Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
5483258b
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5483258b
编写于
4月 10, 2018
作者:
L
Luo Tao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fuse batch norm for conv operator with bias
上级
ea0cf6f3
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
45 addition
and
11 deletion
+45
-11
python/paddle/fluid/inference_transpiler.py
python/paddle/fluid/inference_transpiler.py
+36
-8
python/paddle/fluid/tests/book/test_image_classification.py
python/paddle/fluid/tests/book/test_image_classification.py
+9
-3
未找到文件。
python/paddle/fluid/inference_transpiler.py
浏览文件 @
5483258b
...
...
@@ -45,10 +45,11 @@ class InferenceTranspiler:
- conv->elementwise_add->any_other_op
The transpile stages are:
1. insert elementwise_add op when bias == 0
, and adjust its input and output
.
1. insert elementwise_add op when bias == 0.
2. fuse the batch_norm's parameters to conv and elementwise_add operators.
3. remove batch_norm ops and its variables which are not used in any other ops.
4. remove unused variables.
3. remove batch_norm ops which are not used in any other ops.
4. adjust the input of any_other_op to be the output of elementwise_add operator.
5. remove unused variables.
:param program: program to transpile
:type program: Program
...
...
@@ -62,24 +63,35 @@ class InferenceTranspiler:
self
.
scope
=
scope
self
.
place
=
place
self
.
block
=
program
.
block
(
0
)
self
.
input_map
=
{}
# store the input names should be adjusted
i
=
0
while
i
<
len
(
self
.
block
.
ops
):
current_op
=
self
.
block
.
ops
[
i
]
# TODO(luotao1): consider only conv2d now. fc would be delt later.
if
current_op
.
type
in
[
'conv2d'
]:
next_op
=
self
.
block
.
ops
[
i
+
1
]
# TODO(luotao1): consider only conv2d without bias now.
# If conv2d with bias, the next_op.type is elementwise_add.
# conv2d without bias
if
(
next_op
.
type
==
'batch_norm'
):
# insert bias op
bias_op
=
self
.
_insert_bias_op
(
i
+
1
,
current_op
,
next_op
)
# fuse batch_norm
self
.
_fuse_param
(
current_op
,
next_op
,
bias_op
)
self
.
_fuse_param
(
current_op
,
next_op
,
bias_op
,
0
)
# remove batch_norm_op
self
.
block
.
remove_op
(
i
+
2
)
i
=
i
+
1
# conv2d with bias, the next_op.type is elementwise_add
elif
(
next_op
.
type
==
'elementwise_add'
):
next_next_op
=
self
.
block
.
ops
[
i
+
2
]
if
(
next_next_op
.
type
==
'batch_norm'
):
# fuse batch_norm
self
.
_fuse_param
(
current_op
,
next_next_op
,
next_op
,
1
)
# remove batch_norm_op
self
.
block
.
remove_op
(
i
+
2
)
i
=
i
+
1
i
=
i
+
1
self
.
_adjust_input
()
self
.
_remove_unused_var
()
return
program
...
...
@@ -113,7 +125,7 @@ class InferenceTranspiler:
attrs
=
{
"axis"
:
1
})
# dim_start=1
return
bias_op
def
_fuse_param
(
self
,
current_op
,
bn_op
,
bias_op
):
def
_fuse_param
(
self
,
current_op
,
bn_op
,
bias_op
,
with_bias
):
'''
fuse the batch_norm_op' parameters to current_op (conv or fc)
...
...
@@ -123,6 +135,8 @@ class InferenceTranspiler:
:type bn_op: Operator
:param bias_op: elementwise_add operator for adding bias
:type bias_op: Operator
:param with_bias: If current operator has bias, with_bias = 1; otherwise 0.
:type with_bias: Int
'''
def
_load_tensor
(
param_name
):
...
...
@@ -144,6 +158,9 @@ class InferenceTranspiler:
tmp
=
np
.
float32
(
np
.
divide
(
scale_bn
,
std_bn
))
# add bias of batch_norm_op to conv2d
if
with_bias
:
bias
=
_load_param
(
bias_op
.
input
(
"Y"
))
else
:
bias
=
np
.
zeros
(
bias_bn
.
shape
)
bias
=
np
.
float32
(
np
.
add
(
np
.
multiply
(
np
.
subtract
(
bias
,
mean_bn
),
tmp
),
bias_bn
))
...
...
@@ -159,6 +176,17 @@ class InferenceTranspiler:
# set the updated parameters
current_tensor
.
set
(
np
.
array
(
dst_param
),
self
.
place
)
# collect the renamed input
self
.
input_map
[
bn_op
.
output
(
"Y"
)[
0
]]
=
bias_op
.
output
(
"Out"
)[
0
]
def
_adjust_input
(
self
):
for
i
in
range
(
len
(
self
.
block
.
ops
)):
current_op
=
self
.
block
.
ops
[
i
]
for
input_arg
in
current_op
.
input_arg_names
:
if
input_arg
in
self
.
input_map
:
current_op
.
rename_input
(
input_arg
,
self
.
input_map
[
input_arg
])
def
_remove_unused_var
(
self
):
'''
remove unused varibles in program
...
...
python/paddle/fluid/tests/book/test_image_classification.py
浏览文件 @
5483258b
...
...
@@ -26,7 +26,13 @@ import numpy as np
def
resnet_cifar10
(
input
,
depth
=
32
):
def
conv_bn_layer
(
input
,
ch_out
,
filter_size
,
stride
,
padding
,
act
=
'relu'
):
def
conv_bn_layer
(
input
,
ch_out
,
filter_size
,
stride
,
padding
,
act
=
'relu'
,
bias_attr
=
False
):
tmp
=
fluid
.
layers
.
conv2d
(
input
=
input
,
filter_size
=
filter_size
,
...
...
@@ -34,7 +40,7 @@ def resnet_cifar10(input, depth=32):
stride
=
stride
,
padding
=
padding
,
act
=
None
,
bias_attr
=
False
)
bias_attr
=
bias_attr
)
return
fluid
.
layers
.
batch_norm
(
input
=
tmp
,
act
=
act
)
def
shortcut
(
input
,
ch_in
,
ch_out
,
stride
):
...
...
@@ -45,7 +51,7 @@ def resnet_cifar10(input, depth=32):
def
basicblock
(
input
,
ch_in
,
ch_out
,
stride
):
tmp
=
conv_bn_layer
(
input
,
ch_out
,
3
,
stride
,
1
)
tmp
=
conv_bn_layer
(
tmp
,
ch_out
,
3
,
1
,
1
,
act
=
None
)
tmp
=
conv_bn_layer
(
tmp
,
ch_out
,
3
,
1
,
1
,
act
=
None
,
bias_attr
=
True
)
short
=
shortcut
(
input
,
ch_in
,
ch_out
,
stride
)
return
fluid
.
layers
.
elementwise_add
(
x
=
tmp
,
y
=
short
,
act
=
'relu'
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录