提交 5558784c 编写于 作者: Y Yancey1989

Merge branch 'develop' of github.com:PaddlePaddle/Paddle into reset_vars_on_pserver

......@@ -29,39 +29,27 @@ std::unique_ptr<ir::Graph> FCFusePass::ApplyImpl(
std::unordered_set<Node*> nodes2delete;
GraphPatternDetector gpd;
// BuildFCPattern(gpd.mutable_pattern());
auto* x = gpd.mutable_pattern()
->NewNode("fc_fuse/x")
->AsInput()
->assert_is_op_input("mul", "X");
patterns::FC(gpd.mutable_pattern(), "fc_fuse", x, true /*with bias*/);
#define GET_NODE(id) \
PADDLE_ENFORCE(subgraph.count(gpd.pattern().RetrieveNode("fc_fuse/" #id)), \
"pattern has no Node called %s", #id); \
auto* id = subgraph.at(gpd.pattern().RetrieveNode("fc_fuse/" #id)); \
PADDLE_ENFORCE_NOT_NULL(id, "subgraph has no node %s", "fc_fuse/" #id);
patterns::FC fc_pattern(gpd.mutable_pattern(), "fc_fuse");
fc_pattern(x, true /*with bias*/);
int found_fc_count = 0;
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) {
VLOG(4) << "handle FC fuse";
// Currently, there is no FC op available, so I will just simulate the
// scenerio.
// FC's fusion is simple, just op fuse, no need to process the
// parameters.
GET_NODE(x); // x
GET_NODE(w); // Y
GET_NODE(fc_bias); // bias
GET_NODE(fc_out); // Out
GET_NODE(mul); // MUL op
GET_NODE(elementwise_add); // ELEMENT_ADD op
GET_NODE(mul_out); // tmp
#undef GET_NODE
GET_IR_NODE_FROM_SUBGRAPH(w, w, fc_pattern);
GET_IR_NODE_FROM_SUBGRAPH(fc_bias, bias, fc_pattern);
GET_IR_NODE_FROM_SUBGRAPH(fc_out, Out, fc_pattern);
GET_IR_NODE_FROM_SUBGRAPH(mul, mul, fc_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add, elementwise_add, fc_pattern);
GET_IR_NODE_FROM_SUBGRAPH(mul_out, mul_out, fc_pattern);
// Create an FC Node.
OpDesc desc;
std::string fc_x_in = x->Name();
std::string fc_x_in = subgraph.at(x)->Name();
std::string fc_Y_in = w->Name();
std::string fc_bias_in = fc_bias->Name();
std::string fc_out_out = fc_out->Name();
......@@ -73,7 +61,8 @@ std::unique_ptr<ir::Graph> FCFusePass::ApplyImpl(
auto fc_node = g->CreateOpNode(&desc); // OpDesc will be copied.
GraphSafeRemoveNodes(graph.get(), {mul, elementwise_add, mul_out});
IR_NODE_LINK_TO(x, fc_node);
PADDLE_ENFORCE(subgraph.count(x));
IR_NODE_LINK_TO(subgraph.at(x), fc_node);
IR_NODE_LINK_TO(w, fc_node);
IR_NODE_LINK_TO(fc_bias, fc_node);
IR_NODE_LINK_TO(fc_node, fc_out);
......
......@@ -20,52 +20,43 @@ namespace paddle {
namespace framework {
namespace ir {
static void BuildPattern(PDPattern* pattern, const std::string& name_scope,
bool with_fc_bias) {
PDNode* x = pattern->NewNode(name_scope, "x")
->assert_is_op_input("mul")
->assert_var_not_persistable();
auto* fc_out = patterns::FC(pattern, name_scope, x, with_fc_bias);
fc_out->AsIntermediate(); // fc_out is a tmp var, will be removed after fuse.
patterns::GRU(pattern, name_scope, fc_out);
VLOG(3) << "fc_gru pattern \n" << pattern->DotString();
}
static int BuildFusion(Graph* graph, const std::string& name_scope,
Scope* scope, bool with_fc_bias) {
GraphPatternDetector gpd;
auto* pattern = gpd.mutable_pattern();
BuildPattern(pattern, name_scope, with_fc_bias);
// Create pattern.
patterns::FC fc_pattern(pattern, name_scope);
patterns::GRU gru_pattern(pattern, name_scope);
PDNode* x =
pattern->NewNode(patterns::UniqueKey("x"))->assert_var_not_persistable();
auto* fc_out = fc_pattern(x, with_fc_bias);
fc_out->AsIntermediate(); // fc_out is a tmp var, will be removed after fuse.
