提交 52e8ebf2 编写于 作者: T Travis CI

Deploy to GitHub Pages: e3296559

上级 8db295fd
.. _api_v2.optimizer:
==========
Optimizer
==========
......
========
Datasets
========
==================================
Data Reader Interface and DataSets
==================================
DataTypes
......@@ -49,7 +49,6 @@ mnist
:members:
:noindex:
cifar
+++++
......@@ -61,7 +60,7 @@ conll05
+++++++
.. automodule:: paddle.v2.dataset.conll05
:members:
:members: get_dict,get_embedding,test
:noindex:
imdb
......@@ -85,6 +84,12 @@ movielens
:members:
:noindex:
.. autoclass:: paddle.v2.dataset.movielens.MovieInfo
:noindex:
.. autoclass:: paddle.v2.dataset.movielens.UserInfo
:noindex:
sentiment
+++++++++
......@@ -102,7 +107,7 @@ uci_housing
wmt14
+++++
.. automodule:: paddle.v2.dataset.uci_housing
.. automodule:: paddle.v2.dataset.wmt14
:members:
:noindex:
......@@ -6,18 +6,21 @@ Parameters
==========
.. automodule:: paddle.v2.parameters
:members: Parameters
:noindex:
Trainer
=======
.. automodule:: paddle.v2.trainer
:members: SGD
:noindex:
Event
=====
.. automodule:: paddle.v2.event
:members:
:noindex:
Inference
......@@ -25,3 +28,4 @@ Inference
.. autofunction:: paddle.v2.infer
:noindex:
\ No newline at end of file
......@@ -162,7 +162,7 @@
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -163,7 +163,7 @@
<li class="toctree-l3"><a class="reference internal" href="v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......@@ -207,7 +207,7 @@
<div class="toctree-wrapper compound">
<ul>
<li class="toctree-l1"><a class="reference internal" href="v2/model_configs.html">Model Configuration</a></li>
<li class="toctree-l1"><a class="reference internal" href="v2/data.html">Datasets</a></li>
<li class="toctree-l1"><a class="reference internal" href="v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l1"><a class="reference internal" href="v2/run_logic.html">Training and Inference</a></li>
</ul>
</div>
......
......@@ -161,7 +161,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -161,7 +161,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -161,7 +161,7 @@
<li class="toctree-l3"><a class="reference internal" href="../v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -161,7 +161,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -161,7 +161,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -161,7 +161,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -161,7 +161,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -161,7 +161,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -161,7 +161,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -161,7 +161,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -161,7 +161,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -161,7 +161,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -34,7 +34,7 @@
<link rel="search" title="Search" href="../../../search.html"/>
<link rel="top" title="PaddlePaddle documentation" href="../../../index.html"/>
<link rel="up" title="Model Configuration" href="../model_configs.html"/>
<link rel="next" title="Datasets" href="../data.html"/>
<link rel="next" title="Data Reader Interface and DataSets" href="../data.html"/>
<link rel="prev" title="Networks" href="networks.html"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
......@@ -164,7 +164,7 @@
<li class="toctree-l3 current"><a class="current reference internal" href="#">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../run_logic.html">Training and Inference</a></li>
</ul>
</li>
......@@ -320,7 +320,7 @@ The details allocation in parallel_nn please refer to <a class="reference extern
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../data.html" class="btn btn-neutral float-right" title="Datasets" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="../data.html" class="btn btn-neutral float-right" title="Data Reader Interface and DataSets" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="networks.html" class="btn btn-neutral" title="Networks" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../run_logic.html">Training and Inference</a></li>
</ul>
</li>
......@@ -217,27 +217,177 @@
<div itemprop="articleBody">
<div class="section" id="optimizer">
<span id="api-v2-optimizer"></span><h1>Optimizer<a class="headerlink" href="#optimizer" title="Permalink to this headline"></a></h1>
<h1>Optimizer<a class="headerlink" href="#optimizer" title="Permalink to this headline"></a></h1>
<div class="section" id="momentum">
<h2>Momentum<a class="headerlink" href="#momentum" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">Momentum</code><span class="sig-paren">(</span><em>momentum=None</em>, <em>sparse=False</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>SGD Optimizer.</p>
<p>SGD is an optimization method, trying to find a neural network that
minimize the &#8220;cost/error&#8221; of it by iteration. In paddle&#8217;s implementation
SGD Optimizer is synchronized, which means all gradients will be wait to
calculate and reduced into one gradient, then do optimize operation.</p>
<p>The neural network consider the learning problem of minimizing an objective
function, that has the form of a sum</p>
<div class="math">
\[Q(w) = \sum_{i}^{n} Q_i(w)\]</div>
<p>The value of function Q sometimes is the cost of neural network (Mean
Square Error between prediction and label for example). The function Q is
parametrised by w, the weight/bias of neural network. And weights is what to
be learned. The i is the i-th observation in (trainning) data.</p>
<p>So, the SGD method will optimize the weight by</p>
<div class="math">
\[w = w - \eta \nabla Q(w) = w - \eta \sum_{i}^{n} \nabla Q_i(w)\]</div>
<p>where <span class="math">\(\eta\)</span> is learning rate. And <span class="math">\(n\)</span> is batch size.</p>
</dd></dl>
</div>
<div class="section" id="adam">
<h2>Adam<a class="headerlink" href="#adam" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">Adam</code><span class="sig-paren">(</span><em>beta1=0.9</em>, <em>beta2=0.999</em>, <em>epsilon=1e-08</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Adam optimizer.
The details of please refer <a class="reference external" href="https://arxiv.org/abs/1412.6980">Adam: A Method for Stochastic Optimization</a></p>
<div class="math">
\[\begin{split}m(w, t) &amp; = \beta_1 m(w, t-1) + (1 - \beta_1) \nabla Q_i(w) \\
v(w, t) &amp; = \beta_2 v(w, t-1) + (1 - \beta_2)(\nabla Q_i(w)) ^2 \\
w &amp; = w - \frac{\eta}{\sqrt{v(w,t) + \epsilon}}\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>beta1</strong> (<em>float</em>) &#8211; the <span class="math">\(\beta_1\)</span> in equation.</li>
<li><strong>beta2</strong> (<em>float</em>) &#8211; the <span class="math">\(\beta_2\)</span> in equation.</li>
<li><strong>epsilon</strong> (<em>float</em>) &#8211; the <span class="math">\(\epsilon\)</span> in equation. It is used to prevent
divided by zero.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
<div class="section" id="adamax">
<h2>Adamax<a class="headerlink" href="#adamax" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">Adamax</code><span class="sig-paren">(</span><em>beta1=0.9</em>, <em>beta2=0.999</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Adamax optimizer.</p>
<p>The details of please refer this <a class="reference external" href="https://arxiv.org/abs/1412.6980">Adam: A Method for Stochastic Optimization</a></p>
<div class="math">
\[\begin{split}m_t &amp; = \beta_1 * m_{t-1} + (1-\beta_1)* \nabla Q_i(w) \\
u_t &amp; = max(\beta_2*u_{t-1}, abs(\nabla Q_i(w))) \\
w_t &amp; = w_{t-1} - (\eta/(1-\beta_1^t))*m_t/u_t\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>beta1</strong> (<em>float</em>) &#8211; the <span class="math">\(\beta_1\)</span> in the equation.</li>
<li><strong>beta2</strong> (<em>float</em>) &#8211; the <span class="math">\(\beta_2\)</span> in the equation.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
<div class="section" id="adagrad">
<h2>AdaGrad<a class="headerlink" href="#adagrad" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">AdaGrad</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Adagrad(for ADAptive GRAdient algorithm) optimizer.</p>
<p>For details please refer this <a class="reference external" href="http://www.magicbroom.info/Papers/DuchiHaSi10.pdf">Adaptive Subgradient Methods for
Online Learning and Stochastic Optimization</a>.</p>
<div class="math">
\[\begin{split}G &amp;= \sum_{\tau=1}^{t} g_{\tau} g_{\tau}^T \\
w &amp; = w - \eta diag(G)^{-\frac{1}{2}} \circ g\end{split}\]</div>
</dd></dl>
</div>
<div class="section" id="decayedadagrad">
<h2>DecayedAdaGrad<a class="headerlink" href="#decayedadagrad" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">DecayedAdaGrad</code><span class="sig-paren">(</span><em>rho=0.95</em>, <em>epsilon=1e-06</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>AdaGrad method with decayed sum gradients. The equations of this method
show as follow.</p>
<div class="math">
\[\begin{split}E(g_t^2) &amp;= \rho * E(g_{t-1}^2) + (1-\rho) * g^2 \\
learning\_rate &amp;= 1/sqrt( ( E(g_t^2) + \epsilon )\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>rho</strong> (<em>float</em>) &#8211; The <span class="math">\(\rho\)</span> parameter in that equation</li>
<li><strong>epsilon</strong> (<em>float</em>) &#8211; The <span class="math">\(\epsilon\)</span> parameter in that equation.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
<div class="section" id="adadelta">
<h2>AdaDelta<a class="headerlink" href="#adadelta" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">AdaDelta</code><span class="sig-paren">(</span><em>rho=0.95</em>, <em>epsilon=1e-06</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>AdaDelta method. The details of adadelta please refer to this
<a class="reference external" href="http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf">ADADELTA: AN ADAPTIVE LEARNING RATE METHOD</a>.</p>
<div class="math">
\[\begin{split}E(g_t^2) &amp;= \rho * E(g_{t-1}^2) + (1-\rho) * g^2 \\
learning\_rate &amp;= sqrt( ( E(dx_{t-1}^2) + \epsilon ) / ( \
E(g_t^2) + \epsilon ) ) \\
E(dx_t^2) &amp;= \rho * E(dx_{t-1}^2) + (1-\rho) * (-g*learning\_rate)^2\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>rho</strong> (<em>float</em>) &#8211; <span class="math">\(\rho\)</span> in equation</li>
<li><strong>epsilon</strong> (<em>float</em>) &#8211; <span class="math">\(\rho\)</span> in equation</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
<div class="section" id="rmsprop">
<h2>RMSProp<a class="headerlink" href="#rmsprop" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">RMSProp</code><span class="sig-paren">(</span><em>rho=0.95</em>, <em>epsilon=1e-06</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>RMSProp(for Root Mean Square Propagation) optimizer. For details please
refer this <a class="reference external" href="http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf">slide</a>.</p>
<p>The equations of this method as follows:</p>
<div class="math">
\[\begin{split}v(w, t) &amp; = \rho v(w, t-1) + (1 - \rho)(\nabla Q_{i}(w))^2 \\
w &amp; = w - \frac{\eta} {\sqrt{v(w,t) + \epsilon}} \nabla Q_{i}(w)\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>rho</strong> (<em>float</em>) &#8211; the <span class="math">\(\rho\)</span> in the equation. The forgetting factor.</li>
<li><strong>epsilon</strong> (<em>float</em>) &#8211; the <span class="math">\(\epsilon\)</span> in the equation.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
</div>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -8,7 +8,7 @@
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Datasets &mdash; PaddlePaddle documentation</title>
<title>Data Reader Interface and DataSets &mdash; PaddlePaddle documentation</title>
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2 current"><a class="current reference internal" href="#">Datasets</a></li>
<li class="toctree-l2 current"><a class="current reference internal" href="#">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="run_logic.html">Training and Inference</a></li>
</ul>
</li>
......@@ -175,7 +175,7 @@
</nav>
<nav class="local-toc"><ul>
<li><a class="reference internal" href="#">Datasets</a><ul>
<li><a class="reference internal" href="#">Data Reader Interface and DataSets</a><ul>
<li><a class="reference internal" href="#datatypes">DataTypes</a></li>
<li><a class="reference internal" href="#datafeeder">DataFeeder</a></li>
<li><a class="reference internal" href="#reader">Reader</a><ul>
......@@ -217,7 +217,7 @@
<li><a href="../index_en.html">API</a> > </li>
<li>Datasets</li>
<li>Data Reader Interface and DataSets</li>
</ul>
</div>
......@@ -226,8 +226,8 @@
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="datasets">
<h1>Datasets<a class="headerlink" href="#datasets" title="Permalink to this headline"></a></h1>
<div class="section" id="data-reader-interface-and-datasets">
<h1>Data Reader Interface and DataSets<a class="headerlink" href="#data-reader-interface-and-datasets" title="Permalink to this headline"></a></h1>
<div class="section" id="datatypes">
<h2>DataTypes<a class="headerlink" href="#datatypes" title="Permalink to this headline"></a></h2>
<dl class="function">
......@@ -515,7 +515,7 @@ relationship.</p>
<span class="c1"># [ [1.0,2.0,3.0,4.0], 5, [6,7,8] ], # first sample</span>
<span class="c1"># [ [1.0,2.0,3.0,4.0], 5, [6,7,8] ] # second sample</span>
<span class="c1"># ]</span>
<span class="n">arg</span> <span class="o">=</span> <span class="n">feeder</span><span class="p">(</span><span class="n">minibatch_data</span><span class="p">)</span>
<span class="n">arg</span> <span class="o">=</span> <span class="n">feeder</span><span class="o">.</span><span class="n">convert</span><span class="p">(</span><span class="n">minibatch_data</span><span class="p">)</span>
</pre></div>
</div>
<div class="admonition note">
......@@ -835,18 +835,18 @@ Trailing new line (&#8216;\n&#8217;) of each line will be removed.</p>
<h3>mnist<a class="headerlink" href="#mnist" title="Permalink to this headline"></a></h3>
<p>MNIST dataset.</p>
<p>This module will download dataset from <a class="reference external" href="http://yann.lecun.com/exdb/mnist/">http://yann.lecun.com/exdb/mnist/</a> and
parse train set and test set into paddle reader creators.</p>
parse training set and test set into paddle reader creators.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.mnist.</code><code class="descname">train</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>MNIST train set creator.</p>
<dd><p>MNIST training set creator.</p>
<p>It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">Train reader creator</td>
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">Training reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
......@@ -875,26 +875,313 @@ parse train set and test set into paddle reader creators.</p>
</div>
<div class="section" id="cifar">
<h3>cifar<a class="headerlink" href="#cifar" title="Permalink to this headline"></a></h3>
<p>CIFAR dataset: <a class="reference external" href="https://www.cs.toronto.edu/~kriz/cifar.html">https://www.cs.toronto.edu/~kriz/cifar.html</a></p>
<p>TODO(yuyang18): Complete the comments.</p>
<p>CIFAR dataset.</p>
<p>This module will download dataset from
<a class="reference external" href="https://www.cs.toronto.edu/~kriz/cifar.html">https://www.cs.toronto.edu/~kriz/cifar.html</a> and parse train/test set into
paddle reader creators.</p>
<p>The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes,
with 6000 images per class. There are 50000 training images and 10000 test
images.</p>
<p>The CIFAR-100 dataset is just like the CIFAR-10, except it has 100 classes
containing 600 images each. There are 500 training images and 100 testing
images per class.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.cifar.</code><code class="descname">train100</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>CIFAR-100 training set creator.</p>
<p>It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 99].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">Training reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.cifar.</code><code class="descname">test100</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>CIFAR-100 test set cretor.</p>
<p>It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">Test reader creator.</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.cifar.</code><code class="descname">train10</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>CIFAR-10 training set creator.</p>
<p>It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">Training reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.cifar.</code><code class="descname">test10</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>CIFAR-10 test set cretor.</p>
<p>It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">Test reader creator.</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
<div class="section" id="conll05">
<h3>conll05<a class="headerlink" href="#conll05" title="Permalink to this headline"></a></h3>
<p>Conll05 dataset.
Paddle semantic role labeling Book and demo use this dataset as an example.
Because Conll05 is not free in public, the default downloaded URL is test set
of Conll05 (which is public). Users can change URL and MD5 to their Conll
dataset. And a pre-trained word vector model based on Wikipedia corpus is used
to initialize SRL model.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.conll05.</code><code class="descname">get_dict</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get the word, verb and label dictionary of Wikipedia corpus.</p>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.conll05.</code><code class="descname">get_embedding</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get the trained word vector based on Wikipedia corpus.</p>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.conll05.</code><code class="descname">test</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Conll05 test set creator.</p>
<p>Because the training dataset is not free, the test dataset is used for
training. It returns a reader creator, each sample in the reader is nine
features, including sentence sequence, predicate, predicate context,
predicate context flag and tagged sequence.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">Training reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
<div class="section" id="imdb">
<h3>imdb<a class="headerlink" href="#imdb" title="Permalink to this headline"></a></h3>
<p>IMDB dataset: <a class="reference external" href="http://ai.stanford.edu/%7Eamaas/data/sentiment/aclImdb_v1.tar.gz">http://ai.stanford.edu/%7Eamaas/data/sentiment/aclImdb_v1.tar.gz</a></p>
<p>TODO(yuyang18): Complete comments.</p>
<p>IMDB dataset.</p>
<p>This module downloads IMDB dataset from
<a class="reference external" href="http://ai.stanford.edu/%7Eamaas/data/sentiment/">http://ai.stanford.edu/%7Eamaas/data/sentiment/</a>. This dataset contains a set
of 25,000 highly polar movie reviews for training, and 25,000 for testing.
Besides, this module also provides API for building dictionary.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.imdb.</code><code class="descname">build_dict</code><span class="sig-paren">(</span><em>pattern</em>, <em>cutoff</em><span class="sig-paren">)</span></dt>
<dd><p>Build a word dictionary from the corpus. Keys of the dictionary are words,
and values are zero-based IDs of these words.</p>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.imdb.</code><code class="descname">train</code><span class="sig-paren">(</span><em>word_idx</em><span class="sig-paren">)</span></dt>
<dd><p>IMDB training set creator.</p>
<p>It returns a reader creator, each sample in the reader is an zero-based ID
sequence and label in [0, 1].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>word_idx</strong> (<em>dict</em>) &#8211; word dictionary</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">Training reader creator</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.imdb.</code><code class="descname">test</code><span class="sig-paren">(</span><em>word_idx</em><span class="sig-paren">)</span></dt>
<dd><p>IMDB test set creator.</p>
<p>It returns a reader creator, each sample in the reader is an zero-based ID
sequence and label in [0, 1].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>word_idx</strong> (<em>dict</em>) &#8211; word dictionary</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">Test reader creator</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
<div class="section" id="imikolov">
<h3>imikolov<a class="headerlink" href="#imikolov" title="Permalink to this headline"></a></h3>
<p>imikolov&#8217;s simple dataset: <a class="reference external" href="http://www.fit.vutbr.cz/~imikolov/rnnlm/">http://www.fit.vutbr.cz/~imikolov/rnnlm/</a></p>
<p>Complete comments.</p>
<p>imikolov&#8217;s simple dataset.</p>
<p>This module will download dataset from
<a class="reference external" href="http://www.fit.vutbr.cz/~imikolov/rnnlm/">http://www.fit.vutbr.cz/~imikolov/rnnlm/</a> and parse training set and test set
into paddle reader creators.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.imikolov.</code><code class="descname">build_dict</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Build a word dictionary from the corpus, Keys of the dictionary are words,
and values are zero-based IDs of these words.</p>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.imikolov.</code><code class="descname">train</code><span class="sig-paren">(</span><em>word_idx</em>, <em>n</em><span class="sig-paren">)</span></dt>
<dd><p>imikolov training set creator.</p>
<p>It returns a reader creator, each sample in the reader is a word ID
tuple.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>word_idx</strong> (<em>dict</em>) &#8211; word dictionary</li>
<li><strong>n</strong> (<em>int</em>) &#8211; sliding window size</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">Training reader creator</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">callable</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.imikolov.</code><code class="descname">test</code><span class="sig-paren">(</span><em>word_idx</em>, <em>n</em><span class="sig-paren">)</span></dt>
<dd><p>imikolov test set creator.</p>
<p>It returns a reader creator, each sample in the reader is a word ID
tuple.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>word_idx</strong> (<em>dict</em>) &#8211; word dictionary</li>
<li><strong>n</strong> (<em>int</em>) &#8211; sliding window size</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">Test reader creator</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">callable</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
<div class="section" id="movielens">
<h3>movielens<a class="headerlink" href="#movielens" title="Permalink to this headline"></a></h3>
<p>Movielens 1-M dataset.</p>
<p>TODO(yuyang18): Complete comments.</p>
<p>Movielens 1-M dataset contains 1 million ratings from 6000 users on 4000
movies, which was collected by GroupLens Research. This module will download
Movielens 1-M dataset from
<a class="reference external" href="http://files.grouplens.org/datasets/movielens/ml-1m.zip">http://files.grouplens.org/datasets/movielens/ml-1m.zip</a> and parse training
set and test set into paddle reader creators.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">get_movie_title_dict</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get movie title dictionary.</p>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">max_movie_id</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get the maximum value of movie id.</p>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">max_user_id</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get the maximum value of user id.</p>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">max_job_id</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get the maximum value of job id.</p>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">movie_categories</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get movie categoriges dictionary.</p>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">user_info</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get user info dictionary.</p>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">movie_info</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get movie info dictionary.</p>
</dd></dl>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">MovieInfo</code><span class="sig-paren">(</span><em>index</em>, <em>categories</em>, <em>title</em><span class="sig-paren">)</span></dt>
<dd><p>Movie id, title and categories information are stored in MovieInfo.</p>
</dd></dl>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">UserInfo</code><span class="sig-paren">(</span><em>index</em>, <em>gender</em>, <em>age</em>, <em>job_id</em><span class="sig-paren">)</span></dt>
<dd><p>User id, gender, age, and job information are stored in UserInfo.</p>
</dd></dl>
</div>
<div class="section" id="sentiment">
<h3>sentiment<a class="headerlink" href="#sentiment" title="Permalink to this headline"></a></h3>
......@@ -912,7 +1199,7 @@ parse train set and test set into paddle reader creators.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.sentiment.</code><code class="descname">train</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Default train set reader creator</p>
<dd><p>Default training set reader creator</p>
</dd></dl>
<dl class="function">
......@@ -925,12 +1212,91 @@ parse train set and test set into paddle reader creators.</p>
<div class="section" id="uci-housing">
<h3>uci_housing<a class="headerlink" href="#uci-housing" title="Permalink to this headline"></a></h3>
<p>UCI Housing dataset.</p>
<p>TODO(yuyang18): Complete comments.</p>
<p>This module will download dataset from
<a class="reference external" href="https://archive.ics.uci.edu/ml/machine-learning-databases/housing/">https://archive.ics.uci.edu/ml/machine-learning-databases/housing/</a> and
parse training set and test set into paddle reader creators.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.uci_housing.</code><code class="descname">train</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>UCI_HOUSING training set creator.</p>
<p>It returns a reader creator, each sample in the reader is features after
normalization and price number.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">Training reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.uci_housing.</code><code class="descname">test</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>UCI_HOUSING test set creator.</p>
<p>It returns a reader creator, each sample in the reader is features after
normalization and price number.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">Test reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
<div class="section" id="wmt14">
<h3>wmt14<a class="headerlink" href="#wmt14" title="Permalink to this headline"></a></h3>
<p>UCI Housing dataset.</p>
<p>TODO(yuyang18): Complete comments.</p>
<p>WMT14 dataset.
