提交 52eb42cf 编写于 作者: Z zchen0211

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into batch-norm-latest

...@@ -15,7 +15,7 @@ nv_test(lod_tensor_gpu_test SRCS lod_tensor_test.cu DEPS lod_tensor) ...@@ -15,7 +15,7 @@ nv_test(lod_tensor_gpu_test SRCS lod_tensor_test.cu DEPS lod_tensor)
cc_test(variable_test SRCS variable_test.cc) cc_test(variable_test SRCS variable_test.cc)
cc_library(scope SRCS scope.cc) cc_library(scope SRCS scope.cc DEPS glog)
cc_test(scope_test SRCS scope_test.cc DEPS scope) cc_test(scope_test SRCS scope_test.cc DEPS scope)
......
...@@ -16,6 +16,7 @@ limitations under the License. */ ...@@ -16,6 +16,7 @@ limitations under the License. */
#include <memory> // for unique_ptr #include <memory> // for unique_ptr
#include <mutex> // for call_once #include <mutex> // for call_once
#include "glog/logging.h"
#include "paddle/string/printf.h" #include "paddle/string/printf.h"
namespace paddle { namespace paddle {
...@@ -23,7 +24,10 @@ namespace framework { ...@@ -23,7 +24,10 @@ namespace framework {
Scope::~Scope() { Scope::~Scope() {
DropKids(); DropKids();
for (auto& kv : vars_) delete kv.second; for (auto& kv : vars_) {
VLOG(3) << "Destroy variable " << kv.first;
delete kv.second;
}
} }
Scope& Scope::NewScope() const { Scope& Scope::NewScope() const {
...@@ -38,6 +42,7 @@ Variable* Scope::Var(const std::string& name) { ...@@ -38,6 +42,7 @@ Variable* Scope::Var(const std::string& name) {
} }
Variable* v = new Variable(); Variable* v = new Variable();
vars_[name] = v; vars_[name] = v;
VLOG(3) << "Create variable " << name << " on scope";
v->name_ = &(vars_.find(name)->first); v->name_ = &(vars_.find(name)->first);
return v; return v;
} }
......
add_subdirectory(detail) add_subdirectory(detail)
cc_library(memory SRCS memory.cc) cc_library(memory SRCS memory.cc DEPS place)
cc_library(memcpy SRCS memcpy.cc) cc_library(memcpy SRCS memcpy.cc)
cc_library(paddle_memory cc_library(paddle_memory
......
...@@ -13,6 +13,7 @@ ...@@ -13,6 +13,7 @@
limitations under the License. */ limitations under the License. */
#include "paddle/memory/detail/meta_cache.h" #include "paddle/memory/detail/meta_cache.h"
#include "glog/logging.h"
#include "paddle/memory/detail/memory_block.h" #include "paddle/memory/detail/memory_block.h"
#include "paddle/platform/assert.h" #include "paddle/platform/assert.h"
...@@ -28,7 +29,9 @@ Metadata MetadataCache::load(const MemoryBlock* block) { ...@@ -28,7 +29,9 @@ Metadata MetadataCache::load(const MemoryBlock* block) {
PADDLE_ASSERT(existing_metadata->second.check_guards()); PADDLE_ASSERT(existing_metadata->second.check_guards());
return existing_metadata->second; return existing_metadata->second;
} else { } else {
PADDLE_ASSERT(reinterpret_cast<const Metadata*>(block)->check_guards()); auto* meta = reinterpret_cast<const Metadata*>(block);
VLOG(3) << "Load MetaData type=" << meta->type;
PADDLE_ASSERT(meta->check_guards());
return *reinterpret_cast<const Metadata*>(block); return *reinterpret_cast<const Metadata*>(block);
} }
} }
......