gru_pattern(fc_out);
// Create New OpDesc
auto gru_creater = [&](int gru, int x, int weight_x, int weight_h, int bias,
int hidden, int fc_bias) {
#define GET_NODE(x) auto* x##_n = graph->RetriveNode(x);
GET_NODE(x);
GET_NODE(weight_x);
GET_NODE(weight_h);
GET_NODE(bias);
GET_NODE(hidden);
GET_NODE(gru);
auto gru_creater = [&](Node* gru, Node* x, Node* weight_x, Node* weight_h,
Node* bias, Node* hidden, Node* fc_bias) {
OpDesc op_desc;
op_desc.SetType("fusion_gru");
#define NEW_NAME(x) name_scope + "/at." #x ".new"
#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__##_n->Name()});
#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__->Name()});
SET_IN(X, x);
SET_IN(WeightX, weight_x);
SET_IN(WeightH, weight_h);
if (with_fc_bias) {
op_desc.SetInput("Bias", {NEW_NAME(bias) + bias_n->Name()});
op_desc.SetInput("Bias", {NEW_NAME(bias) + bias->Name()});
} else {
SET_IN(Bias, bias);
}
#undef SET_IN
op_desc.SetInput("H0", {});
op_desc.SetOutput("Hidden", {hidden_n->Name()});
op_desc.SetAttr("is_reverse", gru_n->Op()->GetAttr("is_reverse"));
op_desc.SetOutput("Hidden", {hidden->Name()});
op_desc.SetAttr("is_reverse", gru->Op()->GetAttr("is_reverse"));
// TODO(TJ): This should be a option for infer
op_desc.SetAttr("use_seq", true);
......@@ -82,14 +73,12 @@ static int BuildFusion(Graph* graph, const std::string& name_scope,
PADDLE_ENFORCE(scope);
if (with_fc_bias) {
// Fusion GRU bias = fcbias + grubias
auto* fusion_bias_var = scope->Var(NEW_NAME(bias) + bias_n->Name());
auto* fusion_bias_var = scope->Var(NEW_NAME(bias) + bias->Name());
auto* out_bias_tensor =
fusion_bias_var->GetMutable<framework::LoDTensor>();
PADDLE_ENFORCE(fusion_bias_var);
GET_NODE(fc_bias);
PADDLE_ENFORCE(fc_bias_n);
auto* gru_bias_var = scope->FindVar(bias_n->Name());
auto* fc_bias_var = scope->FindVar(fc_bias_n->Name());
auto* gru_bias_var = scope->FindVar(bias->Name());
auto* fc_bias_var = scope->FindVar(fc_bias->Name());
PADDLE_ENFORCE(gru_bias_var);
PADDLE_ENFORCE(fc_bias_var);
const auto& gru_bias_tenosr = gru_bias_var->Get<framework::LoDTensor>();
......@@ -113,11 +102,11 @@ static int BuildFusion(Graph* graph, const std::string& name_scope,
#undef NEW_NAME
#undef NEW_IMTERMEDIATE_OUT
IR_NODE_LINK_TO(x_n, op);
IR_NODE_LINK_TO(weight_x_n, op);
IR_NODE_LINK_TO(weight_h_n, op);
IR_NODE_LINK_TO(bias_n, op); // actually should link to new bias if have
IR_NODE_LINK_TO(op, hidden_n);
IR_NODE_LINK_TO(x, op);
IR_NODE_LINK_TO(weight_x, op);
IR_NODE_LINK_TO(weight_h, op);
IR_NODE_LINK_TO(bias, op); // actually should link to new bias if have
IR_NODE_LINK_TO(op, hidden);
// h0?
return op;
};
......@@ -125,42 +114,35 @@ static int BuildFusion(Graph* graph, const std::string& name_scope,
int fusion_count{0};
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) {
#define GET_NODE(name__) \
std::string name__##key = name_scope + "/" + #name__; \
auto* name__##n = pattern->RetrieveNode(name__##key); \
PADDLE_ENFORCE(name__##n); \
PADDLE_ENFORCE(subgraph.count(name__##n)); \
Node* name__##_n = subgraph.at(name__##n); \
int name__ __attribute__((unused)) = name__##_n->id();
GET_NODE(x);
GET_NODE(w); // fc weight
GET_NODE(mul);
GET_NODE(fc_out);
GET_NODE(Weight);
GET_NODE(gru);
GET_NODE(Bias);
GET_NODE(Hidden);
auto* x_n = subgraph.at(x);
GET_IR_NODE_FROM_SUBGRAPH(w, w, fc_pattern);
GET_IR_NODE_FROM_SUBGRAPH(mul, mul, fc_pattern);
GET_IR_NODE_FROM_SUBGRAPH(fc_out, Out, fc_pattern);
GET_IR_NODE_FROM_SUBGRAPH(Weight, Weight, gru_pattern);
GET_IR_NODE_FROM_SUBGRAPH(gru, gru, gru_pattern);
GET_IR_NODE_FROM_SUBGRAPH(Bias, Bias, gru_pattern);
GET_IR_NODE_FROM_SUBGRAPH(Hidden, Hidden, gru_pattern);
// nodes need be removed
GET_NODE(BatchGate);
GET_NODE(BatchResetHiddenPrev);
GET_NODE(BatchHidden);
GET_IR_NODE_FROM_SUBGRAPH(BatchGate, BatchGate, gru_pattern);
GET_IR_NODE_FROM_SUBGRAPH(BatchResetHiddenPrev, BatchGate, gru_pattern);
GET_IR_NODE_FROM_SUBGRAPH(BatchHidden, BatchGate, gru_pattern);
if (with_fc_bias) {
GET_NODE(mul_out);
GET_NODE(fc_bias);
GET_NODE(elementwise_add);
gru_creater(gru, x, w, Weight, Bias, Hidden, fc_bias);
GET_IR_NODE_FROM_SUBGRAPH(mul_out, mul_out, fc_pattern);
GET_IR_NODE_FROM_SUBGRAPH(fc_bias, bias, fc_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add, elementwise_add, fc_pattern);
gru_creater(gru, x_n, w, Weight, Bias, Hidden, fc_bias);
// Remove unneeded nodes.