The original WMT14 dataset is too large and a small set of data for set is
provided. This module will download dataset from
<a class="reference external" href="http://paddlepaddle.cdn.bcebos.com/demo/wmt_shrinked_data/wmt14.tgz">http://paddlepaddle.cdn.bcebos.com/demo/wmt_shrinked_data/wmt14.tgz</a> and
parse training set and test set into paddle reader creators.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.wmt14.</code><code class="descname">train</code><span class="sig-paren">(</span><em>dict_size</em><span class="sig-paren">)</span></dt>
<dd><p>WMT14 training set creator.</p>
<p>It returns a reader creator, each sample in the reader is source language
word ID sequence, target language word ID sequence and next word ID
sequence.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">Training reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.wmt14.</code><code class="descname">test</code><span class="sig-paren">(</span><em>dict_size</em><span class="sig-paren">)</span></dt>
<dd><p>WMT14 test set creator.</p>
<p>It returns a reader creator, each sample in the reader is source language
word ID sequence, target language word ID sequence and next word ID
sequence.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">Test reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
</div>
</div>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -35,7 +35,7 @@
<link rel="top" title="PaddlePaddle documentation" href="../../index.html"/>
<link rel="up" title="API" href="../index_en.html"/>
<link rel="next" title="ABOUT" href="../../about/index_en.html"/>
<link rel="prev" title="Datasets" href="data.html"/>
<link rel="prev" title="Data Reader Interface and DataSets" href="data.html"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2 current"><a class="current reference internal" href="#">Training and Inference</a></li>
</ul>
</li>
......@@ -215,21 +215,307 @@
<h1>Training and Inference<a class="headerlink" href="#training-and-inference" title="Permalink to this headline"></a></h1>
<div class="section" id="parameters">
<h2>Parameters<a class="headerlink" href="#parameters" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.parameters.</code><code class="descname">Parameters</code></dt>
<dd><p>Parameters is a dictionary contains Paddle&#8217;s parameter. The key of
Parameters is the name of parameter. The value of Parameters is a plain
<code class="code docutils literal"><span class="pre">numpy.ndarry</span></code> .</p>
<p>Basically usage is</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>
<span class="o">...</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>
<span class="n">parameters</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">parameters</span><span class="o">.</span><span class="n">create</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>
<span class="n">parameter_names</span> <span class="o">=</span> <span class="n">parameters</span><span class="o">.</span><span class="n">names</span><span class="p">()</span>
<span class="n">fc_mat</span> <span class="o">=</span> <span class="n">parameters</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;fc&#39;</span><span class="p">)</span>
<span class="k">print</span> <span class="n">fc_mat</span>
</pre></div>
</div>
<dl class="method">
<dt>
<code class="descname">keys</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>keys are the names of each parameter.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">list of parameter name</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">list</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt>
<code class="descname">names</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>names of each parameter.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">list of parameter name</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">list</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt>
<code class="descname">has_key</code><span class="sig-paren">(</span><em>key</em><span class="sig-paren">)</span></dt>
<dd><p>has_key return true if there are such parameter name == key</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>key</strong> (<em>basestring</em>) &#8211; Parameter name</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">True if contains such key</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt>
<code class="descname">get_shape</code><span class="sig-paren">(</span><em>key</em><span class="sig-paren">)</span></dt>
<dd><p>get shape of the parameter.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>key</strong> (<em>basestring</em>) &#8211; parameter name</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">parameter&#8217;s shape</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body">tuple</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt>
<code class="descname">get</code><span class="sig-paren">(</span><em>parameter_name</em><span class="sig-paren">)</span></dt>
<dd><p>Get parameter by parameter name.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Note:</th><td class="field-body">It will always copy the parameter from C++ side.</td>
</tr>
<tr class="field-even field"><th class="field-name">Parameters:</th><td class="field-body"><strong>parameter_name</strong> (<em>basestring</em>) &#8211; parameter name</td>
</tr>
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">The parameter matrix.</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">np.ndarray</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt>
<code class="descname">set</code><span class="sig-paren">(</span><em>parameter_name</em>, <em>value</em><span class="sig-paren">)</span></dt>
<dd><p>Set parameter by parameter name &amp; matrix.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>parameter_name</strong> (<em>basestring</em>) &#8211; parameter name</li>
<li><strong>value</strong> (<em>np.ndarray</em>) &#8211; parameter matrix</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">Nothing.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt>
<code class="descname">append_gradient_machine</code><span class="sig-paren">(</span><em>gradient_machine</em><span class="sig-paren">)</span></dt>
<dd><p>append gradient machine to parameters. This method is used internally in
Trainer.train.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>gradient_machine</strong> (<em>api.GradientMachine</em>) &#8211; Paddle C++ GradientMachine object.</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"></td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt>
<code class="descname">serialize</code><span class="sig-paren">(</span><em>name</em>, <em>f</em><span class="sig-paren">)</span></dt>
<dd><table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> &#8211; </li>
<li><strong>f</strong> (<em>file</em>) &#8211; </li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last"></p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt>
<code class="descname">deserialize</code><span class="sig-paren">(</span><em>name</em>, <em>f</em><span class="sig-paren">)</span></dt>
<dd><table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> &#8211; </li>
<li><strong>f</strong> (<em>file</em>) &#8211; </li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last"></p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</dd></dl>
</div>
<div class="section" id="trainer">
<h2>Trainer<a class="headerlink" href="#trainer" title="Permalink to this headline"></a></h2>
<p>Module Trainer</p>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.trainer.</code><code class="descname">SGD</code><span class="sig-paren">(</span><em>cost</em>, <em>parameters</em>, <em>update_equation</em>, <em>extra_layers=None</em><span class="sig-paren">)</span></dt>
<dd><p>Simple SGD Trainer.
SGD Trainer combines data reader, network topolopy and update_equation together
to train/test a neural network.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>update_equation</strong> (<em>paddle.v2.optimizer.Optimizer</em>) &#8211; The optimizer object.</li>
<li><strong>cost</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Target cost that neural network should be optimized.</li>
<li><strong>parameters</strong> (<em>paddle.v2.parameters.Parameters</em>) &#8211; The parameters dictionary.</li>
<li><strong>extra_layers</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Some layers in the neural network graph are not
in the path of cost layer.</li>
</ul>
</td>
</tr>
</tbody>
</table>
<dl class="method">
<dt>
<code class="descname">train</code><span class="sig-paren">(</span><em>reader</em>, <em>num_passes=1</em>, <em>event_handler=None</em>, <em>feeding=None</em><span class="sig-paren">)</span></dt>
<dd><p>Training method. Will train num_passes of input data.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>reader</strong> (<em>collections.Iterable</em>) &#8211; A reader that reads and yeilds data items. Usually we use a
batched reader to do mini-batch training.</li>
<li><strong>num_passes</strong> &#8211; The total train passes.</li>
<li><strong>event_handler</strong> (<em></em><em>(</em><em>BaseEvent</em><em>) </em><em>=&gt; None</em>) &#8211; Event handler. A method will be invoked when event
occurred.</li>
<li><strong>feeding</strong> (<em>dict|list</em>) &#8211; Feeding is a map of neural network input name and array
index that reader returns.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last"></p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt>
<code class="descname">test</code><span class="sig-paren">(</span><em>reader</em>, <em>feeding=None</em><span class="sig-paren">)</span></dt>
<dd><p>Testing method. Will test input data.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>reader</strong> (<em>collections.Iterable</em>) &#8211; A reader that reads and yeilds data items.</li>
<li><strong>feeding</strong> (<em>dict</em>) &#8211; Feeding is a map of neural network input name and array
index that reader returns.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last"></p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</dd></dl>
</div>
<div class="section" id="event">
<h2>Event<a class="headerlink" href="#event" title="Permalink to this headline"></a></h2>
<p>All training events.</p>
<p>Testing and training events.</p>
<p>There are:</p>
<ul class="simple">
<li>TestResult</li>
<li>BeginIteration</li>
<li>EndIteration</li>
<li>BeginPass</li>
<li>EndPass</li>
</ul>
<p>TODO(yuyang18): Complete it!</p>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.event.</code><code class="descname">TestResult</code><span class="sig-paren">(</span><em>evaluator</em>, <em>cost</em><span class="sig-paren">)</span></dt>
<dd><p>Result that trainer.test return.</p>
</dd></dl>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.event.</code><code class="descname">BeginPass</code><span class="sig-paren">(</span><em>pass_id</em><span class="sig-paren">)</span></dt>
<dd><p>Event On One Pass Training Start.</p>
</dd></dl>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.event.</code><code class="descname">EndPass</code><span class="sig-paren">(</span><em>pass_id</em>, <em>evaluator</em><span class="sig-paren">)</span></dt>
<dd><p>Event On One Pass Training Complete.</p>
</dd></dl>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.event.</code><code class="descname">BeginIteration</code><span class="sig-paren">(</span><em>pass_id</em>, <em>batch_id</em><span class="sig-paren">)</span></dt>
<dd><p>Event On One Batch Training Start.</p>
</dd></dl>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.event.</code><code class="descname">EndIteration</code><span class="sig-paren">(</span><em>pass_id</em>, <em>batch_id</em>, <em>cost</em>, <em>evaluator</em><span class="sig-paren">)</span></dt>
<dd><p>Event On One Batch Training Complete.</p>
</dd></dl>
</div>
<div class="section" id="inference">
<h2>Inference<a class="headerlink" href="#inference" title="Permalink to this headline"></a></h2>
......@@ -286,7 +572,7 @@ or max_id.</li>
<a href="../../about/index_en.html" class="btn btn-neutral float-right" title="ABOUT" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="data.html" class="btn btn-neutral" title="Datasets" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
<a href="data.html" class="btn btn-neutral" title="Data Reader Interface and DataSets" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
......
......@@ -161,7 +161,7 @@
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -161,7 +161,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -161,7 +161,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -161,7 +161,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -162,7 +162,7 @@
<li class="toctree-l3"><a class="reference internal" href="api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -163,7 +163,7 @@
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -163,7 +163,7 @@
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -161,7 +161,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../../../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -161,7 +161,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../../../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -162,7 +162,7 @@
<li class="toctree-l3"><a class="reference internal" href="api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -161,7 +161,7 @@
<li class="toctree-l3"><a class="reference internal" href="api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
