summit Media Strategies, LLC
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
# Creative Theme for Jekyll
A Jekyll implementation of the [Creative Theme](http://startbootstrap.com/template-overviews/creative/) template by [Start Bootstrap](http://startbootstrap.com).
Creative is a one page Bootstrap theme for creatives, small businesses, and other multipurpose uses.
The theme includes a number of rich features and plugins that you can use as a great boilerplate for your next Jekyll project!
See it live in action at <https://volny.github.io/creative-theme-jekyll/>
## To use the Creative Theme template in your project
- Start by adding your info in `_config.yml`
- In `_layouts/front.html` reorder or remove section as you prefer.
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="description" content="">
<meta name="author" content="">
<title>PaddlePaddle ---- PArallel Distributed Deep LEarning</title>
<!-- Bootstrap Core CSS -->
<link rel="stylesheet" href="css/bootstrap.min.css" type="text/css">
<!-- Custom Fonts -->
<link href='http://fonts.lug.ustc.edu.cn/css?family=Open+Sans:300italic,400italic,600italic,700italic,800italic,400,300,600,700,800' rel='stylesheet' type='text/css'>
<link href='http://fonts.lug.ustc.edu.cn/css?family=Merriweather:400,300,300italic,400italic,700,700italic,900,900italic' rel='stylesheet' type='text/css'>
<link rel="stylesheet" href="font-awesome/css/font-awesome.min.css" type="text/css">
<!-- Plugin CSS -->
<link rel="stylesheet" href="css/animate.min.css" type="text/css">
<!-- Custom CSS -->
<link rel="stylesheet" href="css/main.css" type="text/css">
<!-- HTML5 Shim and Respond.js IE8 support of HTML5 elements and media queries -->
<!-- WARNING: Respond.js doesn't work if you view the page via file:// -->
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
<script src="https://oss.maxcdn.com/libs/respond.js/1.4.2/respond.min.js"></script>
<![endif]-->
<!-- Baidu Analystics -->
<script>
var _hmt = _hmt || [];
(function() {
var hm = document.createElement("script");
hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
var s = document.getElementsByTagName("script")[0];
s.parentNode.insertBefore(hm, s);
})();
</script>
</head>
<body id="page-top">
<nav id="mainNav" class="navbar navbar-default navbar-fixed-top">
<div class="container-fluid">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="pp_logo page-scroll" href="#page-top"></a>
</div>
<!-- Collect the nav links, forms, and other content for toggling -->
<div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
<ul class="nav navbar-nav navbar-right">
<li>
<a class="page-scroll" href="#what">What's PaddlePaddle</a>
</li>
<li>
<a class="page-scroll" href="#feature">Features</a>
</li>
<li style='display:none'>
<a class="page-scroll" href="#portfolio">Portfolio</a>
</li>
<li>
<a class="page-scroll" href="#contact">Contact</a>
</li>
<li>
<a class='page-scroll' href="http://www.paddlepaddle.org/cn/index.html">中文</a>
</li>
</ul>
</div>
<!-- /.navbar-collapse -->
</div>
<!-- /.container-fluid -->
</nav>
<header>
<div class="header-content">
<div class="header-content-inner">
<h1>PaddlePaddle</h1>
<hr>
<p style="color: white; background-color: rgba(0, 0, 0, 0.6);">Open and Easy-to-Use Deep Learning Platform for Enterprise and Research</p>
<a href="http://book.paddlepaddle.org/index.en.html" class="btn btn-primary btn-xl page-scroll btn-pd">Deep Learning 101</a>
<a href="http://paddlepaddle.org/doc/" class="btn btn-primary btn-xl page-scroll btn-pd">Documentation</a>
<a href="https://github.com/baidu/paddle" class="btn btn-primary btn-xl page-scroll btn-pd">Code</a>
</div>
</div>
</header>
<section class="bg-primary" id="what">
<div class="container">
<div class="row">
<div class="col-lg-8 col-lg-offset-2 text-center">
<h2 class="section-heading">What's PaddlePaddle</h2>
<hr class="light">
<p class="text-faded">PaddlePaddle (PArallel Distributed Deep LEarning) is an easy-to-use, efficient, flexible and scalable deep learning platform, which is originally developed by Baidu scientists and engineers for the purpose of applying deep learning to many products at Baidu.