std::unordered_set<const Node*> marked_nodes(
{mul_n, gru_n, elementwise_add_n, fc_bias_n, fc_out_n, mul_out_n,
BatchGate_n, BatchResetHiddenPrev_n, BatchHidden_n});
{mul, gru, elementwise_add, fc_bias, fc_out, mul_out, BatchGate,
BatchResetHiddenPrev, BatchHidden});
GraphSafeRemoveNodes(graph, marked_nodes);
} else {
gru_creater(gru, x, w, Weight, Bias, Hidden, -1);
gru_creater(gru, x_n, w, Weight, Bias, Hidden, nullptr);
// Remove unneeded nodes.
std::unordered_set<const Node*> marked_nodes(
{mul_n, gru_n, BatchGate_n, BatchResetHiddenPrev_n, BatchHidden_n});
{mul, gru, BatchGate, BatchResetHiddenPrev, BatchHidden});
GraphSafeRemoveNodes(graph, marked_nodes);
}
#undef GET_NODE
......
......@@ -20,45 +20,29 @@ namespace paddle {
namespace framework {
namespace ir {
static std::string GenNodeName(const std::string& prefix,
const std::string& name) {
return prefix + "/" + name;
}
static void BuildPattern(PDPattern* pattern, const std::string& name_scope,
int BuildFusion(Graph* graph, const std::string& name_scope, Scope* scope,
bool with_fc_bias) {
PDNode* x = pattern->NewNode(name_scope, "x")
->assert_is_op_input("mul")
->assert_var_not_persistable();
auto* fc_out = patterns::FC(pattern, name_scope, x, with_fc_bias);
fc_out->AsIntermediate(); // fc_out is a tmp var, will be removed after fuse.
patterns::LSTM(pattern, name_scope, fc_out);
// LOG(INFO) << "\n" << pattern->DotString();
}
static int BuildFusion(Graph* graph, const std::string& name_scope,
Scope* scope, bool with_fc_bias) {
GraphPatternDetector gpd;
auto* pattern = gpd.mutable_pattern();
BuildPattern(pattern, name_scope, with_fc_bias);
// Build pattern
PDNode* x = pattern->NewNode(patterns::PDNodeName(name_scope, "x"))
->assert_is_op_input("mul")
->assert_var_not_persistable();
patterns::FC fc_pattern(pattern, name_scope);
// fc_out is a tmp var, will be removed after fuse, so marked as intermediate.
auto* fc_out = fc_pattern(x, with_fc_bias)->AsIntermediate();
patterns::LSTM lstm_pattern(pattern, name_scope);
lstm_pattern(fc_out);
// Create New OpDesc
auto lstm_creator = [&](int lstm, int input, int weight_x, int weight_h,
int bias, int hidden, int cell, int xx, int fc_bias) {
#define GET_NODE(x) auto* x##_n = graph->RetriveNode(x);
GET_NODE(input);
GET_NODE(weight_x);
GET_NODE(weight_h);
GET_NODE(bias);
GET_NODE(hidden);
GET_NODE(cell);
GET_NODE(xx);
GET_NODE(lstm);
auto lstm_creator = [&](Node* lstm, Node* input, Node* weight_x,
Node* weight_h, Node* bias, Node* hidden, Node* cell,
Node* xx, Node* fc_bias) {
OpDesc op_desc;
op_desc.SetType("fusion_lstm");
#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__##_n->Name()});
#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__->Name()});
SET_IN(X, input);
SET_IN(WeightX, weight_x);
SET_IN(WeightH, weight_h);
......@@ -71,13 +55,12 @@ static int BuildFusion(Graph* graph, const std::string& name_scope,
auto* bias_var = scope->Var(new_bias_var);
PADDLE_ENFORCE(bias_var);
auto* bias_tensor = bias_var->GetMutable<framework::LoDTensor>();
auto* lstm_bias_var = scope->FindVar(bias_n->Name());
auto* lstm_bias_var = scope->FindVar(bias->Name());
PADDLE_ENFORCE(lstm_bias_var);
const auto& lstm_bias_tensor = lstm_bias_var->Get<framework::LoDTensor>();
bias_tensor->Resize(lstm_bias_tensor.dims());
GET_NODE(fc_bias);
auto* fc_bias_var = scope->FindVar(fc_bias_n->Name());
auto* fc_bias_var = scope->FindVar(fc_bias->Name());
const auto& fc_bias_tensor = fc_bias_var->Get<framework::LoDTensor>();
auto* data = bias_tensor->mutable_data<float>(platform::CPUPlace());
......@@ -88,31 +71,36 @@ static int BuildFusion(Graph* graph, const std::string& name_scope,
}
op_desc.SetInput("Bias", {new_bias_var});
}
#undef GET_NODE
// Create temp variables.