Search.setIndex({docnames:["about/index_en","api/index_en","api/v1/data_provider/dataprovider_en","api/v1/data_provider/pydataprovider2_en","api/v1/index_en","api/v1/predict/swig_py_paddle_en","api/v1/trainer_config_helpers/activations","api/v1/trainer_config_helpers/attrs","api/v1/trainer_config_helpers/data_sources","api/v1/trainer_config_helpers/evaluators","api/v1/trainer_config_helpers/layers","api/v1/trainer_config_helpers/networks","api/v1/trainer_config_helpers/optimizers","api/v1/trainer_config_helpers/poolings","api/v2/config/activation","api/v2/config/attr","api/v2/config/layer","api/v2/config/networks","api/v2/config/optimizer","api/v2/config/pooling","api/v2/data","api/v2/model_configs","api/v2/run_logic","design/api","design/dist/README","design/multi_language_interface/why_plain_c","design/reader/README","getstarted/basic_usage/index_en","getstarted/build_and_install/build_from_source_en","getstarted/build_and_install/docker_install_en","getstarted/build_and_install/index_en","getstarted/build_and_install/ubuntu_install_en","getstarted/index_en","howto/deep_model/rnn/index_en","howto/deep_model/rnn/rnn_config_en","howto/dev/contribute_to_paddle_en","howto/dev/new_layer_en","howto/index_en","howto/optimization/gpu_profiling_en","howto/usage/cluster/cluster_train_en","howto/usage/cmd_parameter/arguments_en","howto/usage/cmd_parameter/detail_introduction_en","howto/usage/cmd_parameter/index_en","howto/usage/cmd_parameter/use_case_en","howto/usage/k8s/k8s_aws_en","howto/usage/k8s/k8s_en","howto/usage/k8s/src/k8s_data/README","howto/usage/k8s/src/k8s_train/README","index_en","tutorials/embedding_model/index_en","tutorials/gan/index_en","tutorials/image_classification/index_en","tutorials/imagenet_model/resnet_model_en","tutorials/index_en","tutorials/quick_start/index_en","tutorials/rec/ml_dataset_en","tutorials/rec/ml_regression_en","tutorials/semantic_role_labeling/index_en","tutorials/sentiment_analysis/index_en","tutorials/text_generation/index_en"],envversion:50,filenames:["about/index_en.rst","api/index_en.rst","api/v1/data_provider/dataprovider_en.rst","api/v1/data_provider/pydataprovider2_en.rst","api/v1/index_en.rst","api/v1/predict/swig_py_paddle_en.rst","api/v1/trainer_config_helpers/activations.rst","api/v1/trainer_config_helpers/attrs.rst","api/v1/trainer_config_helpers/data_sources.rst","api/v1/trainer_config_helpers/evaluators.rst","api/v1/trainer_config_helpers/layers.rst","api/v1/trainer_config_helpers/networks.rst","api/v1/trainer_config_helpers/optimizers.rst","api/v1/trainer_config_helpers/poolings.rst","api/v2/config/activation.rst","api/v2/config/attr.rst","api/v2/config/layer.rst","api/v2/config/networks.rst","api/v2/config/optimizer.rst","api/v2/config/pooling.rst","api/v2/data.rst","api/v2/model_configs.rst","api/v2/run_logic.rst","design/api.md","design/dist/README.md","design/multi_language_interface/why_plain_c.md","design/reader/README.md","getstarted/basic_usage/index_en.rst","getstarted/build_and_install/build_from_source_en.md","getstarted/build_and_install/docker_install_en.rst","getstarted/build_and_install/index_en.rst","getstarted/build_and_install/ubuntu_install_en.rst","getstarted/index_en.rst","howto/deep_model/rnn/index_en.rst","howto/deep_model/rnn/rnn_config_en.rst","howto/dev/contribute_to_paddle_en.md","howto/dev/new_layer_en.rst","howto/index_en.rst","howto/optimization/gpu_profiling_en.rst","howto/usage/cluster/cluster_train_en.md","howto/usage/cmd_parameter/arguments_en.md","howto/usage/cmd_parameter/detail_introduction_en.md","howto/usage/cmd_parameter/index_en.rst","howto/usage/cmd_parameter/use_case_en.md","howto/usage/k8s/k8s_aws_en.md","howto/usage/k8s/k8s_en.md","howto/usage/k8s/src/k8s_data/README.md","howto/usage/k8s/src/k8s_train/README.md","index_en.rst","tutorials/embedding_model/index_en.md","tutorials/gan/index_en.md","tutorials/image_classification/index_en.md","tutorials/imagenet_model/resnet_model_en.md","tutorials/index_en.md","tutorials/quick_start/index_en.md","tutorials/rec/ml_dataset_en.md","tutorials/rec/ml_regression_en.rst","tutorials/semantic_role_labeling/index_en.md","tutorials/sentiment_analysis/index_en.md","tutorials/text_generation/index_en.md"],objects:{"paddle.trainer.PyDataProvider2":{provider:[3,0,1,""]},"paddle.trainer_config_helpers":{attrs:[7,1,0,"-"],data_sources:[8,1,0,"-"]},"paddle.trainer_config_helpers.attrs":{ExtraAttr:[7,2,1,""],ExtraLayerAttribute:[7,3,1,""],ParamAttr:[7,2,1,""],ParameterAttribute:[7,3,1,""]},"paddle.trainer_config_helpers.attrs.ParameterAttribute":{set_default_parameter_name:[7,4,1,""]},"paddle.trainer_config_helpers.data_sources":{define_py_data_sources2:[8,0,1,""]}},objnames:{"0":["py","function","Python function"],"1":["py","module","Python module"],"2":["py","attribute","Python attribute"],"3":["py","class","Python class"],"4":["py","method","Python method"]},objtypes:{"0":"py:function","1":"py:module","2":"py:attribute","3":"py:class","4":"py:method"},terms:{"0000x":54,"00186201e":5,"00m":38,"02595v1":[10,16],"03m":38,"0424m":38,"0473v3":[11,17],"055ee37d":44,"05d":51,"0630u":38,"06u":38,"0810u":38,"08823112e":5,"0957m":38,"0ab":[10,16],"0rc2":29,"0th":59,"10007_10":58,"10014_7":58,"100gb":38,"100gi":44,"10m":38,"1150u":38,"11e6":45,"12194102e":5,"124n":38,"13m":45,"1490u":38,"15501715e":5,"1550u":38,"15mb":54,"1636k":59,"16mb":54,"16u":38,"173m":52,"173n":38,"1770u":38,"18ad":44,"18e457ce3d362ff5f3febf8e7f85ffec852f70f3b629add10aed84f930a68750":45,"197u":38,"1gb":38,"1st":[49,52,58,59],"202mb":59,"210u":38,"211839e770f7b538e2d8":[11,17],"215n":38,"228u":38,"234m":52,"2520u":38,"252kb":54,"25639710e":5,"25k":54,"2680u":38,"27787406e":5,"279n":38,"27m":38,"285m":38,"2863m":38,"28m":38,"28x28":3,"2977m":38,"2cbf7385":44,"2nd":[10,16,58,59],"302n":38,"30u":38,"32777140e":5,"328n":38,"32u":38,"32x32":51,"331n":38,"3320u":38,"36540484e":5,"365e":44,"36u":38,"3710m":38,"3768m":38,"387u":38,"38u":38,"3920u":38,"39u":38,"3rd":[56,58,59],"4035m":38,"4090u":38,"4096mb":41,"4279m":38,"43630644e":5,"43u":38,"448a5b355b84":45,"4560u":38,"4563m":38,"45u":38,"4650u":38,"4726m":38,"473m":45,"48565123e":5,"48684503e":5,"49316648e":5,"4gb":41,"50bd":44,"50gi":44,"51111044e":5,"514u":38,"525n":38,"526u":38,"53018653e":5,"536u":38,"5460u":38,"5470u":38,"54u":38,"55g":59,"5690m":38,"573u":38,"578n":38,"5798m":38,"586u":38,"58s":45,"5969m":38,"6080u":38,"6082v4":[10,16],"6140u":38,"6305m":38,"639u":38,"655u":38,"6780u":38,"6810u":38,"682u":38,"6970u":38,"6ce9":44,"6node":39,"6th":59,"704u":38,"70634608e":5,"7090u":38,"72296313e":5,"72u":38,"73u":38,"75u":38,"760u":38,"767u":38,"783n":38,"784u":38,"78m":38,"7eamaa":20,"7kb":45,"8250u":38,"8300u":38,"830n":38,"849m":38,"85625684e":5,"861u":38,"864k":59,"8661m":38,"892m":38,"901n":38,"90u":38,"918u":38,"9247m":38,"924n":38,"9261m":38,"93137714e":5,"9330m":38,"94u":38,"9530m":38,"96644767e":5,"983m":38,"988u":38,"997u":38,"99982715e":5,"99m":52,"99u":38,"9f18":45,"\u4e0d\u4f7f\u7528\u9759\u6001\u5e93":25,"\u4e0d\u4f7f\u7528c":25,"\u4e0d\u4f7f\u7528swig":25,"\u4e0d\u540c\u7248\u672c\u7684\u7f16\u8bd1\u5668\u4e4b\u95f4":25,"\u4e0d\u540c\u8bed\u8a00\u7684\u63a5\u53e3\u9002\u5e94\u4e0d\u540c\u8bed\u8a00\u7684\u7279\u6027":25,"\u4e0d\u5d4c\u5165\u5176\u4ed6\u8bed\u8a00\u89e3\u91ca\u5668":25,"\u4e0d\u5d4c\u5165python\u89e3\u91ca\u5668":25,"\u4e0d\u663e\u793a\u7684\u5199\u6bcf\u4e2a\u7c7b\u5177\u4f53\u5305\u542b\u4ec0\u4e48":25,"\u4e14\u589e\u52a0\u4e00\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00":25,"\u4e14c99\u652f\u6301bool\u7c7b\u578b\u548c\u5b9a\u957f\u6574\u6570":25,"\u4e14c99\u76f8\u5bf9\u4e8ec11\u4f7f\u7528\u66f4\u52a0\u5e7f\u6cdb":25,"\u4e2d":25,"\u4e2d\u5b8c\u5168\u4e00\u81f4":25,"\u4e5f\u4e0d\u4f7f\u7528\u5176\u4ed6\u52a8\u6001\u5e93":25,"\u4e66\u5199":25,"\u4ec5\u4ec5\u4f7f\u7528":25,"\u4ed6\u7684\u76ee\u6807\u662f\u4f7f\u7528c":25,"\u4ee3\u7801\u751f\u6210\u7684\u7b26\u53f7\u53ef\u80fd\u4e0d\u4e00\u81f4":25,"\u4f1a\u5bfc\u81f4\u4e0d\u540c\u7248\u672cpython\u5728\u4e00\u4e2a\u8fdb\u7a0b\u91cc\u7684bug":25,"\u4f1a\u76f4\u63a5\u62a5\u9519\u9000\u51fa":25,"\u4f46\u662f\u89e3\u91ca\u6027\u8bed\u8a00":25,"\u4f5c\u4e3a\u7c7b\u53e5\u67c4":25,"\u4f7f\u7528\u52a8\u6001\u5e93":25,"\u4f7f\u7528\u9759\u6001\u5e93\u548c\u52a8\u6001\u5e93\u96be\u5ea6\u5dee\u4e0d\u591a":25,"\u4f7f\u7528c99\u505a\u63a5\u53e3":25,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c11\u7684\u539f\u56e0\u662f":25,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c89":25,"\u4f7f\u7528swig\u53ea\u652f\u6301cpython\u89e3\u91ca\u5668":25,"\u4f7f\u7528swig\u9700\u8981\u591a\u8bed\u8a00\u7ed1\u5b9a\u7684\u5f00\u53d1\u4eba\u5458\u719f\u7ec3\u638c\u63e1swig\u914d\u7f6e":25,"\u4f7f\u7528void":25,"\u4f8b\u5982":25,"\u4f8b\u5982\u5bf9\u4e8ejava\u6216\u8005python":25,"\u4f8b\u5982\u5bf9\u4e8ejava\u6765\u8bf4":25,"\u4f8b\u5982\u5bf9\u4e8epython":25,"\u4f8b\u5982c":25,"\u4f8b\u5982java\u4e0epython\u7684\u9519\u8bef\u5904\u7406\u662f\u76f4\u63a5\u6254\u51fa\u6765except":25,"\u4f8b\u5982python\u53ef\u4ee5\u4f7f\u7528":25,"\u4f8b\u5982python\u7684":25,"\u4fbf\u662f\u5c06\u9759\u6001\u5e93\u52a0\u5165jvm\u4e2d":25,"\u505a\u63a5\u53e3":25,"\u5176\u4e2d":25,"\u5185\u90e8\u9a71\u52a8python\u89e3\u91ca\u5668\u8fdb\u884c\u6a21\u578b\u914d\u7f6e\u89e3\u6790\u548c\u6570\u636e\u8bfb\u53d6":25,"\u518d\u5728\u6bcf\u4e00\u4e2aapi\u4e2d\u81ea\u5df1\u68c0\u67e5\u7c7b\u578b":25,"\u5199\u4ee3\u7801":25,"\u51fd\u6570\u547d\u540d":25,"\u52a8\u6001\u5e93":25,"\u5373\u8fd9\u4e2a\u52a8\u6001\u5e93\u662f\u4e0d\u4f9d\u8d56\u4e8e\u5176\u4ed6\u4efb\u4f55\u6587\u4ef6\u7684":25,"\u53c2\u6570":25,"\u53ea\u80fd\u8c03\u7528paddle\u7684\u52a8\u6001\u5e93":25,"\u53ef\u4ee5\u5728\u4efb\u4f55\u673a\u5668\u4e0a\u6267\u884c\u7684":25,"\u540d\u5b57\u4fee\u9970":25,"\u5426\u5219\u5f97\u628apaddle\u9759\u6001\u5e93\u94fe\u63a5\u5230\u89e3\u91ca\u5668\u91cc":25,"\u548c":25,"\u56e0\u4e3aswig\u5728\u7b2c\u4e09\u65b9\u8bed\u8a00\u4e2d\u66b4\u9732\u7684\u51fd\u6570\u540d":25,"\u5728\u8fd9\u4e2a\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":25,"\u5728c":25,"\u5728c\u7684\u5934\u6587\u4ef6":25,"\u5927\u591a\u6570\u8bed\u8a00\u90fd\u652f\u6301\u4f7f\u7528c\u8bed\u8a00api":25,"\u5982\u679c\u4f7f\u7528swig\u6211\u4eec\u9700\u8981\u5c06\u5728interface\u6587\u4ef6\u91cc":25,"\u5982\u679c\u7528\u6237\u8981\u628apaddle\u7684\u9759\u6001\u5e93":25,"\u5982\u679c\u8c03\u7528\u9759\u6001\u5e93\u53ea\u80fd\u5c06\u9759\u6001\u5e93\u4e0e\u89e3\u91ca\u5668\u94fe\u63a5":25,"\u5b66\u4e60\u6210\u672c\u9ad8":25,"\u5b9e\u73b0\u7b80\u5355":25,"\u5bf9\u4e8e\u4e0d\u540c\u8bed\u8a00":25,"\u5bf9\u4e8e\u540c\u4e00\u6bb5c":25,"\u5bf9\u4e8e\u591a\u8bed\u8a00\u63a5\u53e3":25,"\u5bf9\u4e8e\u5927\u591a\u6570\u8bed\u8a00":25,"\u5bf9\u6bd4":25,"\u5c06\u5927\u91cf\u7684":25,"\u5c31\u9700\u8981\u5bf9\u8fd9\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00\u589e\u52a0\u4e00\u4e9b\u5b9a\u4e49":25,"\u5e76\u4e14\u5728\u5e38\u89c1\u7684\u5e73\u53f0\u4e0a":25,"\u5e76\u4e14\u8ba9\u63a5\u53e3\u8131\u79bb\u5b9e\u73b0\u7ec6\u8282":25,"\u5e76\u6ca1\u6709paddle\u7279\u522b\u9700\u8981\u7684\u7279\u6027":25,"\u5f88\u96be\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":25,"\u5f97\u4f7f\u7528":25,"\u6211\u4eec\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":25,"\u6211\u4eec\u6700\u7ec8\u7684\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165python\u6216\u8005\u5176\u4ed6\u4efb\u4f55\u8bed\u8a00\u7684\u89e3\u91ca\u5668":25,"\u6216\u8005":25,"\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":25,"\u63a5\u53e3":25,"\u6570\u636e\u8bfb\u53d6\u5747\u4ea4\u7531\u5176\u4ed6\u8bed\u8a00\u5b8c\u6210":25,"\u6587\u4ef6":25,"\u6587\u4ef6\u5185\u5bb9\u4e3a":25,"\u65e0\u6cd5\u505a\u5230\u5bf9\u4e8e\u5404\u79cd\u8bed\u8a00\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u7684\u9002\u914d":25,"\u662f\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3\u7684\u4ee3\u7801\u751f\u6210\u5668":25,"\u662f\u4e0d\u5e38\u89c1\u7684\u505a\u6cd5":25,"\u662f\u56e0\u4e3ac99\u652f\u6301":25,"\u6700\u5e38\u89c1\u7684\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662fexcept":25,"\u6709\u6807\u51c6\u7684":25,"\u6709\u7684\u65f6\u5019":25,"\u6765\u786e\u4fdd\u628a":25,"\u6765\u8868\u793apaddle\u5185\u90e8\u7c7b":25,"\u6a21\u578b\u914d\u7f6e\u89e3\u6790":25,"\u73b0\u9636\u6bb5paddle\u6709\u4e00\u4e2a\u95ee\u9898\u662f":25,"\u751f\u6210\u5404\u79cd\u8bed\u8a00\u7684\u7ed1\u5b9a\u4ee3\u7801":25,"\u751f\u6210\u6587\u6863":25,"\u751f\u6210api\u6587\u6863":25,"\u7531\u4e8ec":25,"\u7684\u547d\u540d\u98ce\u683c\u5e76\u4e0d\u80fd\u9002\u5e94\u5176\u4ed6\u7b2c\u4e09\u65b9\u8bed\u8a00":25,"\u7684\u5934\u6587\u4ef6":25,"\u7684\u63a5\u53e3\u6837\u5f0f":25,"\u7684\u6e90\u7801\u91cc\u4f7f\u7528\u4e86":25,"\u7684\u89c4\u8303":25,"\u76ee\u524d\u5d4c\u5165python\u89e3\u91ca\u5668":25,"\u76ee\u524dpaddle\u7684\u8fdb\u7a0b\u6a21\u578b\u662fc":25,"\u76f4\u63a5\u4f7f\u7528c\u8bed\u8a00\u7684":25,"\u76f4\u63a5\u5bfc\u51fa\u5230c\u7684\u63a5\u53e3\u6bd4\u8f83\u56f0\u96be":25,"\u793e\u533a\u53c2\u4e0e\u56f0\u96be":25,"\u793e\u533a\u8d21\u732e\u4ee3\u7801\u5b66\u4e60\u6210\u672c\u9ad8":25,"\u7c7b\u540d\u548cc":25,"\u7c7b\u578b":25,"\u7ea2\u697c\u68a6":49,"\u7ed3\u8bba":25,"\u7f16\u8bd1\u5668\u6ca1\u6709":25,"\u7f16\u8bd1\u578b\u8bed\u8a00":25,"\u800c\u4e0d\u652f\u6301pypy\u89e3\u91ca\u5668":25,"\u800c\u5728cpp\u91cc\u9762\u5b9e\u73b0\u8fd9\u4e2ac\u7684\u63a5\u53e3":25,"\u800c\u591a\u8bed\u8a00\u63a5\u53e3\u9700\u8981\u76f4\u63a5\u8bfb\u53d6\u751f\u6210\u7684\u4e8c\u8fdb\u5236":25,"\u800c\u5bf9\u4e8egolang":25,"\u800c\u5bf9\u4e8egolang\u9519\u8bef\u5904\u7406\u5e94\u8be5\u4f7f\u7528\u8fd4\u56de\u503c":25,"\u800cswig\u53ea\u80fd\u7b80\u5355\u7684\u66b4\u9732c":25,"\u826f\u597d\u7684\u6587\u6863":25,"\u89e3\u91ca\u578b\u8bed\u8a00\u53ea\u80fd\u8c03\u7528\u52a8\u6001\u5e93":25,"\u89e3\u91ca\u6027\u8bed\u8a00\u5b9e\u9645\u8fd0\u884c\u7684\u4e8c\u8fdb\u5236\u662f\u89e3\u91ca\u5668\u672c\u8eab":25,"\u8fd9\u4e2a\u63a5\u53e3\u9700\u8981\u505a\u5230":25,"\u8fd9\u4e2a\u6587\u4ef6\u5177\u6709\u72ec\u7279\u7684\u8bed\u6cd5":25,"\u8fd9\u5bf9\u4e8e\u901a\u5e38\u7684java\u7684\u5f00\u53d1\u8005\u6765\u8bf4":25,"\u8fd9\u662f\u56e0\u4e3a":25,"\u8fd9\u90fd\u9700\u8981\u8fd9\u4e2a\u63a5\u53e3\u6309\u7167\u7ea6\u5b9a\u4fd7\u6210\u7684\u89c4\u5219\u6765\u6ce8\u91ca\u5b8c\u5907":25,"\u90fd\u662fabi\u8c03\u7528\u6807\u51c6\u7684":25,"\u91cc\u6240\u6709\u7684\u7b26\u53f7\u90fd\u5199\u5165\u81ea\u5df1\u7684\u7a0b\u5e8f\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6\u91cc":25,"\u91cd\u547d\u540d\u6210":25,"\u94fe\u63a5\u5230\u81ea\u5df1\u7684\u7a0b\u5e8f\u91cc":25,"\u9519\u8bef\u5904\u7406":25,"\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662f\u8fd4\u56de\u503c":25,"\u9519\u8bef\u5904\u7406\u7684\u65b9\u5f0f\u4e5f\u4e0d\u5c3d\u76f8\u540c":25,"\u9700\u8981\u6709\u7a33\u5b9a\u7684\u5bfc\u51fa\u7b26\u53f7":25,"\ufb01xed":59,"abstract":[36,41],"api\u4e2d\u4f7f\u7528":25,"boolean":[10,16,25],"break":54,"c99\u662f\u76ee\u524dc\u6700\u5e7f\u6cdb\u7684\u4f7f\u7528\u6807\u51c6":25,"c\u6709\u6807\u51c6\u7684abi":25,"c\u8bed\u8a00\u662f\u6709\u5bfc\u51fa\u7b26\u53f7\u7684\u6807\u51c6\u7684":25,"case":[10,16,26,27,34,35,36,38,42,44,50,54],"char":56,"class":[5,7,10,12,14,15,16,17,19,20,23,25,40,51,58],"const":36,"default":[3,7,9,10,11,12,15,16,17,19,20,22,23,29,39,41,43,44,45,54,56,58,59],"export":[28,51],"final":[11,17,27,28,36,56,58],"float":[3,7,9,10,12,15,16,20,27,36,38,43,49,52,56],"function":[3,5,8,10,11,12,16,17,20,23,26,27,34,36,38,39,41,50,51,54,57,58,59],"golang\u53ef\u4ee5\u4f7f\u7528":25,"golang\u7684":25,"h\u5e76\u4e0d\u56f0\u96be":25,"import":[3,5,9,10,16,23,27,34,38,44,49,50,51,52,54,56,58,59],"int":[3,7,9,10,11,12,15,16,17,20,25,26,36,43,54,56,57],"interface\u6587\u4ef6\u7684\u5199\u6cd5\u975e\u5e38":25,"long":[2,10,11,16,17,20,29,38,57,58],"new":[3,10,16,20,24,26,35,37,44,45,50,54,57,58],"null":[10,36,41,56],"paddle\u4e00\u4e2a\u52a8\u6001\u5e93\u53ef\u4ee5\u5728\u4efb\u4f55linux\u7cfb\u7edf\u4e0a\u8fd0\u884c":25,"paddle\u5185\u5d4c\u7684python\u89e3\u91ca\u5668\u548c\u5916\u90e8\u4f7f\u7528\u7684python\u5982\u679c\u7248\u672c\u4e0d\u540c":25,"paddle\u5185\u90e8\u7684\u7c7b\u4e3ac":25,"paddle\u7684\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0\u5305\u62ec\u4e00\u4e0b\u51e0\u4e2a\u65b9\u9762":25,"paddle\u7684\u94fe\u63a5\u65b9\u5f0f\u6bd4\u8f83\u590d\u6742":25,"paddle\u9700\u8981\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3":25,"paddle\u9759\u6001\u5e93\u94fe\u63a5\u590d\u6742":25,"public":[36,39,44,45,58],"return":[3,8,9,10,11,16,17,19,20,22,23,27,34,36,44,50,52,54,55,56,59],"short":[10,11,16,17,27,56,57,58],"static":[10,44],"super":36,"swig\u652f\u6301\u7684\u8bed\u8a00\u6216\u8005\u89e3\u91ca\u5668\u6709\u5c40\u9650":25,"swig\u66b4\u9732\u7684\u63a5\u53e3\u4fdd\u7559\u4e86c":25,"swig\u751f\u6210\u7684\u4ee3\u7801\u4e0d\u80fd\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":25,"swig\u76f4\u63a5\u8bfb\u53d6c":25,"swig\u9700\u8981\u5199\u4e00\u4e2ainterface\u6587\u4ef6":25,"switch":[44,58],"throw":44,"true":[3,7,9,10,11,12,15,16,17,19,20,23,26,27,34,36