</p>
<!--- <a href="#" class="btn btn-default btn-xl">Get Started!</a> -->
</div>
</div>
</div>
</section>
<section id="feature">
<div class="container">
<div class="row">
<div class="col-lg-12 text-center">
<h2 class="section-heading">Supported Features</h2>
<hr class="primary">
</div>
</div>
</div>
<div class="container">
<div class="row">
<div class="col-lg-3 col-md-6 text-center">
<div class="service-box">
<i class="fa fa-5x fa-gamepad wow bounceIn text-primary"></i>
<h3>Ease of use</h3>
<p class="text-muted">PaddlePaddle is designed to be easy to use. It provides an intuitive and yet flexible interface for loading data and specifying model structure.</p>
</div>
</div>
<div class="col-lg-3 col-md-6 text-center">
<div class="service-box">
<i class="fa fa-5x fa-puzzle-piece wow bounceIn text-primary" data-wow-delay=".1s"></i>
<h3>Flexibility</h3>
<p class="text-muted">PaddlePaddle supports a wide range of neural network architectures and optimization algorithms. It is easy to configure complex models such as neural machine translation model with attention mechanism or complex memory connection.</p>
</div>
</div>
<div class="col-lg-3 col-md-6 text-center">
<div class="service-box">
<i class="fa fa-5x fa-bolt wow bounceIn text-primary" data-wow-delay=".2s"></i>
<h3>Efficiency</h3>
<p class="text-muted">In order to unleash the power of heterogeneous computing resource, optimization occurs at different levels of PaddlePaddle, including computing, memory, architecture and communication.</p>
</div>
</div>
<div class="col-lg-3 col-md-6 text-center">
<div class="service-box">
<i class="fa fa-5x fa-cloud wow bounceIn text-primary" data-wow-delay=".3s"></i>
<h3>Scalability</h3>
<p class="text-muted">With PaddlePaddle, it is easy to use many CPUs/GPUs and machines to speed up your training. PaddlePaddle can achieve high throughput and performance via optimized communication.</p>
</div>
</div>
</div>
</div>
</section>
<section class="no-padding" id="portfolio" style="display: none;">
<div class="container-fluid">
<div class="row no-gutter">
<div class="col-lg-4 col-sm-6">
<a href="#" class="portfolio-box">
<img src="img/portfolio/1.jpg" class="img-responsive" alt="">
<div class="portfolio-box-caption">
<div class="portfolio-box-caption-content">
<div class="project-category text-faded">
Category
</div>
<div class="project-name">
Project Name
</div>
</div>
</div>
</a>
</div>
<div class="col-lg-4 col-sm-6">
<a href="#" class="portfolio-box">
<img src="img/portfolio/2.jpg" class="img-responsive" alt="">
<div class="portfolio-box-caption">
<div class="portfolio-box-caption-content">
<div class="project-category text-faded">
Category
</div>
<div class="project-name">
Project Name
</div>
</div>
</div>
</a>
</div>
<div class="col-lg-4 col-sm-6">
<a href="#" class="portfolio-box">
<img src="img/portfolio/3.jpg" class="img-responsive" alt="">
<div class="portfolio-box-caption">
<div class="portfolio-box-caption-content">
<div class="project-category text-faded">
Category
</div>
<div class="project-name">
Project Name
</div>
</div>
</div>
</a>
</div>
<div class="col-lg-4 col-sm-6">
<a href="#" class="portfolio-box">
<img src="img/portfolio/4.jpg" class="img-responsive" alt="">
<div class="portfolio-box-caption">
<div class="portfolio-box-caption-content">
<div class="project-category text-faded">
Category
</div>
<div class="project-name">
Project Name
</div>
</div>
</div>
</a>
</div>
<div class="col-lg-4 col-sm-6">
<a href="#" class="portfolio-box">
<img src="img/portfolio/5.jpg" class="img-responsive" alt="">
<div class="portfolio-box-caption">
<div class="portfolio-box-caption-content">
<div class="project-category text-faded">
Category
</div>
<div class="project-name">
Project Name
</div>
</div>
</div>
</a>
</div>
<div class="col-lg-4 col-sm-6">
<a href="#" class="portfolio-box">
<img src="img/portfolio/6.jpg" class="img-responsive" alt="">
<div class="portfolio-box-caption">
<div class="portfolio-box-caption-content">
<div class="project-category text-faded">
Category
</div>
<div class="project-name">
Project Name
</div>
</div>
</div>
</a>
</div>
</div>
</div>
</section>
<aside class="bg-dark">
<div class="container text-center">
<div class="call-to-action">
<h2>Fork me on github now!</h2>
<a href="https://github.com/baidu/paddle#fork-destination-box" class="btn btn-default btn-xl wow tada">Fork!</a>
</div>
</div>
</aside>
<section id="contact">
<div class="container">
<div class="row">
<div class="col-lg-8 col-lg-offset-2 text-center">
<h2 class="section-heading">Let's Get In Touch!</h2>
<hr class="primary">
<p>If you have any problems using PaddlePaddle, please contact paddle-dev@baidu.com.</p>
</div>
</div>
</div>
</section>
<!-- jQuery -->
<script src="js/jquery.js"></script>
<!-- Bootstrap Core JavaScript -->
<script src="js/bootstrap.min.js"></script>
<!-- Plugin JavaScript -->
<script src="js/jquery.easing.min.js"></script>
<script src="js/jquery.fittext.js"></script>
<script src="js/wow.min.js"></script>
<!-- Custom Theme JavaScript -->
<script src="js/creative.js"></script>
</body>
</html>
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册