scope->Var(name_scope + "/BatchedInput.new")
->GetMutable<framework::LoDTensor>();
scope->Var(name_scope + "/BatchCellPreAct.new")
->GetMutable<framework::LoDTensor>();
scope->Var(name_scope + "/BatchedGate.new")
->GetMutable<framework::LoDTensor>();
const std::string BatchedInput = patterns::UniqueKey("BatchedInput");
const std::string BatchedCellPreAct =
patterns::UniqueKey("BatchedCellPreAct");
const std::string BatchedGate = patterns::UniqueKey("BatchedGate");
scope->Var(BatchedInput)->GetMutable<framework::LoDTensor>();
scope->Var(BatchedCellPreAct)->GetMutable<framework::LoDTensor>();
scope->Var(BatchedGate)->GetMutable<framework::LoDTensor>();
op_desc.SetInput("H0", {});
op_desc.SetInput("C0", {});
op_desc.SetOutput("Hidden", {hidden_n->Name()});
op_desc.SetOutput("Cell", {cell_n->Name()});
op_desc.SetOutput("XX", {xx_n->Name()});
op_desc.SetOutput("BatchedGate", {name_scope + "/BatchedGate.new"});
op_desc.SetOutput("BatchCellPreAct", {name_scope + "/BatchCellPreAct.new"});
op_desc.SetOutput("BatchedInput", {name_scope + "/BatchedInput.new"});
op_desc.SetAttr("is_reverse", lstm_n->Op()->GetAttr("is_reverse"));
op_desc.SetAttr("use_peepholes", lstm_n->Op()->GetAttr("use_peepholes"));
op_desc.SetOutput("Hidden", {hidden->Name()});
op_desc.SetOutput("Cell", {cell->Name()});
op_desc.SetOutput("XX", {xx->Name()});
op_desc.SetOutput("BatchedGate", {BatchedGate});
op_desc.SetOutput("BatchCellPreAct", {BatchedCellPreAct});
op_desc.SetOutput("BatchedInput", {BatchedInput});
op_desc.SetAttr("is_reverse", lstm->Op()->GetAttr("is_reverse"));
op_desc.SetAttr("use_peepholes", lstm->Op()->GetAttr("use_peepholes"));
// TODO(TJ): get from attr
op_desc.SetAttr("use_seq", true);
#define TMP_NAME(x) "at.new.tmp." #x
#define OP_SET_OUT(x) op_desc.SetOutput(#x, {TMP_NAME(x)})
PADDLE_ENFORCE(graph->Has(kParamScopeAttr));
auto* scope = graph->Get<Scope*>(kParamScopeAttr);
#define OP_SET_OUT(x) \
const std::string x = patterns::UniqueKey(#x); \
op_desc.SetOutput(#x, {x}); \
scope->Var(x)->GetMutable<LoDTensor>()
OP_SET_OUT(BatchedCell);
OP_SET_OUT(BatchedHidden);
OP_SET_OUT(ReorderedH0);
......@@ -120,22 +108,11 @@ static int BuildFusion(Graph* graph, const std::string& name_scope,
#undef OP_SET_OUT
auto* op = graph->CreateOpNode(&op_desc);
PADDLE_ENFORCE(graph->Has(kParamScopeAttr));
auto* scope = graph->Get<Scope*>(kParamScopeAttr);
#define TMP_NEW(x) scope->Var(TMP_NAME(x))->GetMutable<LoDTensor>()
TMP_NEW(BatchedCell);
TMP_NEW(BatchedHidden);
TMP_NEW(ReorderedH0);
TMP_NEW(ReorderedC0);
#undef TMP_NEW
#undef TMP_NAME
IR_NODE_LINK_TO(input_n, op);
IR_NODE_LINK_TO(weight_x_n, op);
IR_NODE_LINK_TO(weight_h_n, op);
IR_NODE_LINK_TO(bias_n, op);
IR_NODE_LINK_TO(op, hidden_n);
IR_NODE_LINK_TO(input, op);
IR_NODE_LINK_TO(weight_x, op);
IR_NODE_LINK_TO(weight_h, op);
IR_NODE_LINK_TO(bias, op);
IR_NODE_LINK_TO(op, hidden);
return op;
};
......@@ -143,39 +120,32 @@ static int BuildFusion(Graph* graph, const std::string& name_scope,
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) {
#define GET_NODE(name__) \
std::string name__##key = name_scope + "/" + #name__; \
auto* name__##n = pattern->RetrieveNode(name__##key); \
PADDLE_ENFORCE(name__##n); \
PADDLE_ENFORCE(subgraph.count(name__##n)); \
Node* name__##_n = subgraph.at(name__##n); \
int name__ __attribute__((unused)) = name__##_n->id();
GET_NODE(x);
GET_NODE(w);
GET_NODE(mul);
GET_NODE(fc_out);
GET_NODE(Weight);
GET_NODE(lstm);
GET_NODE(Bias);
GET_NODE(Hidden);
GET_NODE(Cell);
GET_IR_NODE_FROM_SUBGRAPH(lstm, lstm, lstm_pattern);
GET_IR_NODE_FROM_SUBGRAPH(Weight, Weight, lstm_pattern);
GET_IR_NODE_FROM_SUBGRAPH(Bias, Bias, lstm_pattern);
GET_IR_NODE_FROM_SUBGRAPH(Cell, Cell, lstm_pattern);
GET_IR_NODE_FROM_SUBGRAPH(Hidden, Hidden, lstm_pattern);
GET_IR_NODE_FROM_SUBGRAPH(w, w, fc_pattern);
GET_IR_NODE_FROM_SUBGRAPH(mul, mul, fc_pattern);
if (with_fc_bias) {
GET_NODE(fc_bias);
GET_NODE(elementwise_add);
lstm_creator(lstm, x, w, Weight, Bias, Hidden, Cell, fc_out, fc_bias);
GET_IR_NODE_FROM_SUBGRAPH(fc_out, Out, fc_pattern);
GET_IR_NODE_FROM_SUBGRAPH(fc_bias, bias, fc_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add, elementwise_add, fc_pattern);
lstm_creator(lstm, subgraph.at(x), w, Weight, Bias, Hidden, Cell, fc_out,
fc_bias);
// Remove unneeded nodes.
std::unordered_set<const Node*> marked_nodes(
{mul_n, lstm_n, elementwise_add_n});
{mul, lstm, elementwise_add});
GraphSafeRemoveNodes(graph, marked_nodes);
} else {
lstm_creator(lstm, x, w, Weight, Bias, Hidden, Cell, fc_out, -1);
GET_IR_NODE_FROM_SUBGRAPH(fc_out, mul_out, fc_pattern);
lstm_creator(lstm, subgraph.at(x), w, Weight, Bias, Hidden, Cell, fc_out,
nullptr);
// Remove unneeded nodes.
std::unordered_set<const Node*> marked_nodes({mul_n, lstm_n});
std::unordered_set<const Node*> marked_nodes({mul, lstm});
GraphSafeRemoveNodes(graph, marked_nodes);
}
#undef GET_NODE
++fusion_count;
};
......