,41,43,44,52,56,57,58,59],"try":[12,24,26,38,50,56],"void":[25,36],"while":[2,3,7,9,15,20,26,29,34,41,50,54,58,59],AGE:[44,45],AND:56,ARE:56,AWS:[37,46,47],Abs:6,Age:55,And:[3,9,10,12,16,26,29,31,35,43,44,45,49,52,56,58,59],But:[3,10,11,16,17],EOS:[10,16],For:[2,3,8,9,10,12,16,20,23,26,27,28,29,34,36,38,39,40,41,43,49,51,52,54,58,59],Going:58,Has:3,IDs:54,Ids:54,Into:44,Its:[3,34,44,56],Not:[23,24,39],ONE:3,One:[9,10,11,17,34,36,41,50,54,58,59],QoS:45,THE:3,TLS:[23,44],That:[10,16,20,26,29,41,43],The:[2,3,5,7,8,9,10,11,12,14,15,16,17,20,22,23,24,26,27,28,29,30,31,34,35,36,38,39,41,43,44,45,49,50,51,52,54,55,56,57,58,59],Their:[3,10,16,24],Then:[5,10,28,29,34,35,36,38,44,45,49,51,56,57,58],There:[9,10,16,22,23,24,27,29,31,38,44,50,51,52,53,54,56,59],These:[39,43,51,57],USE:56,USING:56,Use:[3,23,26,36,38,41,42,44,56],Used:[11,17],Useful:3,Using:[45,58],VPS:44,WITH:35,Will:20,With:[3,10,11,16,17,27,50,57],Yes:29,___fc_layer_0__:44,__init__:36,__list_to_map__:56,__main__:52,__meta__:56,__name__:52,__rnn_step__:34,_error:50,_link:[11,17],_proj:[10,16],_res2_1_branch1_bn:52,_source_language_embed:[34,49],_target_language_embed:[34,49],aaaaaaaaaaaaa:44,abc:[10,16],abl:[10,16,23,50,58],about:[5,10,11,16,17,27,29,38,40,41,44,48,57,58,59],abov:[3,5,10,16,23,24,27,29,38,44,45,50,52,54,57],abs:[11,17,50],absolut:[2,39],academ:55,acceler:43,accept:[3,5,20,23,26,54,57],acceptor:57,access:[2,10,11,17,23,29,34,59],accessmod:44,accident:55,accomplish:29,accord:[2,3,9,10,16,34,35,39,40,41,43],accordingli:[5,36],accordingto:57,accrod:[11,17],accumul:24,accuraci:[9,36,54,55,58],achiev:[38,51],ack:41,acl:58,aclimdb:58,aclimdb_v1:20,across:[10,16],act:[10,11,16,17,27,34,54],act_typ:54,action:[44,55],activ:[0,4,5,10,11,16,17,21,27,28,36,41,54,58],activi:[11,17],actual:[3,10,16,27],adadelta:[12,54],adagrad:[12,54],adam:[12,23,54,58,59],adamax:[12,54],adamoptim:[49,54,58,59],adapt:[9,12,27,58,59],add:[3,10,11,16,17,20,27,28,35,36,38,43,54,56],add_input:36,add_test:36,add_to:[10,16],add_unittest_without_exec:36,addbia:36,added:[3,9,36],adding:52,addit:[10,11,16,17,29,54],address:[24,29,38,41],addrow:36,addtion:39,addto:10,addtolay:[10,16],adject:58,adjust:27,admin:55,adopt:57,advanc:[34,38,41],advantag:[29,58],adventur:55,adverb:58,adversari:26,advic:38,affect:[10,16],afi:3,aforement:39,after:[10,16,28,31,34,36,39,41,43,44,45,50,51,52,54,56,57,58,59],again:[23,24,38],against:44,age:56,agg_level:[10,16],aggreg:44,aggregatelevel:[10,16],aid:38,aim:[58,59],aircraft:59,airplan:51,aistat:[10,16],alex:[10,16,58],alexnet_pass1:43,alexnet_pass2:43,algorithm:[10,12,16,27,34,49,51,58,59],alia:[6,7,13,14,15],align:[10,11,16,17,20,59],all:[0,3,7,9,10,12,15,16,22,23,24,27,29,34,35,36,38,39,40,41,43,44,45,49,50,52,54,55,56,57,58,59],alloc:[7,15,36,43],allow:[23,29,35,36,38,41,44,54],allow_only_one_model_on_one_gpu:[40,41,43],almost:[11,17,27,39,49],along:58,alreadi:[24,29,38,39,41,44,45,58],alreali:[40,59],also:[2,3,9,10,11,16,17,23,26,28,29,34,36,38,39,45,50,51,52,54,57,58],although:27,alwai:[5,10,11,16,17,26,27,41,44,59],amaz:51,amazon:[44,45,54,58],amazonaw:44,amazonec2fullaccess:44,amazonelasticfilesystemfullaccess:44,amazonroute53domainsfullaccess:44,amazonroute53fullaccess:44,amazons3fullaccess:44,amazonvpcfullaccess:44,ambigu:[26,57],amd64:44,amend:35,american:51,among:[44,58],amount:[38,58],analysi:[27,38,53,57],analyz:[54,58],andd:44,ani:[2,3,10,11,16,17,20,23,24,26,34,35,38,44,54,56,59],anim:55,annot:57,annual:57,anoth:[3,10,16,23,29,41,44,57,58],ans:44,answer:[27,44,57],anyth:[20,26,35,44,57],api:[16,20,23,28,36,38,44,48,50,54,56,58],apiserv:44,apivers:[44,45],apo:59,appar:59,appear:57,append:[3,26,34,36,39,56],appleclang:28,appleyard:38,appli:[0,10,11,16,17,34,36,51,54],applic:[29,38,44,45,58],appreci:[35,58],approach:[10,16],apt:[28,31,51],arbitrari:10,architectur:[49,57,58,59],architecur:58,archiv:25,arg:[3,8,9,10,11,12,16,17,20,27,40,50,51,52,54,56,57,58],arg_nam:[10,16],argu:57,argument:[3,5,8,10,16,20,34,36,41,42,49,50,51,52,56,57,58,59],argv:52,arn:44,around:[3,10,16,44],arrai:[5,10,16,20,22,26,27,52],art:[27,57],articl:[39,45],artifact:44,artifici:50,artist:55,arxiv:[10,11,16,17,50,58],ask:24,aspect:58,assign:[10,41,44],associ:[57,58,59],assum:[10,16,34,43,49],assur:2,astyp:[26,50],async:[12,24,40],async_count:41,async_lagged_grad_discard_ratio:41,async_lagged_ratio_default:[40,41],async_lagged_ratio_min:[40,41],asynchron:[24,41],atla:28,atlas_root:28,attenion:[11,17],attent:[10,11,17,29,59],attitud:58,attr:[7,11,15,16,17],attribut:[3,4,10,11,16,17,21,36,49,57],auc:[9,40],aucvalidationlay:41,authent:44,author:[44,52],authorized_kei:39,autmot:35,auto:[25,36,38,53,56],autom:[44,59],automak:28,automat:[10,16,23,28,34,36,39,40,41,44,56,57,59],automaticli:[10,16],automobil:51,avail:[24,28,44],availabel:28,averag:[9,10,12,16,19,41,52,54,56,57,58,59],average_test_period:[40,41,57],average_window:58,averagepool:[10,16],avg:[13,38,54],avgcost:[9,54,56,58,59],avgpool:[10,16,54],avoid:[24,38],avx:[28,29,31],await:45,awar:[23,24,29,44],aws_account_id:44,awsaccountid:44,awskeymanagementservicepowerus:44,b2t:49,b363:45,b8561f5c79193550d64fa47418a9e67ebdd71546186e840f88de5026b8097465:45,ba5f:44,back:[3,24,29],background:32,backward:[10,11,14,16,17,34,36,41,43],backward_first:34,backwardactiv:36,bag:[54,58],baidu:[0,10,16,27,31,35,45,49],baik:49,balanc:[41,44,50],balasubramanyan:58,bank:57,bardward:[11,17],bare:45,barrier:41,barrierstatset:38,base:[6,12,16,17,19,20,23,27,31,34,35,36,38,39,41,44,49,50,54,56,58,59],baseactiv:[10,11],basematrix:36,basenam:9,basepool:13,basepoolingtyp:[10,11,16,17],baseregular:12,basestr:[7,8,9,10,11,15,16,17,19,56],bash:[29,44,45],bashrc:28,basic:[3,10,29,35,36,54,55,58],batch:[3,9,10,11,12,16,17,20,22,23,24,36,39,41,44,45,50,51,52,54,56,57,58,59],batch_0:52,batch_norm:[10,17],batch_norm_lay:11,batch_norm_typ:[10,16],batch_read:26,batch_siz:[3,12,20,22,27,39,49,50,51,54,56,58,59],batchsiz:[10,16,36],bcd:[10,16],beam:[10,34,41,57,59],beam_gen:[10,34],beam_search:[22,34],beam_siz:[10,34,40,41,43],beamsiz:59,becaus:[5,10,16,23,24,26,34,35,36,43,44,51,54,57],becom:[35,38],been:[3,28,35,51,54,57,58,59],befor:[5,10,11,16,17,24,26,29,35,39,44,51,56,58,59],begin:[5,9,10,36],beginiter:[22,23],beginn:34,beginpass:[22,23],begintrain:23,behavior:38,being:[24,26,50],belong:[10,16,59],below:[3,10,16,20,24,26,34,36,38,39,44,50,51,54,56],benefit:[11,17],bengio:[10,16],bertolami:58,besid:[2,10,16,59],best:[8,10,16,28,29,41,54,56,58,59],best_model_path:57,besteffort:45,beta1:12,beta2:12,beta:52,better:[10,11,16,17,27,39,44,50,56],between:[10,12,16,24,27,35,44,50,54,55,58,59],bgr:52,bi_lstm:[11,17],bia:[10,11,12,16,17,34,36,52],bias:[10,16,36],bias_attr:[10,11,16,17,27,34],bias_param_attr:[11,17],biases_:36,biasparameter_:36,biassiz:36,bidi:45,bidirect:[11,17,34,57,59],bidirectional_lstm_net:58,big:38,bigger:24,biggest:58,bilinear:[10,16],bilinear_interpol:[10,16],bilinearfwdbwd:38,bin:[28,29,39,44,45,56],binari:[3,9,10,16,20,38,44,49,54,58],bird:51,bison:28,bit:54,bitext:59,bla:28,blank:[10,16,44],block:[10,16,27,36,38,41,52,58],block_expand:10,block_i:[10,16],block_x:[10,16],blog:58,bn_attr:17,bn_bias_attr:[11,17],bn_layer_attr:11,bn_param_attr:[11,17],bollen:58,bool:[3,7,9,10,11,12,15,16,17,19,20,36,41,43,54,56,58],boot:[10,34],boot_bia:10,boot_bias_active_typ:10,boot_lay:[10,34],boot_with_const_id:10,bootstrap:28,bos_id:[10,34],both:[0,7,10,11,14,15,16,17,23,24,29,34,36,38,44,50,52,54],bottleneck:[38,52],bottom:58,bow:[54,58],box:38,branch:[10,16,23,35],breadth:[41,59],brelu:6,brendan:58,brew:28,briefli:38,broadcast:24,brows:29,browser:[29,44],bryan:58,bucket_nam:44,buf_siz:20,buffer:[3,20,26,41],buffered_read:26,bug:44,bui:58,build:[0,27,29,32,41,44,46,47,49,51,52,54,56,58,59],built:[0,28,29,50,57],bunch:[38,54],bunk:58,button:[35,44],c11:25,c99e:44,cach:[54,56,57],cache_pass_in_mem:[3,54,56,57],cachetyp:[3,54,56,57],calc_batch_s:[3,57],calcul:[3,9,10,11,12,16,17,24,34,36,38,41,43,50,56],call:[3,10,11,16,17,23,27,34,36,38,41,44,51,52,54,58,59],callabl:[3,10,20],callback:36,caller:44,caltech:51,can:[2,3,5,7,8,9,10,11,15,16,17,20,23,24,26,27,28,29,31,34,35,36,38,39,40,41,43,44,45,49,50,51,52,54,56,57,58,59],can_over_batch_s:[3,57],candid:[10,16],cannot:36,caoi:59,capabl:[28,58],capac:44,caption:[27,59],captur:[27,39],card:39,care:[11,17,26,40,41,55],carefulli:[39,41,52],cat:[29,51,52,58],categor:57,categori:[10,16,24,54,58],categoryfil:45,caus:24,caution:[44,45],ccb2_pc30:59,cde:[10,16],ceil:[10,16],ceil_mod:[10,16],cell:[10,11,16,17,58],center:3,ceph:45,certain:[2,40,57],certif:[23,44],cffi:25,cfg:45,cgo:25,chain:[20,36],challeng:24,chanc:[23,36,54],chang:[10,26,27,29,34,35,36,38,41,44,54,58],channel:[10,16,38,39,52],channl:[39,52],char_bas:56,charact:[54,56],character:27,characterist:[43,51],check:[3,20,27,28,29,35,41,43,44,55],check_align:20,check_eq:36,check_fail_continu:3,check_l:36,check_sparse_distribution_batch:[40,41],check_sparse_distribution_in_pserv:[40,41],check_sparse_distribution_ratio:[40,41],check_sparse_distribution_unbalance_degre:[40,41],checkgrad:41,checkgrad_ep:41,checkout:35,children:55,chines:53,chmod:[28,44],choic:[29,55],choos:[41,54,56],chosen:[2,55,59],chunk:[9,50,57],chunk_schem:9,chunktyp:9,cifar:[50,51],cifar_vgg_model:51,claim:44,claimnam:44,clang:[25,28,29,35],class1:58,class2:58,class_dim:58,classfic:[52,58],classfiic:51,classic:[10,16,27],classif:[3,5,10,16,43,52,53,54,58,59],classifc:58,classifi:[9,50,51,52,54,58],classification_cost:[51,54],classification_error_evalu:[50,54,58,59],classification_threshold:9,claster:44,clean:[5,56],cleric:55,cli:44,click:[35,38,44],client:35,clip:[7,12,15,41,54,58],clock:[10,16],clone:[28,29],close:[3,26],closer:27,cloud:24,cls:54,cludform:44,cluster:[23,24,40,41,45,54,59],cluster_train:39,cm469:44,cmake3:28,cmake:[28,36,38],cmakelist:36,cmd:45,cna:[10,16],cname:44,cnn:[45,52,54],code:[0,3,5,16,20,23,26,27,28,29,30,34,36,37,38,39,44,45,50,54,55],coeff:[10,16],coeffici:[10,16],collabor:24,collect:[10,16,20,22,27,55],collectbia:36,colleg:55,color:[51,52],column:[9,10,16,26,36,49,59],colunm:59,com:[10,11,16,17,20,28,29,31,35,44,45,52],combin:[10,11,16,17,20,50,56,58],come:58,comedi:55,comma:[41,49],command:[2,5,27,28,29,31,35,36,37,38,39,44,45,46,47,49,50,51,52,56,57,58],commandlin:[38,58],commenc:54,comment:[11,17,20,35,54,58],commnun:39,common:[34,36,40],common_util:[39,56],commonli:[34,38,43],commun:[0,24,36,39,44],compani:58,compar:[36,50,54],compat:3,compet:58,competit:50,compil:[28,29,35,36],complet:[0,5,10,11,16,17,20,22,24,36,44,45,54],complex:[2,3,11,17,26,34,38,54],complic:[10,16],compon:36,compos:[20,23,50,57],composenotalign:20,comput:[10,11,16,17,23,24,27,28,29,34,36,38,43,44,54,56,57,58],computation:34,conat:16,conat_lay:10,concat:[10,59],concat_lay:34,concaten:[11,17],concept:[3,23,29,34],concern:23,concurr:24,concurrentremoteparameterupdat:41,condit:[10,16,34,39,45,59],conduct:38,conf:[5,10,16,39,49,50,52,59],conf_paddle_gradient_num:44,conf_paddle_n:44,conf_paddle_port:44,conf_paddle_ports_num:44,conf_paddle_ports_num_spars:44,confid:58,config:[3,7,10,11,15,16,17,27,36,39,40,41,44,45,49,50,51,52,54,58,59],config_:41,config_arg:[40,41,43,52,54,57,58],config_bas:[16,17,22],config_fil:57,config_gener:[39,56],config_lay:36,config_pars:[5,36],configur:[1,2,3,5,8,10,16,27,33,35,36,38,41,49,51,52,58,59],conflict:35,confront:59,congest:41,conll05st:57,conll:57,connect:[2,11,17,27,36,44,45,50,51,52,54,56,58],connectionist:[10,16,58],connor:58,consequ:[10,11,16,17],consid:[9,10,12,16,28,29,38,43,51],consider:[3,11,17],consist:[10,16,26,51,52,54,57,59],consol:[38,44],constant:36,construct:[3,5,23,34,56],construct_featur:56,constructor:36,consum:[24,58],contact:24,contain:[3,8,9,10,11,16,17,19,20,23,30,31,34,35,39,44,51,52,54,55,58,59],containerport:44,contemporan:58,content:[45,57,58],context:[10,11,16,17,34,49,54,56,57,58,59],context_attr:[11,17],context_len:[10,11,16,17,54,56],context_proj_layer_nam:11,context_proj_nam:17,context_proj_param_attr:[11,17],context_project:[11,17,56],context_start:[10,11,16,17,54],contibut:35,contin:44,continu:[3,24,31,41],contrast:[10,16,59],contribut:[0,30,37,58],contributor:0,control:[7,15,41,44,45,59],conv:[11,17],conv_act:[11,17],conv_attr:17,conv_batchnorm_drop_r:[11,17],conv_bias_attr:[11,17],conv_filter_s:[11,17],conv_layer_attr:11,conv_num_filt:[11,17],conv_op:[10,16],conv_pad:[11,17],conv_param_attr:[11,17],conv_shift:10,conv_strid:[11,17],conv_with_batchnorm:[11,17],conveni:[23,39],converg:[39,50,58],convert:[3,5,20,26,34,49,51,52,54,56],convlay:[10,16],convolut:[10,11,16,17,50,52,56],convoper:[10,16],convtran:[10,16],convtranslay:[10,16],cool:[3,35],copi:[23,44,50,56],copy_shared_paramet:50,copytonumpymat:50,core:[3,7,15,41,59],coreo:44,corespond:57,corpora:59,corpu:57,correct:[3,9,10,16,36,44],correctli:[9,20,36,50],correl:[27,51,58],correspoind:23,correspond:[3,5,23,27,34,36,51,55,57,58,59],corss_entropi:23,cos:[10,16],cos_sim:56,cosin:[10,16,56],cost:[5,12,23,27,41,50,54,56,58,59],cost_id:10,could:[3,5,9,10,16,20,22,23,26,29,38,39,44,54,56],count:[24,26,38,41,43,45,49,56,57,58,59],counter:24,coupl:27,coverag:28,coveral:28,coveralls_uploadpackag:28,cpickl:[52,56],cpp:[25,35,36,38,54,56,59],cpu:[2,3,7,10,15,16,28,31,38,41,45,50,57,58,59],cpuinfo:29,craftsman:55,crash:[24,38,39,41],crazi:39,creat:[5,7,10,15,16,20,23,24,27,28,29,36,39,41,49,50,51,59],create_bias_paramet:36,create_input_paramet:36,createargu:50,createfromconfigproto:[5,50],createstack:44,creation:44,creationd:44,creator:20,credit:50,cretor:20,crf:[10,57],crf_decod:10,crime:55,critic:58,crop:52,crop_siz:52,cross:[10,16,54,57],cross_entropi:[16,23,50],cross_entropy_with_selfnorm:16,csc:36,cslm:59,csr:36,csv:55,ctc:10,ctc_layer:9,ctest:29,ctrl:[39,56],ctx:57,ctx_0:57,ctx_0_slot:57,ctx_n1:57,ctx_n1_slot:57,ctx_n2:57,ctx_n2_slot:57,ctx_p1:57,ctx_p1_slot:57,ctx_p2:57,ctx_p2_slot:57,cub:51,cuda:[28,29,31,38,39,41],cuda_dir:[40,41],cudaconfigurecal:38,cudadevicegetattribut:38,cudaeventcr:38,cudaeventcreatewithflag:38,cudafre:38,cudagetdevic:38,cudagetdevicecount:38,cudagetdeviceproperti:38,cudagetlasterror:38,cudahostalloc:38,cudalaunch:38,cudamalloc:38,cudamemcpi:38,cudaprofilerstart:38,cudaprofilerstop:38,cudaruntimegetvers:38,cudasetdevic:38,cudasetupargu:38,cudastreamcr:38,cudastreamcreatewithflag:38,cudastreamsynchron:38,cudeviceget:38,cudevicegetattribut:38,cudevicegetcount:38,cudevicegetnam:38,cudevicetotalmem:38,cudnn:[10,16,19,28,31,41],cudnn_batch_norm:[10,16],cudnn_conv:[10,16],cudnn_conv_workspace_limit_in_mb:[40,41],cudnn_convt:[10,16],cudnn_dir:[40,41],cudrivergetvers:38,cuinit:38,cumul:[10,16],curl:[28,44],current:[3,10,12,16,24,27,29,34,35,36,39,41,44,54,58,59],current_word:34,currentcost:[9,54,56,58,59],currentev:[9,54,56,58,59],curv:[23,51,57],custom:[2,3,23,36,44,55,58],custom_batch_read:26,cycl:24,cyclic:[10,16],cython:25,d3e0:44,daemon:29,dai:59,daili:58,dalla:3,dan:57,danger:3,darwin:44,dat:[20,39,56],data:[2,3,5,8,11,12,17,22,23,24,28,29,32,36,38,39,40,41,43,46,52,55],data_batch_gen:50,data_dir:[49,51,58,59],data_feed:20,data_fil:27,data_initialz:54,data_lay:[3,9,27,34,50,51,54,56,57],data_nam:20,data_provid:8,data_read:[20,26],data_reader_creator_random_imag:26,data_sourc:[8,50],data_typ:[16,20],databas:58,datadim:[10,16],datalay:[10,16],dataprovid:[2,8,27,34