...@@ -39,11 +39,15 @@ BuddyAllocator* GetCPUBuddyAllocator() { ...@@ -39,11 +39,15 @@ BuddyAllocator* GetCPUBuddyAllocator() {
template <> template <>
void* Alloc<platform::CPUPlace>(platform::CPUPlace place, size_t size) { void* Alloc<platform::CPUPlace>(platform::CPUPlace place, size_t size) {
return GetCPUBuddyAllocator()->Alloc(size); VLOG(3) << "Allocate " << size << " bytes on " << platform::Place(place);
void* p = GetCPUBuddyAllocator()->Alloc(size);
VLOG(3) << " pointer=" << p;
return p;
} }
template <> template <>
void Free<platform::CPUPlace>(platform::CPUPlace place, void* p) { void Free<platform::CPUPlace>(platform::CPUPlace place, void* p) {
VLOG(3) << "Free pointer=" << p << " on " << platform::Place(place);
GetCPUBuddyAllocator()->Free(p); GetCPUBuddyAllocator()->Free(p);
} }
......
...@@ -144,11 +144,11 @@ class SequencePoolGradKernel : public framework::OpKernel<T> { ...@@ -144,11 +144,11 @@ class SequencePoolGradKernel : public framework::OpKernel<T> {
Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>> Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>>
in_t_map(in_t.data<T>(), h, w); in_t_map(in_t.data<T>(), h, w);
int row_id; int row_id;
Eigen::array<int, 2> extents = {1, 1}; Eigen::array<int, 2> extents{{1, 1}};
for (int col_id = 0; col_id < w; col_id++) { for (int col_id = 0; col_id < w; col_id++) {
in_t_map.col(col_id).maxCoeff(&row_id); in_t_map.col(col_id).maxCoeff(&row_id);
Eigen::array<int, 2> in_offsets = {row_id, col_id}; Eigen::array<int, 2> in_offsets{{row_id, col_id}};
Eigen::array<int, 2> out_offsets = {0, col_id}; Eigen::array<int, 2> out_offsets{{0, col_id}};
in_g_e.slice(in_offsets, extents).device(place) = in_g_e.slice(in_offsets, extents).device(place) =
out_g_e.slice(out_offsets, extents); out_g_e.slice(out_offsets, extents);
} }
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/sign_op.h"
namespace paddle {
namespace operators {
class SignOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of SignOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of SignOp should not be null.");
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
ctx->ShareLoD("X", /*->*/ "Out");
}
};
template <typename AttrType>
class SignOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SignOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "(Tensor) Input tensor of sign operator.");
AddOutput("Out", "(Tensor) Output tensor of sign operator.");
AddComment(R"DOC(Sign operator
The equation is: Out = X.sign()
)DOC");
}
};
class SignGradMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
std::unique_ptr<framework::OpDescBind> Apply() const override {
auto *grad_op = new framework::OpDescBind();
grad_op->SetType("scale");
grad_op->SetInput("X", OutputGrad("Out"));
grad_op->SetOutput("Out", InputGrad("X"));
grad_op->SetAttr("scale", 0.0f);
return std::unique_ptr<framework::OpDescBind>(grad_op);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(sign, ops::SignOp, ops::SignOpMaker<float>,
ops::SignGradMaker);
REGISTER_OP_CPU_KERNEL(sign,
ops::SignKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/sign_op.h"
REGISTER_OP_GPU_KERNEL(
sign, paddle::operators::SignKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
template <typename Place, typename T>
class SignKernel : public framework::OpKernel<T> {
public:
virtual void Compute(const framework::ExecutionContext& context) const {
auto* out = context.Output<framework::Tensor>("Out");
auto* in = context.Input<framework::Tensor>("X");
out->mutable_data<T>(in->place());
auto eigen_out = framework::EigenVector<T>::Flatten(*out);
auto eigen_in = framework::EigenVector<T>::Flatten(*in);
auto& place = context.GetEigenDevice<Place>();
eigen_out.device(place) = eigen_in.sign();
}
};
} // namespace operators
} // namespace paddle
import unittest
import numpy as np
from op_test import OpTest
class TestSignOp(OpTest):
def setUp(self):
self.op_type = "sign"
self.inputs = {
'X': np.random.uniform(-10, 10, (10, 10)).astype("float32")
}
self.outputs = {'Out': np.sign(self.inputs['X'])}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册