......@@ -21,6 +21,7 @@
#include "paddle/fluid/framework/ir/graph_traits.h"
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/string/printf.h"
namespace paddle {
namespace framework {
......@@ -106,8 +107,7 @@ bool GraphPatternDetector::MarkPDNodesInGraph(const ir::Graph& graph) {
for (auto& pdnode : pattern_.nodes()) {
if (!pdnodes2nodes_.count(pdnode.get())) {
VLOG(4) << pdnode->name() << " can't find matched Node, early stop";
return false;
// return false;
}
}
for (auto& item : pdnodes2nodes_) {
......@@ -517,87 +517,89 @@ bool VarLinksFromOp(Node* node, const std::string& op_type) {
return false;
}
PDNode* patterns::FC(PDPattern* pattern, const std::string& name_scope,
PDNode* x, bool with_bias) {
// mul op
auto* mul_op = pattern->NewNode(name_scope, "mul")->assert_is_op("mul");
auto* mul_weight_var = pattern->NewNode(name_scope, "w")
PDNode* patterns::FC::operator()(paddle::framework::ir::PDNode* x,
bool with_bias) {
// Create shared nodes.
x->assert_is_op_input("mul", "X");
auto* mul = pattern->NewNode(mul_repr())->assert_is_op("mul");
auto* mul_w_var = pattern->NewNode(w_repr())
->AsInput()
->assert_is_persistable_var()
->assert_is_op_input("mul", "Y");
PDNode* fc_out{nullptr};
if (with_bias) {
PDNode* elementwise_add_op{nullptr};
PDNode *mul_out_var{nullptr}, *bias{nullptr};
elementwise_add_op = pattern->NewNode(name_scope, "elementwise_add")
auto* mul_out_var =
pattern->NewNode(mul_out_repr())->assert_is_op_output("mul");
if (!with_bias) { // not with bias
// Add links.
mul->LinksFrom({x, mul_w_var}).LinksTo({mul_out_var});
return mul_out_var;
} else { // with bias
mul_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");
// Create operators.
auto* elementwise_add = pattern->NewNode(elementwise_add_repr())
->assert_is_op("elementwise_add");
// intermediate variable, will be removed in the IR after fuse.
mul_out_var = pattern->NewNode(name_scope, "mul_out")
->AsIntermediate()
->assert_is_only_output_of_op("mul")
->assert_is_op_input("elementwise_add");
// bias
bias = pattern->NewNode(name_scope, "fc_bias")
->AsInput()
->assert_is_op_input("elementwise_add");
// output
fc_out = pattern->NewNode(name_scope, "fc_out")
// Create variables.
auto* bias = pattern->NewNode(bias_repr())
->assert_is_op_input("elementwise_add")
->AsInput();
auto* fc_out = pattern->NewNode(Out_repr())
->AsOutput()
->assert_is_op_output("elementwise_add");
mul_op->LinksFrom({x, mul_weight_var}).LinksTo({mul_out_var});
elementwise_add_op->LinksFrom({mul_out_var, bias}).LinksTo({fc_out});
} else {
fc_out = pattern->NewNode(name_scope, "fc_out")
->AsOutput()
->assert_is_op_output("mul");
mul_op->LinksFrom({mul_weight_var, x}).LinksTo({fc_out});
}
mul->LinksFrom({mul_w_var, x}).LinksTo({mul_out_var});
elementwise_add->LinksFrom({mul_out_var, bias}).LinksTo({fc_out});
return fc_out;
}
}
#define NEW_NODE(op__, arg__, io__) \
auto* arg__ = pattern->NewNode(name_scope, #arg__) \
->assert_is_op_##io__(#op__, #arg__);
PDNode* patterns::LSTM(PDPattern* pattern, const std::string& name_scope,
PDNode* x) {
PDNode* patterns::LSTM::operator()(PDNode* x) {
x->assert_is_op_input("lstm", "Input");
auto* lstm_op = pattern->NewNode(name_scope, "lstm")->assert_is_op("lstm");
auto* lstm_op = pattern->NewNode(lstm_repr())->assert_is_op("lstm");
#define NEW_NODE(arg__, io__) \
auto* arg__ = \
pattern->NewNode(arg__##_repr())->assert_is_op_##io__("lstm", #arg__);
// Currently, the H0 and C0 are optional
// TODO(Superjomn) upgrade the fuse framework to support optional.