,39,56,57],dataprovider_bow:54,dataprovider_emb:54,dataproviderconvert:5,datasci:[10,16],dataset:[1,3,26,27,41,49,51,52,54,57,58],datasourc:[4,56],date:57,db_lstm:57,dcgan:50,dcmake_install_prefix:28,dead:24,deal:[35,50],deb:[30,31],debian:[29,30],debug:3,decai:[12,51],decid:[23,26],declar:[10,11,16,56],decod:[10,11,16,17,34,57,59],decoder_boot:34,decoder_group_nam:34,decoder_input:34,decoder_mem:34,decoder_prev:[11,17],decoder_s:34,decoder_st:[11,17,34],deconv:[10,16],deconvolut:[10,16],decor:[3,20,36],decreas:27,decrypt:44,deep:[0,10,16,27,29,38,50,51,52,54,57],deeper:[27,29,52],deer:51,def:[3,10,16,20,23,26,27,34,36,50,52,54,56,57],defalut:[10,16,41,43],default_devic:43,default_valu:43,defferenct:3,defin:[2,3,8,9,10,11,16,17,20,23,26,27,34,36,39,41,49,50,51,56,57],define_py_data_sources2:[3,8,27,51,52,54,56],defini:59,definit:[3,20,24,27,29,49,54,58],degre:[10,16],del:56,delai:41,delar:54,delet:24,deletestack:44,delimit:[9,55,56],demand:24,demo:[10,34,39,45,46,49,50,51,52,53,54,55,56,57,58,59],demograph:55,demolish:45,demonstr:[27,34,50,56],denot:[43,54,55,57],dens:[3,10,16,20,36,44,54,56],dense_vector:[3,5,16,20,27,56],dense_vector_sequ:20,depend:[24,27,29,31,39,43,51,55],deploi:[39,43],deploy:[39,44],deriv:[14,23],descent:[10,12,16,24],describ:[23,27,36,44,45,50,54,57],describestack:44,describestackev:44,describestackresourc:44,descript:[5,28,34,42,44,51,56],design:[3,10,16,20,25,58],desir:[24,44,45,49],destructor:36,detail:[3,5,7,10,11,12,15,16,17,34,35,36,38,39,42,43,44,45,49,50,52,54,56,58,59],detect:9,determin:[3,10,16,20,36,50],dev:[28,29,51,56,59],devel:28,develop:[0,28,35,40,41,59],deverlop:41,deviat:[7,15],devic:[7,15,41,59],deviceid:43,devid:[10,16,41],dez:58,dfs:11,diagnos:39,diagram:52,dict:[3,8,20,54,56,58,59],dict_dim:58,dict_fil:[9,34,54,57],dict_nam:8,dictionai:54,dictionari:[3,8,9,10,20,22,23,34,43,52,54,56,57,58,59],dictsiz:59,did:3,differ:[3,8,9,10,16,24,27,29,34,35,36,39,41,44,45,49,51,52,54,58,59],difficult:27,dig:[29,38,44],digit:[3,10,16],dim:[20,36,49,52,54,58],dimens:[10,14,16,19,20,36,43,49,54,56,58],dimension:[3,27,34,36,50,54],dimenst:49,dimes:[10,16],din:56,dir:[39,52,54,56,57,58,59],dirctori:29,direct:[10,11,16,17,29,52,57],directli:[2,3,11,17,27,29,39,45,58],directori:[2,28,29,35,38,39,41,45,51,52,54,56,57,58,59],diretcoti:52,dis_conf:50,dis_train:50,dis_training_machin:50,disabl:3,discard:[20,24,41],discount:[10,16],discov:[24,57],discoveri:44,discrep:38,discrimin:50,discriminator_train:50,discuss:23,disk:45,dispatch:[24,39,41],disput:59,dist_train:23,distanc:9,distibut:49,distinguish:[39,50,59],distribut:[10,16,28,37,45,46,47,50,54,57],distribute_test:[40,41],distributedli:36,disucss:23,divid:[12,40,51,59],diy_beam_search_prob_so:[40,41],dmkl_root:28,dns:44,do_forward_backward:26,doc:[5,11,17,20,28,29,39],docker:[30,44,46,47],docker_build:23,docker_push:23,dockerhub:29,doctor:55,document:[3,5,11,17,28,35,43,51,54,56,57,58],documentari:[3,55],doe:[3,5,11,17,24,26,27,31,34,36,38,54,56,57],doesn:[7,10,15,20,23,26,35,38,45,59],dog:[51,52],doing:38,domain:44,don:[11,17,23,26,27,44,58],done:[10,11,16,17,24,34,38,44,50,58],dopenblas_root:28,dot:[41,52,59],dot_period:[41,43,50,51,56,58,59],dotmuloper:[10,16],dotmulproject:[10,16],doubl:[3,28,41],down:[38,54],download:[20,24,29,31,50,51,54,57,58],download_cifar:51,downsampl:51,doxygen:[28,35],dpkg:31,drama:55,drop:3,drop_rat:[7,15],dropout:[7,10,15,16,36,54],dropout_lay:10,dropout_r:[11,17],drwxr:45,dtoh:38,dtype:[5,27,52],dubai:59,due:[55,56],duplic:55,durat:38,dure:[2,3,10,16,24,27,35,36,40,41,44,54,56,57,59],durn:3,dwith_doc:28,dwith_profil:38,dwith_tim:38,dynam:[2,3,26,28,38,41],dynamic_cast:36,each:[2,3,5,9,10,16,19,20,22,24,26,27,29,34,35,36,39,41,43,44,49,51,52,54,55,56,57,58,59],each_feature_vector:14,each_meta:56,each_pixel_str:3,each_sequ:[10,16],each_time_step_output:14,each_timestep:[10,16],each_word:3,eaqual:[10,16],eas:[20,26,52],easi:[0,26,29,36,39,54],easier:[23,26,36],easili:[23,26,27],echo:[29,56,58],edit:[9,29,44],editor:[29,35],edu:[20,44,45,51],educ:55,eeoi3ezpr86c:44,effect:[3,41,44],effici:[0,2,3,34,36],efg:[10,16],efs:44,efs_dns_nam:44,efsvol:44,eight:57,either:[10,16,20,22,23,38,54,56],elb:44,elbapis:44,elec:54,electron:[45,54],elem_dim:[10,16],element:[3,5,9,10,11,16,17,20,22,26,54,58,59],elif:[23,56],elimin:57,els:[10,23,29,36,52,54,56],emac:[29,35],emb:[45,54],embed:[10,23,34,53,56,58],embedd:57,embedding_lay:[34,54,56],embedding_nam:34,embedding_s:34,emphas:38,empir:[10,16],emplace_back:36,emploi:[34,55],empti:[9,20,24,27],emul:59,enabl:[3,7,15,38,39,41,44],enable_grad_shar:[40,41],enable_parallel_vector:41,enc_proj:[11,17,34],enc_seq:[11,17],enc_vec:34,encod:[11,17,34,59],encoded_proj:[11,17,34],encoded_sequ:[11,17,34],encoded_vector:34,encoder_last:10,encoder_proj:34,encoder_s:34,encrypt:44,encrypt_decrypt:44,end:[3,9,10,16,26,27,34,41,49,57,58,59],end_pass:23,enditer:[22,23],endpass:[22,23],endpoint:44,endtrain:23,engin:[0,38,55],english:[3,10,16,59],enjoi:29,enough:27,ensembl:[11,17],ensur:[3,24,36],enter:[29,55],entir:[10,11,16,17,58],entri:[20,36,44,55],entropi:[10,16,54,57],enumer:[10,14,54,56],enumerate_data_types_of_data_lay:20,env:[35,44],environ:[23,28,29,31,38,39,40,41,44,45,50,51,56],eol:35,eos:10,eos_id:[10,16,34],epel:28,epoch:55,epsilon:12,equal:[10,11,12,16,17,24,41],equat:[10,11,12,16,17,29],equilibrium:50,equip:[28,34],equival:[10,16,23],error:[7,9,10,12,15,16,23,27,31,36,39,41,44,51,52,54,55,56,58,59],error_clipping_threshold:[7,15],errorr:9,especi:[3,11,17,57],essenc:23,essenti:[10,23,28,57,59],estat:27,estim:[10,16,23],eta:45,etc:[12,20,26,29,39,40,43,44,58,59],etcd:24,eth0:[39,44],ethternet:39,eval:[9,54,56,58,59],eval_bleu:59,evalu:[2,4,10,16,32,38,39,54,58,59],evaluate_pass:58,evaluator_bas:9,evalut:[27,59],even:[23,26,38,41,58],evenli:44,event:45,event_handl:23,everi:[2,3,9,10,11,17,20,23,24,34,35,36,41,54,57,58,59],everyth:[27,29,35],exactli:[3,9,10,11,16,17,29,44,57],exampl:[2,3,8,9,10,11,12,16,17,20,22,26,27,28,29,34,36,38,39,40,41,43,44,45,51,52,53,54,58,59],exceed:10,except:[3,43,49,56,58],excluded_chunk_typ:9,exconv:[10,16],exconvt:[10,16],exdb:20,exec:[29,41],execut:[24,36,38,44,55,57,58],exist:[23,24,26,36,41,44,55,58],exit:[41,45],exp:6,expand:[10,36,57,58,59],expand_a:[10,16],expand_level:[10,16],expandconvlay:[10,16],expandlevel:[10,16],expect:[10,16,38,58],expens:59,experi:43,expir:24,explain:[3,9,24,39,50,58],explan:[10,16,54,59],explanatori:[27,29],explicit:36,explicitli:[3,23],exploit:51,explor:10,exponenti:14,expos:[29,44],express:[23,44,58],extend:[0,56],extens:[12,55,56,59],extern:[3,25],extra:[10,11,15,16,17,27],extraattr:[7,15,43],extraattribut:[16,17],extraattributenon:16,extract:[10,16,44,51,57,58],extract_fea_c:52,extract_fea_pi:52,extract_para:49,extralayerattribut:[7,10,11,15],extralayeroutput:11,extrapaddl:17,extrem:[10,38],extremli:2,f120da72:45,f7e3:44,fa0wx:45,fabric:39,facotr:[10,16],fact:52,factor:[7,10,12,15,16],factori:25,fail:[3,41,43,45,51],failur:24,fake:50,fake_imag:26,fals:[3,7,9,10,11,12,15,16,17,20,26,27,34,36,41,43,45,49,54,56,57,58,59],false_label:26,false_read:26,famili:59,familiar:[3,27],fanscin:3,fantasi:55,fantast:54,far:0,farmer:55,fascinatingli:2,fast:[10,16,35,38],faster:[10,11,16,17,34,38,58],favori:29,favorit:35,favourit:29,fbd1f2bb71f4:45,fc1:[36,43],fc2:43,fc3:43,fc4:43,fc8a365:44,fc8a:44,fc_act:[11,17],fc_attr:[11,17],fc_bias_attr:[11,17],fc_layer:[27,36,43,54,56],fc_layer_nam:11,fc_name:17,fc_param_attr:[11,17],fclayer:36,fdata:57,fea:52,fea_output:52,feat:58,featur:[3,10,14,16,20,35,41,51,54,58,59],feature_map:56,feed:[11,17,20,22,23,27,58],feedback:0,feeder:20,feedforward:51,femal:55,fernan:58,festiv:3,fetch:[20,34,36],few:[3,24,26,29],fewer:10,fg0:[10,16],field:[10,16,22,38,44],figur:[23,34,36,38,49,50,51,52,57,58,59],file1:59,file2:59,file:[2,3,5,9,10,16,20,23,24,26,27,28,29,34,35,36,39,41,49,51,52,57,58,59],file_list:3,file_nam:[3,27,52,54,57],filenam:[3,56],filer:[10,16],filesystem:[29,44],fill:[10,16,24,44,54],film:55,filter:[10,16,52],filter_s:[10,11,16,17],filter_size_i:[10,16],finali:39,find:[10,12,24,29,38,51,58,59],fine:[7,15,56],fingerprint:44,finish:[3,24,29,39,44,45,51],finit:36,first:[3,10,16,20,23,24,27,29,31,34,35,36,38,41,43,44,49,50,51,52,54,56,57,58,59],first_seq:34,firstn:20,firstseen:45,fit:[2,20,35],five:[38,54],fix:[3,7,15,25,59],flag:[41,50,51,57],flexiabl:26,flexibl:[0,2,10,11,17,23,34],flight:59,float32:[5,20,26,27,50,52],floor:[10,16],flow:35,fly:[27,54],fnt03:44,focu:[3,38],folder:[28,29,44,51,58,59],follow:[2,3,9,10,11,12,16,17,20,23,24,26,28,29,31,34,35,36,38,39,43,44,45,46,47,49,50,51,52,54,55,56,57,58,59],fool:50,forbid:23,force_load:25,forecast:58,forget:[12,23,58],form:[2,3,11,12,17,38,57],format:[2,3,9,27,35,36,41,44,49,51,55,56,58],former:[23,59],formula:[10,11,16,17],formular:[10,16],forward:[11,14,17,34,35,36,43,50,57,58],forwardactiv:36,forwardtest:5,found:[3,5,10,16,28,34,50,51,54,58],four:[3,31,49,52,54,56,57,58],frame:9,framework:[23,36,52,54,58],free:59,french:59,frequenc:[20,38,49,54,58],frequent:[26,39,59],frog:51,from:[0,3,5,10,11,16,17,20,22,24,26,27,29,32,34,35,36,38,39,41,43,44,45,49,50,51,52,54,55,56,57,58,59],from_timestep:[10,16],fromfil:[26,27,52],fulfil:38,full:[10,16,24,29,34,36],full_matrix_project:[11,17,34],fulli:[27,35,36,38,50,51,52,54,56,58],fullmatrixproject:[10,16],fully_matrix_project:[11,17],fullyconnect:49,fullyconnectedlay:36,func:20,fundament:27,further:10,fusion:56,gain:[10,16],game:50,gamma:52,gan:23,gan_train:50,gap:41,gate:[10,11,16,17,58],gate_act:[10,11,16,17],gate_recurr:[10,16],gather:[10,36,56],gauss:[7,15],gaussian:50,gcc:[25,28,29],gdebi:31,gen:[10,59],gen_conf:[50,59],gen_data:59,gen_result:59,gen_train:50,gen_training_machin:50,gen_trans_fil:34,gender:[55,56],gener:[2,3,5,9,10,11,16,17,20,22,23,24,26,27,28,29,38,39,41,43,44,49,52,53,54,56,58],generatedinput:34,generator_conf:50,generator_machin:50,generator_train:50,genert:3,genr:[55,56],gereat:9,get:[3,10,11,16,17,27,28,31,34,36,38,39,44,48,51,52,54,56,57,58],get_batch_s:57,get_best_pass:58,get_config_arg:[43,54,56,58],get_data:[45,54,57],get_imdb:58,get_input_lay:36,get_mnist_data:50,get_model:52,get_nois:50,get_output_attr:17,get_output_layer_attr:11,get_training_loss:50,get_word_dict:20,getbatchs:36,getenv:23,getinput:36,getinputgrad:36,getinputvalu:36,getoutputgrad:36,getoutputvalu:36,getparameterptr:36,getsiz:36,getslotvalu:50,gettempl:44,gettranspos:36,getw:36,getweight:36,getwgrad:36,gfortran:28,gildea:57,gist:[11,17],git:[28,29,35],github:[10,11,16,17,28,29,31,52],give:[3,24,27,29,36,38,44,54],given:[3,20,22,26,36,41,50,54,57,58,59],global:[3,7,12,15,23,24,38,41,44,56,58],global_learning_r:[7,15],globalstat:38,globalstatinfo:38,globe:3,goal:[38,57],godoc:25,goe:[10,11,16,17,24,27],going:[54,58],good:[10,16,26,38,58,59],goodfellow13:[10,16],googl:23,googleapi:44,gpg2:44,gpg:44,gpu:[2,3,7,10,12,15,16,19,28,31,37,39,50,51,52,56,57,58,59],gpu_id:[41,43,50],gpugpu_id:40,grab:[24,58],grad:[41,55],grad_share_block_num:[40,41],gradient:[7,9,10,12,15,16,24,41,54,58],gradient_clipping_threshold:[7,12,15,54,58],gradientmachin:[5,50,56,59],gradual:[27,38],grai:51,gram:[49,58],grant:44,graph:[10,24,49],graphviz:52,grave:58,grayscal:3,greater:[10,16],grep:[29,58],groudtruth:34,ground:[9,10,16,54,59],group:[11,17,58],group_id:56,group_input:34,grouplen:55,gru:[10,16,34,54,59],gru_attr:17,gru_bias_attr:[11,17],gru_decod:34,gru_decoder_with_attent:34,gru_encoder_decod:[49,59],gru_layer_attr:11,gru_memori:[11,17],gru_siz:54,gru_step:[17,34],gru_step_lay:[11,34],grumemori:[11,17,34],gserver:[10,36],gsizex:38,guarante:36,guess:[27,58],gui:38,guid:[30,34,35,36,38,44,45,49,51,58,59],guidenc:27,gur_group:[11,17],gzip:45,hack:[30,39],hadoop:23,half:44,hand:[55,56,58],handl:[23,26,39,56,58],handwrit:[3,58],hard:[44,54],hardwar:[29,38],has:[3,5,10,11,12,16,17,23,24,29,34,36,38,44,45,49,51,54,55,56,57,58,59],have:[2,3,5,9,10,11,16,17,20,23,24,26,27,28,29,34,35,36,38,39,41,43,44,49,51,54,55,56,58,59],hdf:2,head:[35,49,58],header:[27,36,49,52,56],health:55,heavi:39,height:[10,16,20,25,26,36,51],held:24,hello:23,help:[3,5,35,39],helper:[8,10,11,16,17,36],here:[3,5,7,10,11,15,16,17,20,23,26,27,28,34,39,40,43,44,45,49,51,52,53,54,55,56,57,58,59],heurist:[10,41,59],hidden:[10,11,16,17,34,44,54,56,58],hidden_s:[11,17,56],hierarch:[10,16,34],high:[7,15,36,50],higher:2,highest:[20,59],highli:[2,3,34,43,56,58],him:23,hint:27,histor:58,hl_get_sync_flag:36,hold:[23,24,44],home:[39,44,45],homemak:55,hook:[3,56,57],hope:0,horizont:[10,16,52],horror:55,hors:51,horst:58,host:[28,29,39,44,45],hostnam:[39,44],hostpath:45,hostport:44,hot:56,hour:59,hous:[3,20,27,49],how:[2,3,7,10,15,16,23,24,27,34,39,41,44,45,48,51,52,54,56],howev:[3,11,17,26,27,34,35,40,41,44,58,59],hpp:25,html:[20,29,51],htod:38,http:[10,11,16,17,20,28,29,31,35,44,45,50,51,52,59],huber:[10,16],huge:[10,16,35],huina:58,human:59,hyper:[10,16,36],hyperplan:20,i0601:56,i0706:59,i0719:59,i1117:38,iamfullaccess:44,iamusersshkei:44,ib0:39,icwsm:58,id_input:[9,34],idea:[10,16,26],ident:[27,29,44,55],identifi:[34,36],identityoffsetproject:[10,16],identityproject:[10,16],ids:[9,10,16,36,54,56],idx:36,ieee:58,ignor:[3,9,10,41,49],ijcnlp:58,illustr:[3,24,34,36,38,54],ilsvrc:52,imag:[3,19,20,23,26,27,30,43,44,46,47,50,52,53,59],image_a:26,image_b:26,image_classif:51,image_fil:26,image_lay:26,image_list_provid:52,image_nam:23,image_path:26,image_provid:51,image_reader_cr:26,image_s:52,imagenet:53,imagepullpolici:44,imageri:[10,16],images_reader_cr:26,imdb:55,imdber:58,img:[3,10,16,51],img_conv:17,img_conv_lay:11,img_featur:3,img_norm_typ:10,img_pool:17,img_pool_lay:11,img_siz:51,imgsiz:38,imgsizei:38,imgsizex:38,immedi:44,immutable_paramet:23,implement:[3,10,11,12,16,17,20,34,54,57],importerror:56,improv:[0,38,44,58,59],inbound:44,includ:[2,3,10,11,16,17,23,25,28,29,34,36,38,41,44,45,49,54,55,57,59],inconsist:55,incorrect:[10,16],increas:[24,41,59],increment:41,incupd:36,inde:[20,26,29],independ:[10,16,54],index:[3,9,10,16,19,20,24,34,39,44,56],indexslot:[10,57],indic:[3,9,10,16,27,39,44,57],individu:[27,44],industri:24,infer:[1,23,24,28],infiniband:39,info:[9,10,16,36,39],infom:35,inform:[5,9,36,38,41,44,55,56,57,58,59],infrastructur:[44,50],ingor:41,ininst:23,init:[7,15,36,43,44,50,54,56,57],init_hook:[54,56,57],init_hook_wrapp:8,init_model_path:[40,41,43,49,54,57],initi:[3,5,7,10,15,16,34,36,41,49,50,54,57],initial_max:[7,15],initial_mean:[7,10,15,16],initial_min:[7,15],initial_std:[7,10,15,16],initpaddl:[5,50],inlcud:[11,17],inlin:44,inner:36,inner_param_attr:[11,17],input1:[10,11,16,17],input2:[10,16],input:[3,5,9,10,11,14,16,17,19,20,22,26,27,34,36,43,49,50,51,52,54,56,57,58,59],input_data:36,input_data_target:36,input_featur:14,input_fil:[27,57],input_hassub_sequence_data:36,input_id:[10,16],input_imag:[11,17,51],input_index:36,input_label:36,input_lay:[10,36],input_nam:23,input_sequence_data:36,input_sequence_label:36,input_sparse_float_value_data:36,input_sparse_non_value_data:36,input_t:36,input_typ:[27,34,54,56],inputdef:36,inputlayers_:36,inputtyp:[3,20],insid:[9,10,16,24,26,29,44],inspir:49,instal:[29,32,35,39,45,51,52,56,57,58],instanc:[10,12,16,24,34,36,38,41,57],instance_ip:44,instanti:24,instead:[10,16,19,26,29,35,39,54,59],instruct:[29,31,38,54],int32:41,integ:[3,9,10,16,20,25,34