Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
539a9e60
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
539a9e60
编写于
6月 17, 2022
作者:
F
fuyou765
提交者:
GitHub
6月 17, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU]add mlu kernel for tile op (#43389)
上级
6a179e48
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
395 addition
and
0 deletion
+395
-0
paddle/fluid/operators/tile_op_functor.h
paddle/fluid/operators/tile_op_functor.h
+2
-0
paddle/fluid/operators/tile_op_mlu.cc
paddle/fluid/operators/tile_op_mlu.cc
+112
-0
python/paddle/fluid/tests/unittests/mlu/test_tile_op_mlu.py
python/paddle/fluid/tests/unittests/mlu/test_tile_op_mlu.py
+281
-0
未找到文件。
paddle/fluid/operators/tile_op_functor.h
浏览文件 @
539a9e60
...
...
@@ -30,6 +30,7 @@ inline std::vector<int> get_repeat_times(
framework
::
Tensor
cpu_repeat_tensor
;
if
(
platform
::
is_gpu_place
(
repeat_tensor
->
place
())
||
platform
::
is_xpu_place
(
repeat_tensor
->
place
())
||
platform
::
is_mlu_place
(
repeat_tensor
->
place
())
||
platform
::
is_npu_place
(
repeat_tensor
->
place
()))
{
paddle
::
framework
::
TensorCopySync
(
*
repeat_tensor
,
platform
::
CPUPlace
(),
&
cpu_repeat_tensor
);
...
...
@@ -49,6 +50,7 @@ inline std::vector<int> get_repeat_times(
auto
tensor
=
list_repeat_times_tensor
[
i
];
if
(
platform
::
is_gpu_place
(
tensor
->
place
())
||
platform
::
is_xpu_place
(
tensor
->
place
())
||
platform
::
is_mlu_place
(
tensor
->
place
())
||
platform
::
is_npu_place
(
tensor
->
place
()))
{
framework
::
Tensor
temp
;
paddle
::
framework
::
TensorCopySync
(
*
tensor
,
platform
::
CPUPlace
(),
&
temp
);
...
...
paddle/fluid/operators/tile_op_mlu.cc
0 → 100644
浏览文件 @
539a9e60
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
#include "paddle/fluid/operators/tile_op_functor.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
TileMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
rank
=
context
.
Input
<
Tensor
>
(
"X"
)
->
dims
().
size
();
PADDLE_ENFORCE_GE
(
rank
,
1
,
platform
::
errors
::
InvalidArgument
(
"The rank of the input 'x' for tile op must be a positive "
"integer, but the value received is %d."
,
rank
));
PADDLE_ENFORCE_LE
(
rank
,
MAX_RANK_SUPPORTED
,
platform
::
errors
::
InvalidArgument
(
"The rank of the input 'x' for tile op "
"must be less than or equal to %d, but the value received is %d."
,
MAX_RANK_SUPPORTED
,
rank
));
auto
repeat_times
=
get_repeat_times
(
context
);
int
repeat_times_size
=
repeat_times
.
size
();
PADDLE_ENFORCE_GE
(
repeat_times_size
,
1
,
platform
::
errors
::
InvalidArgument
(
"The number of elements of the input 'repeat_times' for tile "
"op must be positive, but the value received is %d."
,
repeat_times_size
));
PADDLE_ENFORCE_LE
(
repeat_times_size
,
MAX_RANK_SUPPORTED
,
platform
::
errors
::
InvalidArgument
(
"The number of elements of the input 'repeat_times' for tile op "
"must be less than or equal to %d, but the value received is %d."
,
MAX_RANK_SUPPORTED
,
repeat_times_size
));
auto
*
in0
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
in_dims
=
in0
->
dims
();
for
(
size_t
i
=
0
;
i
<
repeat_times
.
size
();
++
i
)
{
PADDLE_ENFORCE_GT
(
repeat_times
[
i
],
0
,
platform
::
errors
::
InvalidArgument
(
"All elements of the input 'repeat_times' for tile op must "
"be positive integers, but the value received is %d."
,
repeat_times
[
i
]));
}
auto
vec_in_dims
=
phi
::
vectorize
<
int
>
(
in_dims
);
if
(
repeat_times
.
size
()
<
vec_in_dims
.
size
())
{
int
diff
=
vec_in_dims
.
size
()
-
repeat_times
.
size
();
repeat_times
.
insert
(
repeat_times
.
begin
(),
diff
,
1
);
}
else
{
int
diff
=
repeat_times
.
size
()
-
vec_in_dims
.
size
();
vec_in_dims
.
insert
(
vec_in_dims
.
begin
(),
diff
,
1
);
}
PADDLE_ENFORCE_EQ
(
repeat_times
.
size
(),
vec_in_dims
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The rank (%d) of the input 'x' and the rank (%d) of the input "
"'repeat_times' for tile op must match after promotion."