// NEW_NODE(H0, input);
// NEW_NODE(C0, input);
NEW_NODE(lstm, Weight, input);
NEW_NODE(lstm, Bias, input);
NEW_NODE(Weight, input);
NEW_NODE(Bias, input);
NEW_NODE(lstm, Hidden, output);
NEW_NODE(lstm, Cell, output);
NEW_NODE(lstm, BatchGate, output);
NEW_NODE(lstm, BatchCellPreAct, output);
NEW_NODE(Hidden, output);
NEW_NODE(Cell, output);
NEW_NODE(BatchGate, output);
NEW_NODE(BatchCellPreAct, output);
#undef NEW_NODE
lstm_op->LinksFrom({x, Weight, Bias});
lstm_op->LinksTo({Hidden, Cell, BatchGate, BatchCellPreAct});
return Hidden;
}
PDNode* patterns::GRU(PDPattern* pattern, const std::string& name_scope,
PDNode* x) {
PDNode* patterns::GRU::operator()(PDNode* x) {
x->assert_is_op_input("gru", "Input");
auto* gru_op = pattern->NewNode(name_scope, "gru")->assert_is_op("gru");
auto* gru_op = pattern->NewNode(gru_repr())->assert_is_op("gru");
#define NEW_NODE(arg__, io__) \
auto* arg__ = \
pattern->NewNode(arg__##_repr())->assert_is_op_##io__("gru", #arg__);
NEW_NODE(gru, Weight, input);
NEW_NODE(Weight, input);
// TODO(Superjomn): upgrade the fuse framework to support optional.
// H0 and bias are optional
NEW_NODE(gru, Bias, input); // also optional
NEW_NODE(Bias, input); // also optional
// NEW_NODE(H0, input);
NEW_NODE(gru, Hidden, output);
NEW_NODE(Hidden, output);
// below are intermediate
NEW_NODE(gru, BatchGate, output);
NEW_NODE(gru, BatchResetHiddenPrev, output);
NEW_NODE(gru, BatchHidden, output);
NEW_NODE(BatchGate, output);
NEW_NODE(BatchResetHiddenPrev, output);
NEW_NODE(BatchHidden, output);
#undef NEW_NODE
BatchGate->AsIntermediate();
BatchResetHiddenPrev->AsIntermediate();
......@@ -607,7 +609,6 @@ PDNode* patterns::GRU(PDPattern* pattern, const std::string& name_scope,
gru_op->LinksTo({Hidden, BatchGate, BatchResetHiddenPrev, BatchHidden});
return Hidden;
}
#undef NEW_NODE
} // namespace ir
} // namespace framework
......
......@@ -286,22 +286,148 @@ void GraphSafeRemoveNodes(Graph* graph,
const std::unordered_set<const Node*>& nodes);
// Some pre-defined patterns those can be reused in multiple passes.
// The related Fluid Layer or Op should be one pattern here for better reusage
// accross different fusion.
namespace patterns {
struct KeyCounter {
static KeyCounter& Instance() {
static KeyCounter x;
return x;
}
int IncCounter(const std::string& key) { return dic_[key]++; }
private:
std::unordered_map<std::string, size_t> dic_;
};
// Generate a unique PDNode's name with name_scope and id.
// The format is {name_scope}/{repr}/{id}/{name}
static std::string PDNodeName(const std::string& name_scope,
const std::string& repr, size_t id,
const std::string& name) {
return string::Sprintf("%s/%s/%d/%s", name_scope, repr, id, name);
}
// Generate a unique PDNode's name.
// The format is {name_scope}/{repr}/{id}
static std::string PDNodeName(const std::string& name_scope,
const std::string& repr) {
return string::Sprintf("%s/%s/%d", name_scope, repr,
KeyCounter::Instance().IncCounter(repr));
}
// Generate a unique key. It can be used for a universally unique temporary
// name.
// The format is {repr}/{id}
static std::string UniqueKey(const std::string& repr) {
return string::Sprintf("%s/%d", repr,
KeyCounter::Instance().IncCounter(repr));
}
// Declare a PDNode in a pattern, will create two methods:
// std::string xxx_repr(); return this PDNode's string id.
// PDNode* xxx_n(); return the corresponding PDNode.
#define PATTERN_DECL_NODE(name__) \
std::string name__##_repr() const { \
return PDNodeName(name_scope_, repr_, id_, #name__); \
} \
PDNode* name__##_n() const { return pattern->RetrieveNode(name__##_repr()); }
// Get an ir::Node* from the matched subgraph.
// var: variable.
// arg: the argument declared by PATTERN_DECL_NODE in a pattern definition.
// pat: the pattern object.
#define GET_IR_NODE_FROM_SUBGRAPH(var, arg, pat) \
PADDLE_ENFORCE(subgraph.count(pat.arg##_n()), \
"Node not found for PDNode %s", pat.arg##_repr()); \
Node* var = subgraph.at(pat.arg##_n()); \
PADDLE_ENFORCE(var, "node %s not exists in the sub-graph", #arg)
// The base class of all the patterns.