,36,54,58],integer_valu:[3,20,54],integer_value_sequ:[3,20,34,54,57],integr:[28,57],intend:0,inter:[10,16,39],interact:[29,44],intercept:[10,16],interest:[38,58],interfac:[5,7,10,11,15,16,17,39,44,51,56,58],interg:54,intergr:[10,16],intermedi:57,intern:[10,11,17,20,44],internet:[24,58],interpol:10,interpret:[3,9,28,38],interv:58,intrins:28,introduc:[3,24,45,56,58],introduct:[4,50],invalid:26,invari:51,invok:[3,10,38,44,56],involv:50,iob:9,ioe:9,ips:44,ipt:[10,16,34],ipython:23,is_async:12,is_discriminator_train:50,is_gener:[10,49,50,59],is_generator_train:50,is_kei:56,is_layer_typ:10,is_predict:[54,56,58],is_seq:[10,34,56],is_sequ:56,is_stat:[7,15],is_test:[52,57,58],is_train:3,isn:38,isol:29,isspars:36,issu:[28,29,38],item:[10,16,20,26],iter:[10,11,12,17,20,22,23,24,26,51,57,58],its:[3,9,10,11,16,17,23,24,36,38,41,44,49,50,51,54,58,59],itself:[11,17,24],java:25,jeremi:38,jie:[57,58],jmlr:[10,16],job:[5,9,40,41,43,52,54,56,57,58,59],job_dispatch_packag:39,job_mod:49,job_nam:44,job_namespac:44,job_path:44,job_workspac:39,jobpath:44,jobport0:44,jobport1:44,jobport2:44,jobport3:44,johan:58,join:24,joint:[49,59],jointli:[11,17,59],journal:[57,58],journei:29,jpeg:51,jpg:52,json:[39,44,45,56],jth:[11,17],judg:59,jupyt:29,just:[3,9,10,11,14,16,17,27,35,39,43,44,49,51,56,57,58],jx4xr:44,jypyt:23,k8s_data:44,k8s_job:23,k8s_token:23,k8s_train:44,k8s_user:23,kaim:[10,16],kaimingh:52,kebilinearinterpbw:38,kebilinearinterpfw:38,keep:[3,10,16,24],kei:[3,24,38,39,56,58],kernel:[10,16,38,54],key1:41,key2:41,key_pair_nam:44,keyid:44,keymetadata:44,keypair:44,keyserv:44,keystat:44,keyusag:44,keyword:3,kill:[24,44],kind:[2,3,23,24,27,44,45,50,54,56],kingsburi:57,kms:44,know:[3,11,17,23,27,36,38,44,56],knowledg:58,known:[50,58,59],kriz:[20,51],ksimonyan:[11,17],kube_cluster_tl:23,kube_ctrl_start_job:23,kube_list_containers_in_job_and_return_current_containers_rank:23,kubeconfig:44,kubectl:45,kuberent:44,kubernet:[23,24,37,39,46,47],kubernetes_service_host:23,kwarg:[3,9,10,11,12,16,17,20,54,56,57],l1_rate:[7,15],l2_rate:[7,15],l2regular:[51,54,58],label:[3,5,9,10,12,16,20,22,26,27,34,45,50,51,52,53,54,56,58],label_dict:57,label_dim:[10,16,54],label_fil:[26,57],label_lay:[10,26],label_list:57,label_path:26,label_slot:57,labeledbow:58,labl:58,lag:41,lake:3,lambdacost:[10,16],lambdarank:[10,16],languag:[10,16,43,49,57,58,59],laptop:29,larg:[19,57,58,59],larger:[3,7,9,10,12,15,16,39],last:[9,10,11,16,17,27,34,39,41,54,58,59],last_time_step_output:10,lastseen:45,late:58,latenc:[39,44],later:[28,35,44,54],latest:[10,16,24,29,35,45,58],latter:59,launch:[41,44,58],launcher:23,lawyer:55,layer1:[10,11,16,17],layer2:[10,16],layer3:[10,16],layer:[4,5,7,9,11,15,17,19,20,21,22,26,27,34,37,40,41,49,50,51,52,54,56,57,58],layer_0:36,layer_attr:[10,16,34,43],layer_num:[43,52],layer_s:[10,16],layer_typ:[10,16],layerbas:36,layerconfig:36,layergradutil:36,layermap:36,layeroutout:[10,16],layeroutput:[9,11,56],lbl:[9,51],ld_library_path:[28,31,39],lead:38,learn:[0,7,9,10,11,12,15,16,17,23,26,27,29,34,36,38,51,52,54,57,58,59],learnabl:[10,16],learning_method:[12,27,49,51,54,56,58,59],learning_r:[7,12,15,27,49,51,54,56,58,59],leas:24,least:[9,10,16,24,28,55],leav:[3,44],lecun:20,left:[10,16,27,52],leman:59,len:[3,10,16,34,36,54,56,57],length:[10,11,16,17,20,34,41,45,58,59],less:[10,16,23,39,59],less_than:23,let02:45,let:[5,10,16,23,27,29,44,56],level:[7,10,15,16,39,41,50,56,58,59],lib64:[28,39,41],libcudnn:28,libjpeg:51,libpaddl:25,libpython:28,librari:[10,16,28,29,39,41,56],licens:57,life:24,like:[3,9,10,16,24,26,27,28,34,38,39,40,43,44,49,52,54,56,58,59],limit:[10,20,38,41],line:[2,3,5,9,20,27,35,37,38,39,43,44,49,51,52,56,57,58,59],linear:[6,10,16,32],linear_comb:10,linearactiv:[10,27],linguist:57,link:[10,11,16,17,28,44,54,58],linux:[28,29,31,44,59],lipeng:49,lipton:58,list:[2,3,8,9,10,11,16,20,23,27,29,34,36,39,41,43,44,51,52,54,56,57,58,59],listen:41,literatur:58,littl:[2,3,41,54,58],lium:59,live:[24,29],liwicki:58,load:[2,3,5,10,16,23,24,27,41,44,52,56,57,58,59],load_featur:52,load_feature_c:52,load_feature_pi:52,load_missing_parameter_strategi:[40,41,43,49,57],load_uniform_data:50,loadparamet:5,loadsave_parameters_in_pserv:[40,41],local:[7,15,24,28,29,35,39,40,41,45,51,58],localhost:29,locat:[34,36,54,57],lock:24,log:[3,6,35,36,39,41,44,45,51,56,57,58,59],log_barrier_abstract:41,log_barrier_lowest_nod:[40,41],log_barrier_show_log:[40,41],log_clip:[40,41],log_error_clip:[40,41],log_period:[41,43,45,50,51,54,56,57,58,59],log_period_serv:[40,41],logarithm:14,logger:3,logic:[3,39],login:29,longer:59,look:[3,9,27,39,40,44,45,50,54],lookup:54,loop:26,loss:[10,16,36,50,54,58,59],lot:40,low:[10,16],lower:39,lowest:41,lst:56,lstm:[10,16,34,45,54],lstm_attr:17,lstm_bias_attr:[11,17],lstm_cell_attr:[11,17],lstm_group:[11,17],lstm_layer_attr:11,lstm_size:54,lstm_step:[11,17],lstmemori:[11,17,34],lstmemory_group:10,ltr:[10,16],lucki:27,mac:[28,29],machan:[11,17],machin:[10,11,12,16,17,27,35,36,40,41,43,44,45,54,56,58,59],made:[3,24,27,34,55],mai:[3,8,9,10,16,26,29,35,38,44,55],main:[3,5,35,44,51,57,58],mainli:41,maintain:[10,44],major:[29,35,50,52,58,59],make:[3,10,16,23,24,26,28,29,35,36,38,39,44,51,54,56,58],male:55,malloc:36,manag:[24,35,39],manageri:55,mandarin:[10,16],mani:[0,10,11,16,17,27,29,41,54,55,56,58],mannal:39,manual:35,manufactur:59,mao:58,map:[3,10,16,20,23,41,51,52,56],map_read:20,mapreduc:23,marcu:58,mark:[3,34,57],mark_slot:57,market:[27,55,58],martha:57,mask:[7,10,15,16],master:[23,35,41,58],mat_param_attr:[11,17],match:38,math:[11,17,25,36,38],matirx:[10,16],matplotlib:51,matric:[5,34,36],matrix:[9,10,11,16,17,20,25,34,36,40,43,52,57],matrixptr:36,matter:3,max:[3,7,10,13,15,16,20,38,41,43,51,54,56],max_id:[22,54],max_length:[10,34],max_sort_s:[10,16],maxid:[9,10,54],maxid_lay:[9,54],maxim:[10,59],maximum:[9,34,38,41,54,57,58],maxinum:19,maxout:10,maxpool:[10,16],mayb:[10,11,16,17,51],mean:[3,7,9,10,11,12,15,16,17,19,20,22,26,27,34,38,39,41,43,44,49,50,51,52,54,56,57,58,59],mean_img_s:51,mean_meta:52,mean_meta_224:52,mean_valu:52,measur:[27,38],mechan:[10,11,17,34,44,58],media:58,meet:57,mem:10,member:23,memcpi:38,memor:58,memori:[2,3,11,17,34,36,38,41,43,45,54,57,58,59],memory_nam:10,memory_threshold_on_load_data:41,mere:[11,17],merg:[35,41,49,59],mergedict:[49,59],messag:[27,41,45,56,58,59],meta:[39,51,52,54],meta_config:[39,56],meta_fil:56,meta_gener:[39,56],meta_path:51,meta_to_head:56,metadata:[44,45],metaplotlib:23,method:[3,8,10,11,12,16,22,29,36,38,41,43,54,56,58,59],might:[10,16,29,36,44],mileag:38,million:[43,55],min:[7,15,38,43,44,56],min_pool_s:3,mind:39,mini:[3,10,16,20,24],mini_batch:26,minibatch:[10,16],minibatch_data:20,minim:[3,12,27,41],minimum:[10,16],minimun:41,minst:3,minut:[24,44,59],miss:[41,49,57],mit:44,mix:[11,17,34,57],mixed_attr:17,mixed_bias_attr:[11,17],mixed_lay:[11,34,57],mixed_layer_attr:11,mixedlayertyp:10,mkdir:[28,29,44],mkl:28,mkl_path:28,mkl_root:28,ml_data:[39,56],mnist:[3,5,26],mnist_provid:3,mnist_random_image_batch_read:26,mnist_train:[3,26],mnist_train_batch_read:26,mod:57,modal:57,mode:[10,16,41,50,51,52,56,58,59],model:[1,2,5,8,10,11,12,16,17,24,32,35,36,37,41,44,56,57,58],model_averag:12,model_config:[5,50],model_list:[41,43,57,58],model_output:58,model_path:43,model_zoo:[49,52],modelaverag:12,modifi:[5,34,35,36,39,44],modul:[2,3,5,8,11,17,20,27,28,51,52,54,56,57],modulo:[10,16],momentum:[7,12,15,27,54],momentumoptim:[27,51],mon:45,monitor:[54,58],mono:[10,16],month:[54,59],mood:58,more:[2,3,5,9,10,11,16,17,20,23,24,26,27,29,34,36,38,39,43,45,51,54,57,58,59],morin:[10,16],mose:[58,59],moses_bleu:59,mosesdecod:58,most:[3,5,10,20,23,26,27,34,36,38,40,56,57,58,59],mostli:[51,55],mount:[29,44,45],mountpath:[44,45],move:[10,16,24,38,44,56,58],movement:[38,58],movi:[3,58],movie_featur:56,movie_head:56,movie_id:56,movie_meta:56,movie_nam:56,movie_review:20,movieid:55,movielen:53,moving_average_fract:[10,16],mpi:39,mse:10,mse_cost:[27,56],much:[10,16,24,26,38],mul:36,mulit:39,multi:[10,16,36,40,41,52,59],multi_binary_label_cross_entropi:16,multi_crop:52,multinomi:[10,16],multipl:[9,10,11,16,17,20,23,29,34,36,41,43,44,50,54,56,58],multipli:[9,10,16,36,51],multithread:3,music:55,must:[3,9,10,11,14,16,17,26,28,29,34,35,36,39,41,43,44,59],my_cluster_nam:44,my_cool_stuff_branch:35,my_external_dns_nam:44,mypaddl:45,mysteri:55,name:[3,7,8,9,10,11,15,16,17,19,20,23,24,27,29,34,36,38,39,41,43,45,46,47,49,50,51,52,54,56,58,59],namespac:[25,29,36,45],nano:35,nativ:[10,16],natur:[43,57,58],nchw:[10,16],ndarrai:22,ndcg:[10,16],ndcg_num:[10,16],nearest:54,necessari:[3,10,16,28,36,39,54,58],necessarili:36,need:[3,10,11,16,17,20,23,27,28,29,31,34,35,36,39,40,41,43,44,45,50,51,52,54,56,57,58,59],neg:[3,9,10,16,54,57,58],neg_distribut:[10,16],negat:57,neighbor:54,nest:[3,20],net:[10,11,16,17],net_conf:58,net_diagram:52,network:[2,3,4,5,7,9,10,12,15,16,20,21,22,23,26,27,29,36,38,39,41,49,58,59],network_config:43,networkadministr:44,neural:[3,5,10,11,12,16,17,20,22,23,27,38,41,49,50,52,58,59],neuralnetwork:[10,16,32],neuron:[5,36,54,58],never:[20,26,44,45],newest:35,newtork:58,next:[10,24,34,36,38,41,44,45,57,58,59],nfs4:44,nfs:44,nfsver:44,nginx:29,nic:[39,40,41],nine:57,nlp:[3,10],nltk:20,nmt:59,nnz:36,no_cach:3,no_sequ:[3,56],noah:58,noavx:[29,31],node:[10,16,36,39,41,44,45,58,59],node_0:44,node_1:44,node_2:44,nodefil:39,noir:55,nois:[10,16,50],noise_dim:50,non:[10,16,24,36,41,44],none:[2,3,5,7,8,9,10,11,12,15,16,17,19,20,22,23,27,34,52,54],nonlinear:36,norm:50,norm_by_tim:[10,16],normal:[3,5,10,11,16,17,31,34,36,39,41,45,49,50,52],normzal:52,north:51,notat:[10,16],note:[3,5,7,10,11,12,15,16,17,19,22,23,26,28,38,41,43,44,49,51,56,58],notebook:29,noth:[14,41],notic:[34,36],novel:58,now:[0,3,10,16,24,27,29,35,41,44,50,56,57],np_arrai:20,nproc:28,ntst1213:59,ntst14:59,nullptr:36,num:[10,16,39,41,54,57,58,59],num_channel:[10,11,16,17,51],num_chunk_typ:9,num_class:[10,11,16,17,51],num_filt:[10,11,16,17],num_gradient_serv:[40,41],num_group:[10,16],num_neg_sampl:[10,16],num_parameter_serv:23,num_pass:[27,40,41,43,45,54,56,57,58,59],num_repeat:[10,16],num_result:9,num_results_per_sampl:10,number:[3,9,10,16,20,24,26,27,36,39,41,44,49,51,52,54,57,58,59],numchunktyp:9,numdevices_:43,numlogicaldevices_:43,numofallsampl:9,numofwrongpredict:9,numpi:[20,22,26,27,28,50,52],numsampl:38,numtagtyp:9,nvcc:29,nvidia:[28,29,38,41],obj:[3,8,27,51,52,54,56],object:[3,5,7,8,9,10,11,12,15,16,17,20,22,23,25,38,50,51,52,54,57],observ:[12,27,36,38,59],obtain:[54,57,58],occup:[55,56],occur:[20,35],oct:45,odd:[10,16],off:29,offer:[5,57],offici:[29,44,51],offlin:24,offset:[10,16,56],often:[9,39,54,59],ograd:36,old:[29,35,41],omit:54,on_init:3,on_travisexclud:28,onc:[3,10,24,29,35,36,44,54],one:[3,8,9,10,11,12,14,16,17,19,20,23,24,26,27,29,35,36,39,41,43,44,45,49,50,51,52,54,56,57,58,59],one_host_dens:56,one_hot_dens:56,onli:[2,3,5,9,10,11,16,17,19,20,22,23,27,28,34,35,36,38,40,41,43,44,45,49,52,54,55,58,59],onlin:[12,24,26],onto:44,open:[0,3,10,16,23,26,27,29,44,52,54,56,57],openbla:28,openblas_path:28,openblas_root:28,oper:[10,11,12,16,17,29,34,36,38,41,44,49,51,56],opinion:58,opt:[23,28],optim:[3,4,7,15,21,27,36,38,58],option:[3,9,10,16,23,27,35,36,39,43],order:[3,10,11,16,17,20,26,36,41,44,45,50,52,54,58,59],ordinari:58,oregon:44,org:[10,11,16,17,28,50],organ:[10,16,51,58,59],origin:[0,2,3,10,16,20,35,50,57,59],other:[3,9,10,11,12,16,17,20,28,29,31,34,35,43,44,45,49,50,51,52,54,55,56,57,58,59],otherchunktyp:9,otherwis:[2,8,10,16,20,23,24,26,34,39,43,56,59],our:[23,29,34,36,44,45,49,51,54,57,58,59],out:[10,16,23,27,34,38,41,44,45,51,58],out_dir:44,out_left:[10,16],out_mem:34,out_right:[10,16],out_size_i:[10,16],out_size_x:[10,16],outlin:42,outperform:57,output:[5,7,9,10,14,15,16,17,19,20,22,23,26,27,34,36,38,41,43,45,49,50,51,52,54,56,57,58,59],output_:[10,16,36],output_dir:52,output_fil:57,output_id:[10,16],output_lay:[22,52],output_max_index:19,output_mem:[10,16,34],outputh:[10,16],outputw:[10,16],outsid:[3,10,11,16,17,29],outter_kwarg:3,outv:36,over:[2,10,11,16,17,23,35,36,38,54,57,58],overcom:58,overhead:38,overlap:36,overrid:[24,36],owe:0,own:[29,35,39,44],pacakg:31,pack:29,packag:[3,16,20,29,30,44],pad:[10,34,54],pad_c:[10,16],pad_h:[10,16],pad_w:[10,16],paddepaddl:2,padding_attr:[10,16],padding_i:[10,16],padding_x:[10,16],paddl:[3,5,6,7,8,9,10,11,12,13,14,15,16,17,19,20,22,23,24,25,27,28,29,30,31,35,36,37,38,39,41,43,44,50,51,54,56,57,58,59],paddle_error:25,paddle_matrix:25,paddle_matrix_shap:25,paddle_n:39,paddle_output:45,paddle_port:39,paddle_ports_num:39,paddle_ports_num_for_spars:39,paddle_pserver2:39,paddle_root:49,paddle_source_root:49,paddle_train:39,paddledev:[44,45],paddlepaddl:[0,2,3,5,10,11,12,16,17,20,24,26,27,28,31,32,34,35,36,37,38,39,46,47,52,54,56,57,58],paddlepadl:3,paddlpaddl:0,paddpepaddl:3,page:[35,44,56],pai:29,pair:[9,57],palceholder_just_ignore_the_embed:49,palmer:57,paper:[10,16,49,50,52,57,58,59],paraconvert:49,paragraph:58,parallel:[38,41,43,44,45,59],parallel_nn:[7,15,40,41],param:[7,10,15,16,56],param_attr:[10,11,16,17,27,34],paramattr:[7,10,15,16,27,34],paramet:[2,3,4,5,8,9,10,11,12,16,17,19,20,21,26,27,36,37,43,50,51,54,56,57,58,59],parameter_attribut:[10,16],parameter_block_s:[40,41],parameter_block_size_for_spars:[40,41],parameter_learning_r:[7,15],parameter_nam:23,parameter_serv:23,parameterattribut:[7,10,11,15,16,17],parametermap:36,parameters_:36,parameterset:23,parametris:12,paramt:[44,49],paramutil:56,paraphras:59,paraphrase_data:49,paraphrase_model:49,paraspars:36,parent:[10,36],pars:[5,20,43,44,50,56,57],parse_config:[5,50],parser:56,part:[3,16,27,34,35,36,38,50,54,56,57,58,59],parti:[38,56],partial:[10,16,50],participl:49,particular:38,partit:[24,44],pass:[3,8,10,16,20,22,24,26,27,35,36,38,39,41,44,45,50,51,54,56,57,58,59],pass_idx:26,pass_test:50,passtyp:36,password:[29,39],past:[23,29,44],path:[2,3,9,20,24,26,27,28,34,39,41,43,44,45,49,51,52,54,57,58,59],pattern:[24,25,27,44,56,58],paul:57,paus:24,pave:59,pdf:[10,11,16,17],pem:[23,44],pend:24,penn:57,per:[10,26,41,51,54],perfom:[41,43],perform:[2,10,11,16,17,27,34,35,36,37,39,40,50,51,54,58,59],period:[2,24,41,54,56,57,58,59],perl:[58,59],permiss:44,peroid:[10,16],persist:44,persistentvolum:44,persistentvolumeclaim:44,person:23,perspect:38,perturb:36,pgp:44,phase:27,photo:51,pick:[3,44],pickl:56,picklabl:8,pictur:54,piec:[10,11,16,17,27],pillow:51,pip:[28,35,39,51,56],pipe:55,pipelin:57,pixel:[3,10,16,20],pixels_float:3,pixels_str:3,place:[2,3,24,36,38,39,52,59],placehold:[27,49],plai:[57,58],plain:[2,9,10,16],plan:[24,36],platform:[0,27,44],pleas:[3,5,7,10,11,12,15,16,17,23,24,26,28,29,30,34,35,36,44,49,51,54,56,57],plot:[23,51],plotcurv:51,png:[51,52],pnpairvalidationlay:41,pnpairvalidationpredict_fil:40,pod:[44,45],pod_nam:44,point:[27,38],polar:58,polici:44,polit:58,poll:58,poo:51,pool3:36,pool:[3,4,11,17,21,51,54,56],pool_attr:[11,17],pool_bias_attr:[11,17],pool_layer_attr:11,pool_pad:[11,17],pool_siz:[3,10,11,16,17],pool_size_i:[10,16],pool_strid:[11,17],pool_typ:[10,11,16,17],pooling_lay:[11,54,56],pooling_typ:[10,16,54],poolingtyp:19,popular:[27,52],port:[29,39,40,41,44,45],port_num:40,ports_num:41,ports_num_for_spars:[40,41,43],pos:[56,58],pose:24,posit:[3,9,10,16,20,54,57,58,59],positive_label:9,possibl:[23,35,38,50],post1:28,potenti:38,power:[10,54,59],practic:[8,10,16,27,34,36],pre:[3,10,11,17,23,29,44,45,49,51,57,58,59],pre_dictandmodel:49,precis:[9,28],pred:[54,57],predefin:58,predetermin:[10,41,59],predic:57,predicate_dict:57,predicate_dict_fil:57,predicate_slot:57,predict:[3,4,9,10,12,16,22,27,34,39,41,49,54,59],predict_fil:41,predict_output_dir:[40,41,54],predict_sampl:5,predicted_label_id:54,predictor:56,predin:51,prefer:58,prefetch:36,prefix:[24,44],pregrad:36,preinstal:28,premodel:49,prepar:[5,32,46,54],preprcess:58,preprocess:[20,34,39,45,58],prerequisit:28,present:[23,52,57,59],pretti:27,prev_batch_st:[40,41],prevent:[2,12,23,24],previou:[10,11,16,17,24,36,41,44,57,59],previous:[45,52],price:27,primari:16,primarili:58,principl:23,print:[7,15,22,23,27,34,41,49,54,56,57,58,59],printallstatu:38,printer:9,printstatu:38,prite:9,privileg:44,prob:[9,22,50],probabilist:[10,16,49],probability_of_label_0:54,probability_of_label_1:54,probabl:[9,10,16,22,34,35,52,54,57],problem:[5,10,12,16,23,32,54,57,58],proc:29,proc_from_raw_data:54,proce:[20,26,44],procedur:[49,57,59],proceed:[10,16,57],process:[2,3,5,7,8,10,11,12,15,16,17,23,27,29,34,39,41,43,44,45,49,51,52,54,56,57,58,59],process_pr:54,process_test:8,process_train:8,processdata:[51,52],processor:38,produc:[11,17,20,24,26,29,52,54],product:[0,29,36,44,54,58],productgraph:45,profil:28,proflier:38,program:[2,20,23,26,29,38,39,41],programm:55,progress:[24,41],proivid:3,proj:[10,16],project:[10,11,16,17,28,34,36,56],promis:[10,11,17],prompt:35,prone:23,prop:57,propag:[12,41,43],properli:54,properti:[3,41],propos:59,proposit:57,protect:36,proto:19,protobuf:28,protocol:41,prove:54,proven:59,provid:[0,8,10,16,20,23,27,29,34,38,39,44,49,50,51,52,55,58],providermemory_threshold_on_load_data:40,provis:44,provod:3,prune:10,ps_desir:24,pserver:[39,40,41,44],pserver_num_thread:[40,41],pserverstart_pserv:40,pseudo:23,psize:36,pull:[29,49,59],punctuat:58,purchas:54,purpos:[0,24,38],push_back:36,put:[24,29,36,39,45,54],pvc:44,pwd:29,py_paddl:[5,20,50],pydataprovid:[2,3,54],pydataprovider2:[4,5,27,34,54,56,58],pydataproviderwrapp:8,pyramid:[10,16],pyramid_height:[10,16],python:[2,3,4,8,16,22,23,25,27,28,35,39,49,50,51,57,58,59],pythonpath:51,pzo:58,qualifi:28,qualiti:54,queri:[10,16,44,59],question:[10,16,23,44,57],quick:[41,45,53,59],quick_start:[44,45,46,54],quick_start_data:45,quickli:27,quickstart:45,quit:38,quot:55,rac:10,rais:20,ramnath:58,ran:38,rand:[38,41,43,50,57],random:[3,7,10,15,16,20,26,27,41,50,51,57],randomli:58,randomnumberse:40,rang:[3,10,16,20,26,41,43,51,55,57],rank:[10,16,23,44,52,54],rare:3,rate:[7,9,12,15,36,39,51,54,56,58,59],rather:[5,44,58],ratio:41,raw:[10,16,27,54,58],raw_meta:56,rdma:[28,41],rdma_tcp:[40,41],reach:[24,38,57],read:[2,3,20,23,24,26,27,34,39,44,52,54,56],read_from_realistic_imag:23,read_from_rng:23,read_mnist_imag:23,read_ranking_model_data:23,reader:[22,59],reader_creator_bool:26,reader_creator_random_imag:[20,26],reader_creator_random_image_and_label:[20,26],readi:[24,27,44,45,51],readm:[55,56,58],readonesamplefromfil:3,readwritemani:44,real:[3,26,27,50],realist:23,reason:[10,11,17,23,24,29,45],rebas:35,recal:9,receiv:[8,24],recent:59,reciev:41,recogn:51,recognit:[3,10,16,52,58],recommand:3,recommend:[2,11,17,23,29,34,36,39,41,56],recommonmark:28,recompil:38,record:[44,56,57],recordio:23,recov:[24,27,50],rectangular:[10,16],recurr:[57,58],recurrent_group:[11,17,34],recurrent_lay:11,recurrentgroup:9,recurrentlay:41,recv:44,reduc:[12,39,41,43],refer:[2,5,7,8,10,11,12,15,16,17,24,34,36,39,45,49,51,54,56,59],referenc:10,regard:57,regardless:59,regex:56,region:[38,57],regist:[36,38],register_gpu_profil:38,register_lay:36,register_timer_info:38,registri:45,regress:[9,32,53],regular:[7,12,15,36,44,51,54,58],rel:[2,11,17,39],relat:[3,8,24,29,31,45,56,58],relationship:[20,27,50],releas:[28,29,31,44,55,57],relev:[57,59],reli:28,reliabl:24,relu:[6,10,16,36],reluactiv:10,remain:54,rememb:10,remot:[7,15,29,35,36,39,41,43,44],remoteparameterupdat:41,remov:[20,39,41,58],renam:59,reorgan:[10,16],repeat:10,replac:58,repo:[29,35],report:[38,39],repositori:35,repres:[3,5,10,12,16,20,34,36,44,51,54,55],represent:[54,58],reproduc:59,request:[24,44,45,49,59],requir:[2,9,10,16,23,24,36,39,44,45,50,51,54,56],requrest:35,res5_3_branch2c_bn:52,res5_3_branch2c_conv:52,res:57,research:[10,16,51,55,58],resembl:58,reserv:3,reserveoutput:36,reset:[10,16,24],reshap:26,reshape_s:[10,16],residu:52,resnet:53,resnet_101:52,resnet_152:52,resnet_50:52,resolv:[35,45],resourc:[29,44],respect:[3,27,34,36,41,51,52,57,59],respons:[10,16,44,45],rest:[3,10,16,27],restart:[24,44,45],restartpolici:[44,45],restrict:41,resu:26,result:[5,9,10,14,16,22,34,38,41,44,51,52,54,56,57,58],result_fil:[9,34],ret_val:56,retir:55,retran:44,retriev:[36,45],return_seq:[11,17],reus:[26,36],reveal:23,revers:[10,11,16,17,34,57,58],review:[35,45,54,58],reviews_electronics_5:45,revis:54,rewrit:59,rgb:[10,16],rgen:58,rho:12,rich:27,right:[3,10,16,52],rmsprop:[12,54],rmspropoptim:56,rnn:[10,11,17,37,40,54,58],rnn_bias_attr:34,rnn_layer_attr:34,rnn_out:34,rnn_step:10,rnn_use_batch:[40,41],rnnlm:20,robot:51,role:[23,34,44,53,58],roman:58,romanc:55,root:[12,19,29,39,44,45],root_dir:39,rot:[10,16],rotat:10,roughli:[3,50],routin:56,routledg:58,row:[5,9,10,16,20,36,52],row_id:[10,16],rsize:44,rtype:[10,56],rule:[36,44],run:[23,24,29,35,36,37,38,41,44,46,47,49,51,52,54,56,58,59],runinitfunct:38,runtim:[2,3,28,29,39],s_fusion:56,s_id:56,s_param:50,s_recurrent_group:34,sacrif:2,sai:[27,41,43],sake:36,sale:55,same:[3,5,8,9,10,11,16,17,23,34,39,43,44,49,54,56,57,58,59],samping_id:[10,16],sampl:[3,5,9,20,39,41,43,49,50,52,54,56,57,58,59],sample_dim:50,sample_id:9,sample_num:9,santiago:58,satisfi:[39,44,54],save:[3,10,16,20,24,27,41,43,44,45,51,52,54,56,57,58,59],save_dir:[27,41,43,45,50,51,54,56,57,58,59],save_only_on:[40,41],saving_period:[40,41],saving_period_by_batch:[40,41,43,54],saw:3,sbin:29,scalabl:0,scalar:[3,10,16],scale:[0,10,14,52,55,56],scalingproject:[10,16],scatter:10,scenario:[27,40],scene:40,schdule:44,schedul:[44,50],scheduler_factor:[7,15],schema:49,scheme:[9,12,57],schmidhub:58,schwenk:59,sci:55,scienc:58,scientist:[0,55],score:[9,10,16,56,58,59],screen:56,scrip:54,script:[5,20,29,39,44,51,52,54,57,58,59],seaplane_s_000978:51,search:[10,24,28,34,41,57,59],seat:59,second:[3,10,16,20,23,26,27,35,39,49,52,54,55,56,58],secret:44,section:[3,34,36,39,44,54],sed:58,see:[3,5,10,11,16,17,23,27,29,35,38,44,49,50,52,54,56,58,59],seed:[38,41],segment:9,segmentor:49,sel_fc:[10,16],select:[10,16,35,44,55,59],selectiv:[10,16],selector:45,self:[27,36,55,58],selfnorm:[10,16],semant:[23,34,53,58],semat:23,sen_len:57,send:[24,41,44],sens:10,sent:[23,45],sent_id:34,sentenc:[3,10,34,54,57,58,59],sentiment:[3,27,53,54,57],sentiment_data:58,sentiment_net:58,sentimental_provid:3,separ:[3,9,41,49,54,55,56,57,59],seq:[10,16,56],seq_pool:[10,16],seq_text_print:9,seq_to_seq_data:[49,59],seq_typ:[3,20,56],seqtext_printer_evalu:34,seqtoseq:[10,34,49,59],seqtoseq_net:[10,34,49,59],sequel:3,sequenc:[3,9,10,11,14,16,17,19,20,36,49,54,56,57,58,59],sequence_conv_pool:54,sequence_layer_group:10,sequence_nest_layer_group:10,sequencesoftmax:6,sequencestartposit:[10,16],sequencetextprint:9,sequencetyp:3,sequenti:[8,10,16,34,54,57],seri:[11,17,58],serial:3,serv:[29,38,44,50],server:[23,29,36,39,40],serverless:24,servic:[29,55],session:[29,38],set:[2,3,5,7,9,10,11,15,16,17,20,23,24,27,28,29,31,34,36,37,38,39,40,41,43,44,45,49,51,52,54,55,56,57,58,59],set_active_typ:36,set_default_parameter_nam:[7,15],set_drop_r:36,set_input:10,set_siz:36,set_typ:36,setp:44,settup:36,setup:[3,29,36,54],sever:[3,10,16,39,43,44,53,54,56,57,58,59],sgd:[12,23,24,39,50,58,59],sgdasync_count:40,shallow:57,shape:[10,16,52],shard:[24,44],share:[10,16,28,29,38,41,45,57],shared_bia:[11,17],shared_bias:[10,16],shell:[44,52],shift:52,ship:51,shold:58,shop:58,shorten:[10,16],shorter:52,should:[3,5,9,10,12,16,20,22,23,26,27,31,34,35,39,44,51,54,56,57,58,59],should_be_fals:23,should_be_tru:23,should_shuffl:[3,57],shouldn:35,show:[5,12,16,20,24,27,35,41,44,45,49,52,54,56,57,58,59],show_check_sparse_distribution_log:[40,41],show_layer_stat:[40,41],show_parameter_stats_period:[40,41,43,45,54,57,58,59],shown:[3,9,10,16,23,34,36,38,44,50,51,52,54,56,58,59],shrink:36,shuf:56,shuffl:[3,20,56,58],sid:44,side:[10,16,52],sig:44,sigint:39,sigmoid:[6,10,16,17,36],sigmoidactiv:[10,11],sign:44,signal:39,signatur:44,signific:38,similar:[10,16,26,44,54,56],similarli:[10,16,57],simpl:[2,3,9,10,11,14,16,17,20,28,29,32,35,38,41,54,56,57,58],simple_attent:34,simple_gru:54,simple_lstm:[10,16,54],simple_rnn:[10,34],simplest:44,simpli:[2,10,16,23,28,29,34,35,38,49,52,56,58,59],simplifi:[23,36,45],simultan:44,sinc:[10,16,24,26,27,29,38,44,50,54,55,59],sincer:[35,58],singl:[3,9,11,12,17,20,24,29,36,39,45,52,54,57,59],site:44,six:[49,57,59],size:[3,9,10,11,12,16,17,20,24,26,27,34,36,39,41,50,51,52,54,55,56,57,58,59],size_a:[10,16],size_b:[10,16],size_t:36,sizeof:49,skill:59,skip:[26,27,39,44,52],slide:[10,12,16,24],slightli:51,slope:[10,16],slot:[56,57],slot_dim:56,slot_nam:56,slottyp:56,slow:[3,38],small:[3,36,39,41,51,59],small_messag:[40,41],small_vgg:51,smaller:[10,16,24],smith:58,snap:45,snapshot:44,snippet:[34,36,38,44,54],social:58,sock_recv_buf_s:[40,41],sock_send_buf_s:[40,41],socket:41,softmax:[6,10,11,16,17,23,34,36,49,54,57,58],softmax_param_attr:[11,17],softmax_selfnorm_alpha:[10,16],softmaxactiv:[34,54],softrelu:6,softwar:[29,38],solv:[23,57],solver:59,some:[3,7,10,12,15,16,20,23,27,28,35,36,38,40,41,43,44,50,54,55,56,57,58,59],some_python_class:25,somecppclass:25,somedata:22,somegotyp:25,someth:[3,10,16],sometim:[12,26,38,58],soon:24,sophist:[27,36,39],sort:[10,16,20,41,44,56,58,59],sourc:[0,8,10,16,26,27,29,32,34,35,44,45,49,54,56,59],source_dict_dim:34,source_language_word:34,space:[9,29,34,38],space_seperated_tokens_from_dictionary_according_to_seq:9,space_seperated_tokens_from_dictionary_according_to_sub_seq:9,spars:[3,7,10,12,15,16,20,36,39,41,44,54],sparse_binary_vector:[3,20,54],sparse_binary_vector_sequ:20,sparse_float_vector:3,sparse_non_value_slot:20,sparse_upd:[7,15],sparse_value_slot:20,sparse_vector:20,sparse_vector_sequ:20,sparseparam:36,sparseprefetchrowcpumatrix:36,spatial:[10,16,51],speak:[34,59],spec:[44,45],specfii:41,speci:51,special:[10,28,49,54,59],specif:[2,43,51,54,56],specifi:[2,3,9,10,16,20,23,27,28,34,36,41,44,50,51,52,54,55,56,58,59],speech:[10,16],speed:[11,17],spefici:52,sphinx:[25,28,29],sphinx_rtd_them:28,split:[3,10,16,39,43,44,49,52,54,57],split_count:44,spp:10,sql:2,squar:[6,10,12,16,19,27],squarerootn:13,squarerootnpool:[10,16],squash:59,srand:41,src:59,src_backward:34,src_dict:34,src_embed:34,src_forward:34,src_id:34,src_root:5,src_word_id:34,srl:57,ssd:16,ssh:[29,39,44,45],sshd:29,ssl:28,sstabl:23,stabl:44,stack:[27,44,54,57],stacked_lstm_net:58,stacked_num:58,stackexchang:[10,16],stage:39,stake:59,stale:35,stamp:38,standard:[7,15,49,51,57,58,59],stanford:[20,45],stanh:6,star:55,start:[10,16,24,27,29,34,35,38,39,41,48,49,53,56,59],start_pass:[40,41],start_pserv:41,startup:[24,44],stat:[28,38,41,57,58,59],state:[10,11,16,17,24,27,34,41,45,50,57,59],state_act:[10,11,16,17],statement:[36,44],staticinput:[10,34],statist:[10,16,41,54,57,58,59],statset:38,statu:[9,35,38,44,45],status:45,std:[36,41],stderr:39,stdout:39,step:[5,10,11,12,16,17,19,24,34,36,38,39,44,45,54,56,57,58,59],still:52,stmt1482205552000:44,stmt1482205746000:44,stochast:[12,24],stock:58,stop:[10,29,39,41,45,56],storag:[44,45,51],store:[9,10,16,24,36,39,41,44,45,49,51,52,54,56,57,58,59],str:[22,43],straight:35,strategi:[3,19,24,41,57],street:[10,16,57],strength:50,strict:26,stride:[10,16],stride_i:[10,16],stride_x:[10,16],string:[2,3,8,9,10,16,36,41,44,58],strip:[54,56,57],structur:[20,39,44,49,51,54,56,57,58,59],sts:44,stub:[10,16],student:55,stuff:35,stun:3,style:[3,10,16,28,35],sub:[9,10,16,20,23,34,36,51,54,59],sub_sequ:3,subgradi:12,submit:[35,40,41,44],subnet0:44,subnet:[23,44],subobjectpath:45,subsequenceinput:10,subset:[36,59],substanti:52,substitut:59,succe:58,succeed:45,success:[44,45,52,57],successfulcr:45,successfuli:58,successfulli:[52,56,58],successor:[41,59],sucessfulli:59,sudo:[28,31,44,51],suffic:[26,27],suffici:41,suffix:59,suggest:[10,16,38],suitabl:[35,41,51],sum:[9,10,12,13,16,34,36],sum_:10,sum_to_one_norm:10,summar:[54,58],sumpool:[10,16],support:[7,9,10,12,15,16,19,20,24,26,28,29,31,34,36,38,41,44,57],suppos:[27,36,54],sure:[35,36,44,51,58],survei:58,swap_channel:52,swig:[5,25,28],swig_paddl:[5,20,50],symbol:10,sync:[24,35,41,50],syncflag:36,synchron:[12,24,39,41,44],syntact:57,syntax:[26,56],synthect:27,synthes:50,synthet:27,sys:52,system:[24,28,29,39,45,54,57,58,59],t2b:49,tab:[29,54],tabl:[3,10,16,52,54,59],tableproject:[10,16],tag:[9,29,34],tagtyp:9,take:[3,5,9,10,11,16,17,23,34,36,38,44,45,50,57,59],taken:[3,57],tanh:[6,10,11,16,17,36],tanhactiv:[10,11,34],taobao:58,tar:[20,28,44],tarbal:44,target:[10,16,34,49,54,59],target_dict_dim:34,target_language_word:34,targetinlink:10,task:[3,9,10,16,27,34,43,49,52,57,58,59],tbd:25,tconf:58,tcp:[41,44],teach:54,tear:38,technic:24,technician:55,techniqu:[34,36],tee:[45,51,56,57,58,59],tell:[24,29,38,56],tellig:58,templat:[45,57],tempor:[10,16,54,57],tensor:10,term:[10,11,16,17,57,58],termin:45,terminolog:27,tese:2,tesh:57,test:[2,3,8,9,10,16,20,23,26,28,29,31,35,38,39,40,49,51,52,54,55,59],test_all_data_in_one_period:[45,51,56,57,58],test_data:59,test_fcgrad:36,test_gpuprofil:38,test_layergrad:36,test_list:[3,8,27,51,54],test_part_000:58,test_pass:[40,41,43,59],test_period:[40,41,43],test_ratio:56,test_wait:[40,41],testa:23,testb:23,testbilinearfwdbwd:38,testconfig:36,tester:[56,59],testfcgrad:36,testfclay:36,testlayergrad:36,testmodel_list:40,testq:23,testsave_dir:40,testutil:36,text:[2,3,9,11,17,20,23,29,34,44,49,53,54,56,58],text_conv:54,text_conv_pool:56,text_fil:[20,58],tflop:38,tgz:28,than:[3,5,7,9,10,11,12,15,16,17,24,28,29,34,36,39,44,52,57,58,59],thank:[0,49,59],thei:[3,23,24,27,29,34,36,38,39,40,44,52,58],them:[2,3,11,17,23,24,26,27,29,34,38,40,41,44,51,52,54,56,58,59],theori:38,therefor:28,therein:[10,16],therun:52,thi:[2,3,7,8,9,10,11,12,15,16,17,20,23,24,26,27,28,29,31,34,35,36,38,39,41,43,44,45,49,50,51,52,54,55,56,57,58,59],thing:[3,27,34,35,38,56,57],think:23,third:[10,16,24,38,52,58],those:[24,52,57],thought:38,thread:[36,38,41,43,56,57,58,59],thread_local_rand_use_global_se:[40,41],threadid:43,threadloc:38,three:[3,9,10,12,16,24,26,27,34,41,50,52,58,59],threshold:[7,9,12,15,24,41,58],thriller:55,through:[5,10,16,24,34,36,38,39,49,50,51,58,59],throughout:54,throughput:38,thu:[3,10,16,27,36,44,59],tier:45,tight:28,time:[3,10,11,16,17,19,20,23,24,26,27,34,38,41,43,45,54,55,57,58,59],timelin:[10,16,38],timeo:44,timeout:24,timer:28,timestamp:[10,16,55],timestep:[3,10,16],titil:56,titl:[35,55,56],tmall:58,todo:[9,11,17,20,22,24],toend:[10,16],togeth:[3,10,11,16,17,20,34],token:[9,10,23,34,49,58,59],too:[29,31],tool:[29,34,35,44,58],toolchain:28,toolkit:[28,31],top:[9,52,57],top_k:9,topolog:[16,20,23],toronto:[20,51],total:[9,24,26,38,39,45,49,59],total_pass:26,touch:58,tourism:58,tourist:59,toward:27,tra:59,track:[10,24],tractabl:10,tradesman:55,tradit:[10,16],trail:20,train:[1,2,3,5,7,8,9,10,12,15,16,20,32,34,36,37,38,40,46,47,52],train_conf:[49,59],train_config_dir:44,train