,
vec_in_dims
.
size
(),
repeat_times
.
size
()));
auto
*
out0
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
bool
repeat_one_times
=
true
;
for
(
size_t
i
=
0
;
i
<
repeat_times
.
size
();
++
i
)
{
if
(
repeat_times
[
i
]
!=
1
)
{
repeat_one_times
=
false
;
}
}
if
(
repeat_one_times
)
{
paddle
::
framework
::
TensorCopy
(
*
in0
,
context
.
GetPlace
(),
out0
);
}
else
{
framework
::
DDim
new_in_dims
=
phi
::
make_ddim
(
vec_in_dims
);
framework
::
DDim
out_dims
(
new_in_dims
);
for
(
size_t
i
=
0
;
i
<
repeat_times
.
size
();
++
i
)
{
out_dims
[
i
]
*=
repeat_times
[
i
];
}
out0
->
Resize
(
out_dims
);
out0
->
mutable_data
<
T
>
(
context
.
GetPlace
());
MLUCnnlTensorDesc
x_desc
(
*
in0
);
MLUCnnlTensorDesc
out_desc
(
*
out0
);
MLUCnnl
::
BroadcastTo
(
context
,
x_desc
.
get
(),
GetBasePtr
(
in0
),
out_desc
.
get
(),
GetBasePtr
(
out0
));
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_MLU_KERNEL
(
tile
,
ops
::
TileMLUKernel
<
bool
>
,
ops
::
TileMLUKernel
<
int
>
,
ops
::
TileMLUKernel
<
int64_t
>
,
ops
::
TileMLUKernel
<
float
>
);
#endif
python/paddle/fluid/tests/unittests/mlu/test_tile_op_mlu.py
0 → 100644
浏览文件 @
539a9e60
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
sys
sys
.
path
.
append
(
".."
)
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
compiler
,
Program
,
program_guard
#Situation 1: repeat_times is a list (without tensor)
class
TestTileOpRank1
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"tile"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
init_data
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
)}
self
.
attrs
=
{
'repeat_times'
:
self
.
repeat_times
}
output
=
np
.
tile
(
self
.
inputs
[
'X'
],
self
.
repeat_times
)
self
.
outputs
=
{
'Out'
:
output
}
def
init_data
(
self
):
self
.
ori_shape
=
[
100
]
self
.
repeat_times
=
[
2
]
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
# with dimension expanding
class
TestTileOpRank2Expanding
(
TestTileOpRank1
):
def
init_data
(
self
):
self
.
ori_shape
=
[
120
]
self
.
repeat_times
=
[
2
,
2
]
class
TestTileOpRank2
(
TestTileOpRank1
):
def
init_data
(
self
):
self
.
ori_shape
=
[
12
,
14
]
self
.
repeat_times
=
[
2
,
3
]
class
TestTileOpRank3_Corner
(
TestTileOpRank1
):
def
init_data
(
self
):
self
.
ori_shape
=
(
2
,
10
,
5
)
self
.
repeat_times
=
(
1
,
1
,
1
)
class
TestTileOpRank3_Corner2
(
TestTileOpRank1
):
def
init_data
(
self
):
self
.
ori_shape
=
(
2
,
10
,
5
)
self
.
repeat_times
=
(
2
,
2
)
class
TestTileOpRank3
(
TestTileOpRank1
):
def
init_data
(
self
):
self
.
ori_shape
=
(
2
,
4
,
15
)
self
.
repeat_times
=
(
2
,
1
,
4
)
class
TestTileOpRank4
(
TestTileOpRank1
):
def
init_data
(
self
):
self
.
ori_shape
=
(
2
,
4
,
5
,
7
)
self
.
repeat_times
=
(
3
,
2
,
1
,
2
)
# Situation 2: repeat_times is a list (with tensor)
class
TestTileOpRank1_tensor_attr
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"tile"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
init_data
()
repeat_times_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
repeat_times
):
repeat_times_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
),
'repeat_times_tensor'
:
repeat_times_tensor
,
}
self
.
attrs
=
{
"repeat_times"
:
self
.
infer_repeat_times
}
output
=
np
.
tile
(
self
.
inputs
[
'X'
],
self
.
repeat_times
)
self
.
outputs
=
{
'Out'
:
output
}
def
init_data
(
self
):
self
.
ori_shape
=
[
100
]
self
.
repeat_times
=
[
2
]
self
.
infer_repeat_times
=
[
-
1
]
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestTileOpRank2_Corner_tensor_attr
(
TestTileOpRank1_tensor_attr
):
def
init_data
(
self
):
self
.
ori_shape
=
[
12
,
14
]
self
.
repeat_times
=
[
1
,
1
]
self
.
infer_repeat_times
=
[
1
,
-
1
]
class
TestTileOpRank2_attr_tensor
(
TestTileOpRank1_tensor_attr
):
def
init_data
(
self
):
self
.
ori_shape
=
[
12
,
14
]
self
.
repeat_times
=
[
2
,
3
]
self
.
infer_repeat_times
=
[
-
1
,
3
]
# Situation 3: repeat_times is a tensor
class
TestTileOpRank1_tensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"tile"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
init_data
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
),
'RepeatTimes'
:
np
.