struct PatternBase {
PatternBase(PDPattern* pattern, const std::string& name_scope,
const std::string& repr)
: pattern(pattern),
name_scope_(name_scope),
repr_(repr),
id_(KeyCounter::Instance().IncCounter(repr)) {}
PDPattern* pattern;
protected:
std::string name_scope_;
std::string repr_;
size_t id_;
};
// FC with bias
// op: mul + elementwise_add
// named nodes:
// mul, elementwise_add
// w, mul_out, bias, fc_out
PDNode* FC(PDPattern* pattern, const std::string& name_scope, PDNode* x,
bool with_bias);
struct FC : public PatternBase {
FC(PDPattern* pattern, const std::string& name_scope)
: PatternBase(pattern, name_scope, "fc") {}
PDNode* operator()(PDNode* x, bool with_bias);
// declare operator node's name
PATTERN_DECL_NODE(fc);
PATTERN_DECL_NODE(mul);
PATTERN_DECL_NODE(elementwise_add);
// declare variable node's name
PATTERN_DECL_NODE(w);
PATTERN_DECL_NODE(mul_out); // (x,w) -> mul_out
PATTERN_DECL_NODE(bias);
PATTERN_DECL_NODE(Out);
};
struct LSTM : public PatternBase {
LSTM(PDPattern* pattern, const std::string& name_scope)
: PatternBase(pattern, name_scope, "lstm") {}
PDNode* LSTM(PDPattern* pattern, const std::string& name_scope, PDNode* x);
PDNode* operator()(PDNode* x);
PDNode* GRU(PDPattern* pattern, const std::string& name_scope, PDNode* x);
// Operators
PATTERN_DECL_NODE(lstm);
// Inputs
PATTERN_DECL_NODE(Input);
PATTERN_DECL_NODE(H0);
PATTERN_DECL_NODE(C0);
PATTERN_DECL_NODE(Weight);
PATTERN_DECL_NODE(Bias);
// Outputs
PATTERN_DECL_NODE(Hidden);
PATTERN_DECL_NODE(Cell);
PATTERN_DECL_NODE(BatchGate);
PATTERN_DECL_NODE(BatchCellPreAct);
};
struct GRU : public PatternBase {
GRU(PDPattern* pattern, const std::string& name_scope)
: PatternBase(pattern, name_scope, "lstm") {}
PDNode* operator()(PDNode* x);
// Operators
PATTERN_DECL_NODE(gru);
// Inputs
PATTERN_DECL_NODE(Bias);
PATTERN_DECL_NODE(Weight);
// Outputs
PATTERN_DECL_NODE(BatchGate);
PATTERN_DECL_NODE(BatchResetHiddenPrev);
PATTERN_DECL_NODE(BatchHidden);
PATTERN_DECL_NODE(Hidden);
};
} // namespace patterns
// Link two ir::Nodes from each other.
#define IR_NODE_LINK_TO(a, b) \
a->outputs.push_back(b); \
b->inputs.push_back(a);
......
......@@ -192,6 +192,8 @@ std::unique_ptr<ir::Graph> SeqConcatFcFusePass::ApplyImpl(
auto* id = subgraph.at(pattern.RetrieveNode(#id)); \
PADDLE_ENFORCE_NOT_NULL(id, "subgraph has no node %s", #id);
int fuse_count{0};
detector(graph.get(), [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* graph) {
VLOG(4) << "get one concat pattern";
......@@ -239,8 +241,12 @@ std::unique_ptr<ir::Graph> SeqConcatFcFusePass::ApplyImpl(
marked_nodes.erase(sequence_expand1_in);
marked_nodes.erase(fc_out);
GraphSafeRemoveNodes(graph, marked_nodes);
++fuse_count;
});
AddStatis(fuse_count);
return graph;
}
......
......@@ -48,18 +48,18 @@ function (inference_download_and_uncompress install_dir url gz_filename)
message(STATUS "finish downloading ${gz_filename}")
endfunction(inference_download_and_uncompress)
set(DITU_RNN_MODEL_URL "http://paddle-inference-dist.bj.bcebos.com/ditu_rnn_fluid%2Fmodel.tar.gz")
set(DITU_RNN_DATA_URL "http://paddle-inference-dist.bj.bcebos.com/ditu_rnn_fluid%2Fdata.txt.tar.gz")
set(DITU_INSTALL_DIR "${THIRD_PARTY_PATH}/inference_demo/ditu_rnn" CACHE PATH "Ditu RNN model and data root." FORCE)
if (NOT EXISTS ${DITU_INSTALL_DIR} AND WITH_TESTING)
inference_download_and_uncompress(${DITU_INSTALL_DIR} ${DITU_RNN_MODEL_URL} "ditu_rnn_fluid%2Fmodel.tar.gz")
inference_download_and_uncompress(${DITU_INSTALL_DIR} ${DITU_RNN_DATA_URL} "ditu_rnn_fluid%2Fdata.txt.tar.gz")
set(RNN1_MODEL_URL "http://paddle-inference-dist.bj.bcebos.com/rnn1%2Fmodel.tar.gz")
set(RNN1_DATA_URL "http://paddle-inference-dist.bj.bcebos.com/rnn1%2Fdata.txt.tar.gz")
set(RNN1_INSTALL_DIR "${THIRD_PARTY_PATH}/inference_demo/rnn1" CACHE PATH "RNN1 model and data root." FORCE)
if (NOT EXISTS ${RNN1_INSTALL_DIR} AND WITH_TESTING)
inference_download_and_uncompress(${RNN1_INSTALL_DIR} ${RNN1_MODEL_URL} "rnn1%2Fmodel.tar.gz")
inference_download_and_uncompress(${RNN1_INSTALL_DIR} ${RNN1_DATA_URL} "rnn1%2Fdata.txt.tar.gz")
endif()
inference_analysis_test(test_analyzer SRCS analyzer_tester.cc
EXTRA_DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis_predictor
ARGS --infer_ditu_rnn_model=${DITU_INSTALL_DIR}/model
--infer_ditu_rnn_data=${DITU_INSTALL_DIR}/data.txt)
ARGS --infer_model=${RNN1_INSTALL_DIR}/model
--infer_data=${RNN1_INSTALL_DIR}/data.txt)
inference_analysis_test(test_data_flow_graph SRCS data_flow_graph_tester.cc)
inference_analysis_test(test_data_flow_graph_to_fluid_pass SRCS data_flow_graph_to_fluid_pass_tester.cc)
......
......@@ -26,8 +26,8 @@
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
#include "paddle/fluid/inference/utils/singleton.h"
DEFINE_string(infer_ditu_rnn_model, "", "model path for ditu RNN");
DEFINE_string(infer_ditu_rnn_data, "", "data path for ditu RNN");
DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data path");
DEFINE_int32(batch_size, 10, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
......@@ -223,17 +223,6 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
} // namespace
const float ditu_rnn_target_data[] = {
104.711, 11.2431, 1.35422, 0, 0, 0, 0, 0,
27.7039, 1.41486, 7.09526, 0, 0, 0, 0, 0,
7.6481, 6.5324, 56.383, 2.88018, 8.92918, 132.007, 4.27429, 2.02934,
14.1727, 10.7461, 25.0616, 16.0197, 14.4163, 16.9199, 6.75517, 0,
80.0249, 4.77739, 0, 0, 0, 0, 0, 0,
47.5643, 2.67029, 8.76252, 0, 0, 0, 0, 0,
51.8822, 4.4411, 0, 0, 0, 0, 0, 0,
10.7286, 12.0595, 10.6672, 0, 0, 0, 0, 0,
93.5771, 3.84641, 0, 0, 0, 0, 0, 0,
169.426, 0, 0, 0, 0, 0, 0, 0};
void CompareResult(const std::vector<PaddleTensor> &outputs,
const std::vector<PaddleTensor> &base_outputs) {
PADDLE_ENFORCE_GT(outputs.size(), 0);
......@@ -255,11 +244,10 @@ void CompareResult(const std::vector<PaddleTensor> &outputs,
}
}
// Test with a really complicate model.
void TestDituRNNPrediction(bool use_analysis, bool activate_ir,
int num_threads) {
void TestRNN1Prediction(bool use_analysis, bool activate_ir, int num_threads) {
AnalysisConfig config;
config.prog_file = FLAGS_infer_ditu_rnn_model + "/__model__";
config.param_file = FLAGS_infer_ditu_rnn_model + "/param";
config.prog_file = FLAGS_infer_model + "/__model__";
config.param_file = FLAGS_infer_model + "/param";
config.use_gpu = false;
config.device = 0;
config.specify_input_name = true;
......@@ -267,6 +255,7 @@ void TestDituRNNPrediction(bool use_analysis, bool activate_ir,
PADDLE_ENFORCE(config.ir_mode ==
AnalysisConfig::IrPassMode::kExclude); // default
config.ir_passes.clear(); // Do not exclude any pass.
int batch_size = FLAGS_batch_size;
int num_times = FLAGS_repeat;
......@@ -276,7 +265,7 @@ void TestDituRNNPrediction(bool use_analysis, bool activate_ir,
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
config);
std::vector<PaddleTensor> input_slots;
DataRecord data(FLAGS_infer_ditu_rnn_data, batch_size);
DataRecord data(FLAGS_infer_data, batch_size);
// Prepare inputs.
PrepareInputs(&input_slots, &data, batch_size);
std::vector<PaddleTensor> outputs, base_outputs;
......@@ -306,7 +295,7 @@ void TestDituRNNPrediction(bool use_analysis, bool activate_ir,
threads.emplace_back([&, tid]() {
// Each thread should have local input_slots and outputs.
std::vector<PaddleTensor> input_slots;
DataRecord data(FLAGS_infer_ditu_rnn_data, batch_size);
DataRecord data(FLAGS_infer_data, batch_size);
PrepareInputs(&input_slots, &data, batch_size);
std::vector<PaddleTensor> outputs;
Timer timer;
......@@ -346,30 +335,29 @@ void TestDituRNNPrediction(bool use_analysis, bool activate_ir,
ASSERT_TRUE(fuse_statis.count("fc_fuse"));
EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
EXPECT_EQ(fuse_statis.at("fc_nobias_lstm_fuse"), 2); // bi-directional LSTM
EXPECT_EQ(fuse_statis.at("seq_concat_fc_fuse"), 1);
EXPECT_EQ(num_ops,
13); // After graph optimization, only 13 operators exists.
}
}
// Inference with analysis and IR, easy for profiling independently.
TEST(Analyzer, DituRNN) {
TestDituRNNPrediction(true, true, FLAGS_num_threads);
}
TEST(Analyzer, rnn1) { TestRNN1Prediction(true, true, FLAGS_num_threads); }
// Other unit-tests of DituRNN, test different options of use_analysis,
// Other unit-tests of RNN1, test different options of use_analysis,
// activate_ir and multi-threads.
TEST(Analyzer, DituRNN_tests) {
TEST(Analyzer, RNN_tests) {
int num_threads[2] = {1, 4};
for (auto i : num_threads) {
// Directly infer with the original model.
TestDituRNNPrediction(false, false, i);
TestRNN1Prediction(false, false, i);
// Inference with the original model with the analysis turned on, the
// analysis
// module will transform the program to a data flow graph.
TestDituRNNPrediction(true, false, i);
TestRNN1Prediction(true, false, i);
// Inference with analysis and IR. The IR module will fuse some large
// kernels.
TestDituRNNPrediction(true, true, i);
TestRNN1Prediction(true, true, i);
}
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册