array
(
self
.
repeat_times
).
astype
(
"int32"
),
}
self
.
attrs
=
{}
output
=
np
.
tile
(
self
.
inputs
[
'X'
],
self
.
repeat_times
)
self
.
outputs
=
{
'Out'
:
output
}
def
init_data
(
self
):
self
.
ori_shape
=
[
100
]
self
.
repeat_times
=
[
2
]
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestTileOpRank2_tensor
(
TestTileOpRank1_tensor
):
def
init_data
(
self
):
self
.
ori_shape
=
[
12
,
14
]
self
.
repeat_times
=
[
2
,
3
]
# Situation 4: input x is Integer
class
TestTileOpInteger
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"tile"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
inputs
=
{
'X'
:
np
.
random
.
randint
(
10
,
size
=
(
4
,
4
,
5
)).
astype
(
"int32"
)
}
self
.
attrs
=
{
'repeat_times'
:
[
2
,
1
,
4
]}
output
=
np
.
tile
(
self
.
inputs
[
'X'
],
(
2
,
1
,
4
))
self
.
outputs
=
{
'Out'
:
output
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
# Situation 5: input x is Bool
class
TestTileOpBoolean
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"tile"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
inputs
=
{
'X'
:
np
.
random
.
randint
(
2
,
size
=
(
2
,
4
,
5
)).
astype
(
"bool"
)}
self
.
attrs
=
{
'repeat_times'
:
[
2
,
1
,
4
]}
output
=
np
.
tile
(
self
.
inputs
[
'X'
],
(
2
,
1
,
4
))
self
.
outputs
=
{
'Out'
:
output
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
# Situation 56: input x is Integer
class
TestTileOpInt64_t
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"tile"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
inputs
=
{
'X'
:
np
.
random
.
randint
(
10
,
size
=
(
2
,
4
,
5
)).
astype
(
"int64"
)
}
self
.
attrs
=
{
'repeat_times'
:
[
2
,
1
,
4
]}
output
=
np
.
tile
(
self
.
inputs
[
'X'
],
(
2
,
1
,
4
))
self
.
outputs
=
{
'Out'
:
output
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
class
TestTileError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
x1
=
fluid
.
create_lod_tensor
(
np
.
array
([[
-
1
]]),
[[
1
]],
fluid
.
CPUPlace
())
repeat_times
=
[
2
,
2
]
self
.
assertRaises
(
TypeError
,
paddle
.
tile
,
x1
,
repeat_times
)
x2
=
fluid
.
layers
.
data
(
name
=
'x2'
,
shape
=
[
4
],
dtype
=
"uint8"
)
self
.
assertRaises
(
TypeError
,
paddle
.
tile
,
x2
,
repeat_times
)
x3
=
fluid
.
layers
.
data
(
name
=
'x3'
,
shape
=
[
4
],
dtype
=
"bool"
)
x3
.
stop_gradient
=
False
self
.
assertRaises
(
ValueError
,
paddle
.
tile
,
x3
,
repeat_times
)
class
TestTileAPIStatic
(
unittest
.
TestCase
):
def
test_api
(
self
):
with
program_guard
(
Program
(),
Program
()):
repeat_times
=
[
2
,
2
]
x1
=
fluid
.
layers
.
data
(
name
=
'x1'
,
shape
=
[
4
],
dtype
=
"int32"
)
out
=
paddle
.
tile
(
x1
,
repeat_times
)
positive_2
=
fluid
.
layers
.
fill_constant
([
1
],
dtype
=
"int32"
,
value
=
2
)
out2
=
paddle
.
tile
(
x1
,
repeat_times
=
[
positive_2
,
2
])
# Test python API
class
TestTileAPI
(
unittest
.
TestCase
):
def
test_api
(
self
):
with
fluid
.
dygraph
.
guard
():
np_x
=
np
.
random
.
random
([
12
,
14
]).
astype
(
"float32"
)
x
=
paddle
.
to_tensor
(
np_x
)
positive_2
=
np
.
array
([
2
]).
astype
(
"int32"
)
positive_2
=
paddle
.
to_tensor
(
positive_2
)
repeat_times
=
np
.
array
([
2
,
3
]).
astype
(
"int32"
)
repeat_times
=
paddle
.
to_tensor
(
repeat_times
)
out_1
=
paddle
.
tile
(
x
,
repeat_times
=
[
2
,
3
])
out_2
=
paddle
.
tile
(
x
,
repeat_times
=
[
positive_2
,
3
])
out_3
=
paddle
.
tile
(
x
,
repeat_times
=
repeat_times
)
assert
np
.
array_equal
(
out_1
.
numpy
(),
np
.
tile
(
np_x
,
(
2
,
3
)))
assert
np
.
array_equal
(
out_2
.
numpy
(),
np
.
tile
(
np_x
,
(
2
,
3
)))
assert
np
.
array_equal
(
out_3
.
numpy
(),
np
.
tile
(
np_x
,
(
2
,
3
)))
if
__name__
==
"__main__"
:
paddle
.
enable_static
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录