_data:59,train_id:44,train_list:[3,8,27,51,52,54],train_part_000:58,trainabl:[10,16],traindot_period:40,trainer:[3,5,23,27,36,39,41,43,50,54,57,58,59],trainer_config:[2,3,27,39,44,45,54,56,58],trainer_config_help:[3,6,7,8,9,10,11,12,13,27,36,51,54,56],trainer_count:[40,41,43,44,45,56,57,58,59],trainer_id:[41,44],trainerintern:[54,56,59],training_machin:50,trainingtest_period:40,trainonedatabatch:50,tran:[10,36,41],trane:3,transact:[24,58],transfer:[2,3],transform:[10,16,34,36,50,51,54,57],transform_param_attr:[11,17],translat:[10,11,17,27,49,56,58,59],transpar:39,transport:41,transpos:[10,16,36,50],transposedfullmatrixproject:[10,16],travel:[3,11],travi:[28,35],treat:[10,16,34],tree:[10,16,35,41,59],trg:59,trg_dict:34,trg_dict_path:34,trg_embed:34,trg_id:34,trg_ids_next:34,triain:2,tricki:25,trivial:3,trn:54,truck:51,true_imag:26,true_label:26,true_read:26,truth:[9,10,16,54,59],tst:54,tune:[7,15,37,54,56,59],tuninglog_barrier_abstract:40,tupl:[3,8,10,11,16,20,26],ture:[10,16],turn:[10,26,50],tutori:[29,34,35,36,38,39,44,45,46,47,48,52,54],tweet:58,twelv:59,twitter:58,two:[2,3,10,11,16,17,23,26,27,29,34,38,39,43,44,49,50,51,52,54,56,57,58,59],txt:[3,36,39,44,54,56,58],type:[3,8,9,10,11,12,16,17,19,20,22,23,24,25,26,27,29,34,36,41,43,44,45,51,52,54,56,57],type_nam:[10,56],typedef:25,typic:[5,9,29,38,58],ubuntu:31,ubyt:26,uci:20,ufldl:[10,16],uid:45,uint64:25,uint64_t:25,unbalanc:41,unbound:34,unconstrain:58,under:[27,28,29,44,55,58],underli:27,understand:[29,38,49,51,58],understudi:59,undeterminist:38,unemploi:55,unexist:57,uniform:[7,10,15,16,20,26,41,50],uniqu:[23,24,35,41,44],unique_ptr:36,unit:[10,11,16,17,27,28,29,34,35,57],unittestcheckgrad_ep:40,univ:59,unix:39,unk:[49,59],unk_idx:[54,57],unknown:[10,16],unlabel:58,unlik:[57,58,59],unseg:[10,16],unsup:58,unsupbow:58,until:[24,39,44,57],unus:56,unzip:56,updat:[7,10,12,15,16,24,28,36,39,41,43,58],updatecallback:36,updatestack:44,upload:24,upon:[0,57],upstream:35,uri:44,url:[31,58],urls_neg:58,urls_po:58,urls_unsup:58,usag:[2,3,9,10,11,16,17,20,22,27,38,49,50,56],use:[0,2,3,5,7,8,9,10,11,12,15,16,17,19,20,23,27,28,29,30,31,34,35,36,38,39,41,43,44,45,49,50,51,52,54,55,56,57,58,59],use_global_stat:[10,16],use_gpu:[40,41,43,45,50,51,52,54,56,57,58,59],use_jpeg:51,use_old_updat:[40,41],use_seq:[27,56],use_seq_or_not:56,used:[2,3,5,9,10,11,12,16,17,19,20,22,23,24,26,27,30,31,34,36,38,39,40,41,43,44,49,51,52,54,56,57,58,59],useful:[2,3,10,11,17,34,36,43,54,57,58],usegpu:[36,50],useless:39,user:[2,3,7,9,10,11,15,16,17,20,22,23,26,27,29,35,39,40,41,44,52,54,57],user_featur:56,user_head:56,user_id:56,user_meta:56,user_nam:56,userid:55,usernam:35,uses:[3,24,34,35,36,41,44,51,52,54,56,59],using:[2,3,5,7,8,10,15,16,20,23,24,26,27,29,34,35,36,38,41,43,44,45,49,50,51,52,54,57,58],usr:[28,29,39,41,44],usrdict:49,usrmodel:49,usual:[10,16,20,27,28,38,41,43,44,58],utf:49,util:[5,28,34,36,38,51,56,58],v28:[10,16],valid:[26,44,52,58],valu:[3,5,7,9,10,12,15,16,19,20,22,24,27,34,36,41,43,44,50,51,52,57,58],value1:41,value2:41,value_rang:20,vanilla:34,vanish:58,vari:[38,44],variabl:[3,10,16,20,23,27,28,31,36,39,44,45,58],varianc:[10,16,52],variant:29,vast:35,vector:[3,10,11,16,17,20,23,34,36,49,54,56,58,59],vectorenable_parallel_vector:40,verb:57,veri:[3,10,16,19,34,38,51,54,58],verifi:[35,36],versa:28,version:[10,11,16,17,28,29,31,36,38,39,40,41,44,45,49,51,55,57,58,59],versu:23,vertic:[10,16,52],vgg:[11,17,51],vgg_16_cifar:51,via:[24,26,28,38,39,44,54],vice:28,view:[10,16],vim:35,virtual:29,virtualenv:56,visibl:29,vision:51,visipedia:51,visual:[10,16,29,38],viterbi:57,voc_dim:54,vocab:58,volum:[29,45],volumemount:[44,45],volumn:44,voluntarili:55,vutbr:20,wai:[3,10,11,16,17,23,27,29,34,36,39,43,56,57,59],wait:[12,24,41],walk:[5,50],wall:57,want:[3,10,11,16,17,23,26,27,28,29,36,41,43,49,52,54,56,57,58],war:55,warn:[10,16],warp:[10,16,38],watch:24,wbia:[44,52],web:29,websit:[51,54,57,58],wei:[57,58],weight:[9,10,11,12,16,17,34,36,41,43,51,52],weight_act:[11,17],weightlist:36,weights_:36,weights_t:36,welcom:[56,58],well:[36,41,44,51,54],west:44,western:55,wether:[10,16],what:[7,10,11,12,15,16,17,27,39,54,56],wheel:28,when:[2,3,7,9,10,12,15,16,20,22,24,29,31,34,35,36,38,41,43,44,45,49,50,51,57,58,59],whenev:56,where:[3,10,11,12,16,17,23,24,27,34,36,38,39,41,43,49,52,57,59],whether:[9,10,11,16,17,26,36,41,50,51,56,58,59],which:[0,2,3,5,9,10,11,12,16,17,20,23,24,26,27,31,34,36,38,39,41,43,44,50,51,52,54,55,56,57,58,59],whichev:50,whl:28,who:[49,52,55],whole:[3,9,20,25,44,45,54,55,56,59],whole_cont:56,whose:[3,10,16,20,24,34,56,57],why:[11,17],wide:57,width:[9,10,16,20,25,26,36,51,59],wiki:[10,16],wikipedia:[10,16],wilder:3,window:[10,16,19,29,58],wise:[10,16],with_avx:29,with_avxcompil:28,with_coveragecompil:28,with_doccompil:28,with_doubl:36,with_doublecompil:28,with_dsocompil:28,with_gpu:29,with_gpucompil:28,with_profil:38,with_profilercompil:28,with_pythoncompil:28,with_rdmacompil:28,with_style_checkcompil:28,with_swig_pycompil:28,with_test:29,with_testingcompil:28,with_tim:38,with_timercompil:28,within:[10,27],without:[9,10,16,26,39,58],wmt14:59,wmt14_data:59,wmt14_model:59,wmt:59,woboq:29,won:[38,52],wonder:3,word:[3,9,10,20,34,43,53,56,57,58,59],word_dict:[54,57],word_dim:54,word_id:3,word_slot:57,word_vector:54,word_vector_dim:[34,49],words_freq_sort:20,work:[3,5,20,23,24,26,28,34,35,36,38,39,41,44,45,54,56],worker:44,workercount:44,workflow:[29,35,44],workspac:[29,41,56],worri:27,wors:50,would:[22,26,29,39,44,50,54,57],wrap:57,wrapper:[11,17,38],writ:56,write:[3,20,23,24,26,29,34,35,37,39,44,51,56,57,59],writelin:27,writer:[23,55],written:[56,58],wrong:[3,26],wsize:44,wsj:57,www:[10,16,20,51,59],x64:28,xarg:36,xgbe0:41,xgbe1:41,xiaojun:58,xrang:[26,27,36],xxbow:58,xxx:[23,52,59],xxxxxxxxx:44,xxxxxxxxxx:44,xxxxxxxxxxxxx:44,xxxxxxxxxxxxxxxxxxx:44,xzf:28,y_i:10,y_predict:27,yaml:[44,56],yann:20,year:55,yeild:51,yield:[3,20,23,26,27,34,54,56,57,58],you:[2,3,5,7,10,11,12,15,16,17,27,28,29,31,34,35,36,38,39,41,43,44,49,50,51,52,54,56,57,58,59],your:[3,10,16,23,28,29,36,38,39,43,44,54,58],your_access_key_id:44,your_secrete_access_kei:44,yum:28,yuyang18:[11,17,20,22],zachari:58,zeng:58,zero:[3,7,10,12,15,16,20,24,36,41,44,54],zhidao:49,zhou:[57,58],zip:55,zone:44,zxvf:44},titles:["ABOUT","API","Introduction","PyDataProvider2","API","Python Prediction","Activations","Parameter Attributes","DataSources","Evaluators","Layers","Networks","Optimizers","Poolings","Activation","Parameter Attribute","Layers","Networks","Optimizer","Pooling","Datasets","Model Configuration","Training and Inference","PaddlePaddle Design Doc","Design Doc: Distributed Training","Paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0","Python Data Reader Design Doc","Simple Linear Regression","Installing from Sources","PaddlePaddle in Docker Containers","Install and Build","Debian Package installation guide","GET STARTED","RNN Models","RNN Configuration","Contribute Code","Write New Layers","HOW TO","Tune GPU Performance","Run Distributed Training","Argument Outline","Detail Description","Set Command-line Parameters","Use Case","Distributed PaddlePaddle Training on AWS with Kubernetes","Paddle On Kubernetes","&lt;no title&gt;","&lt;no title&gt;","PaddlePaddle Documentation","Chinese Word Embedding Model Tutorial","Generative Adversarial Networks (GAN)","Image Classification Tutorial","Model Zoo - ImageNet","TUTORIALS","Quick Start","MovieLens Dataset","Regression MovieLens Ratting","Semantic Role labeling Tutorial","Sentiment Analysis Tutorial","Text generation Tutorial"],titleterms:{"\u4e0d\u4f7f\u7528":25,"\u4e0d\u4f7f\u7528swig\u8fd9\u79cd\u4ee3\u7801\u751f\u6210\u5668":25,"\u4e0d\u5bfc\u51fapaddle\u5185\u90e8\u7684\u7ed3\u6784\u4f53":25,"\u4e0d\u5f15\u7528\u5176\u4ed6\u52a8\u6001\u5e93":25,"\u4ec5\u4ec5\u4f7f\u7528void":25,"\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":25,"\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":25,"\u539f\u56e0":25,"\u539f\u56e0\u5217\u8868":25,"\u57fa\u672c\u8981\u6c42":25,"\u5bfc\u51fac":25,"\u6307\u9488\u4f5c\u4e3a\u7c7b\u578b\u7684\u53e5\u67c4":25,"\u7b26\u53f7":25,"\u7b80\u5355\u5b9e\u73b0":25,"\u7c7b":25,"\u800c\u662f\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":25,"\u80cc\u666f":25,"\u8fd9\u4e2a\u52a8\u6001\u5e93\u4f7f\u7528c99\u6807\u51c6\u7684\u5934\u6587\u4ef6\u5bfc\u51fa\u4e00\u4e9b\u51fd\u6570":25,"case":43,"class":36,"function":49,"new":36,"paddle\u52a8\u6001\u5e93\u4e2d":25,"paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0":25,"return":26,AWS:44,Abs:14,DNS:44,EFS:44,For:45,KMS:44,Use:[43,45],Using:[29,35],With:29,about:0,absactiv:6,access:44,account:44,activ:[6,14],adadelta:18,adadeltaoptim:12,adagrad:18,adagradoptim:12,adam:18,adamax:18,adamaxoptim:12,adamoptim:12,add:44,address:44,addto:16,addto_lay:10,adversari:50,aggreg:[10,16],algorithm:[24,54],analysi:58,api:[1,4,29],appendix:54,applic:4,approach:38,architectur:[34,54],argument:[26,40,43,54],asset:44,associ:44,async:41,attent:34,attribut:[7,15],auc_evalu:9,avg:19,avgpool:13,aws:44,background:27,base:[9,10],baseactiv:6,basepool:19,basepoolingtyp:13,basesgdoptim:12,batch:26,batch_norm:16,batch_norm_lay:10,batch_siz:26,beam_search:[10,16],between:23,bidirect:58,bidirectional_lstm:[11,17],bilinear_interp:16,bilinear_interp_lay:10,bleu:59,block_expand:16,block_expand_lay:10,book:29,brelu:14,breluactiv:6,bucket:44,build:[28,30,45],built:38,cach:3,cento:28,check:[10,16,36,39],chines:49,choos:44,chunk_evalu:9,cifar:20,classif:[9,51],classification_error_evalu:9,classification_error_printer_evalu:9,clone:35,cloudform:44,cluster:[39,43,44],code:35,column_sum_evalu:9,command:[42,43,54,59],commit:[35,45],common:41,commun:41,compos:26,concat:16,concat_lay:10,concept:44,config:[4,43,56,57],configur:[21,34,37,39,44,54,56],conll05:20,connect:[10,16],contain:[29,45],content:[38,44],context_project:[10,16],contribut:35,conv:[10,16],conv_oper:[10,16],conv_project:[10,16],conv_shift:16,conv_shift_lay:10,convolut:[51,54],core:44,cos_sim:[10,16],cost:[10,16],cpu:[29,43],creat:[26,35,44,45],creator:26,credenti:44,credit:0,crf:16,crf_decod:16,crf_decoding_lay:10,crf_layer:10,cross_channel_norm:16,cross_entropi:10,cross_entropy_cost:16,cross_entropy_with_selfnorm:10,cross_entropy_with_selfnorm_cost:16,ctc:16,ctc_error_evalu:9,ctc_layer:10,cudnnavg:19,cudnnmax:19,custom:26,dat:55,data:[10,16,20,26,27,34,44,45,49,50,51,54,56,57,58,59],data_lay:10,datafeed:20,dataprovid:[3,4,41],dataset:[20,24,55,56,59],datasourc:8,datatyp:20,date:35,debian:31,decayedadagrad:18,decayedadagradoptim:12,decor:26,defin:[44,54,58,59],delet:44,delv:51,demo:44,depend:28,deriv:36,descript:[41,50,55,57],design:[23,24,26],destroi:44,detail:[41,51],develop:[29,37],devic:43,dictionari:[26,49],differ:43,directori:44,distribut:[23,24,39,41,44],doc:[23,24,26],docker:[29,45],document:[29,48],dotmul_oper:[10,16],dotmul_project:[10,16],down:44,download:[28,44,45,49,52,56,59],dropout_lay:[11,17],dynam:24,ec2:44,elast:44,embed:[16,49,54],embedding_lay:10,entri:26,eos:16,eos_lay:10,equat:36,evalu:[9,27,56],evalutaion:59,event:[22,23],exampl:[23,49,50],exercis:51,exp:14,expactiv:6,expand:16,expand_lay:10,extern:44,extract:[49,52,56,59],fault:24,fc_layer:10,featur:[52,55,56,57],field:56,file:[44,45,54,55,56],find:44,first_seq:[10,16],fork:35,format:[24,54],from:[23,28,30],full_matrix_project:[10,16],fulli:[10,16],gan:50,gate:34,gener:[34,50,59],get:[32,45],get_output:16,get_output_lay:10,github:35,gpu:[29,38,41,43],gradient:36,gradient_printer_evalu:9,group:[10,16,44],gru:[11,17,41],gru_group:[11,17],gru_step:16,gru_step_lay:10,gru_unit:[11,17],grumemori:[10,16],guid:31,hand:38,handler:[23,25],hook:35,how:[26,37,38],hsigmoid:[10,16],huber_cost:[10,16],iam:44,ident:14,identity_project:[10,16],identityactiv:6,imag:[10,11,16,17,29,45,51],imagenet:52,imdb:[20,58],img_cmrnorm:16,img_cmrnorm_lay:10,img_conv:16,img_conv_bn_pool:[11,17],img_conv_group:[11,17],img_conv_lay:10,img_pool:16,img_pool_lay:10,imikolov:20,implement:[26,36,50],infer:[22,54],info:52,ingredi:23,init_hook:3,initi:[43,44],input_typ:3,inspect:44,instal:[28,30,31,44,54],instanc:44,integr:44,interfac:[20,24,26,52],interpol:16,interpolation_lay:10,introduct:[2,49,52,58,59],isn:26,job:[24,39,44,45],join:[10,16],keep:35,kei:44,kill:39,kube:44,kubectl:44,kubernet:[44,45],label:57,lambda_cost:[10,16],last_seq:[10,16],lastest:35,launch:39,layer:[10,16,23,36,43],layeroutput:10,layertyp:10,line:[42,54],linear:[14,27],linear_comb:16,linear_comb_lay:10,linearactiv:6,list:26,local:[43,44],log:[14,54],logactiv:6,logist:54,lstm:[11,17,41,57,58],lstm_step:16,lstm_step_lay:10,lstmemori:[10,16],lstmemory_group:[11,17],lstmemory_unit:[11,17],map:26,master:24,math:[10,16],matrix:41,max:19,maxframe_printer_evalu:9,maxid:16,maxid_lay:10,maxid_printer_evalu:9,maxout:16,maxout_lay:10,maxpool:13,memori:[10,16],meta:56,mini:26,minibatch:20,misc:[11,17],mix:[10,16,43],mixed_lay:10,mnist:[20,50],model:[3,4,21,23,27,29,33,34,39,43,49,50,51,52,53,54,59],modifi:45,momentum:18,momentumoptim:12,movi:[55,56],movielen:[20,55,56],mse_cost:10,multi_binary_label_cross_entropi:10,multi_binary_label_cross_entropy_cost:16,multipl:26,name:44,nce:16,nce_lay:10,need:[26,38],network:[11,17,34,43,50,51,52,54,56,57],neural:[34,51,54,56,57],neuralnetwork:27,nlp:[11,17,41],non:3,norm:[10,16],nvprof:38,nvvp:38,object:[24,56],observ:[49,52],onli:[26,29],optim:[12,18,24,37,54],option:[28,49],outlin:40,output:[11,39,44],overview:54,packag:31,pad:16,pad_lay:10,paddl:[26,45],paddlepaddl:[23,29,30,44,48,49,59],pair:44,parallel_nn:43,paramet:[7,15,22,23,24,41,42,44,49,52],paraphras:49,pass:43,perform:[38,41],pnpair_evalu:9,point:44,pool:[10,13,16,19],pooling_lay:10,power:16,power_lay:10,pre:35,precision_recall_evalu:9,predict:[5,51,52,56,57,58],prefetch:26,prepar:[27,34,39,44,49,50,51,56,58,59],preprocess:[49,51,54,56,59],prerequisit:39,pretrain:[49,59],print:9,privat:44,problem:27,process:24,profil:38,provid:[3,26,54,56,57],pull:35,push:35,pydataprovider2:3,python:[5,26,29,36,52,54,56],queue:24,quick:54,randomnumb:41,rank:9,rank_cost:[10,16],rat:56,rate:55,reader:[20,23,26],recoveri:24,recurr:[10,11,16,17,34,54],recurrent_group:[10,16],recurrent_lay:10,refer:[3,38,57,58],region:44,regress:[27,54,56],relu:14,reluactiv:6,render:44,repeat:16,repeat_lay:10,request:35,requir:[28,35],reshap:[10,16],resnet:52,result:[39,45,59],revis:[35,49],rmsprop:18,rmspropoptim:12,rnn:[33,34,41],role:57,rotat:16,rotate_lay:10,route53:44,run:[39,45,57],sampl:[10,16],sampling_id:16,sampling_id_lay:10,scale:[16,24],scaling_lay:10,scaling_project:[10,16],script:45,secur:44,selective_fc:16,selective_fc_lay:10,semant:57,sentiment:[20,58],seq_concat:16,seq_concat_lay:10,seq_reshap:16,seq_reshape_lay:10,seqtext_printer_evalu:9,sequenc:34,sequence_conv_pool:[11,17],sequencesoftmax:14,sequencesoftmaxactiv:6,sequenti:3,server:[24,41,44],servic:44,set:[12,42],setup:[28,44],sgd:41,share:23,shuffl:26,sigmoid:14,sigmoidactiv:6,simpl:[27,34],simple_attent:[11,17],simple_gru:[11,17],simple_img_conv_pool:[11,17],simple_lstm:[11,17],singl:26,slice:[10,16],slope_intercept:16,slope_intercept_lay:10,softmax:14,softmaxactiv:6,softrelu:14,softreluactiv:6,sourc:[28,30],span:28,spars:43,specifi:[43,49],split:56,spp:16,spp_layer:10,squar:14,squareactiv:6,squarerootn:19,squarerootnpool:13,stack:58,standard:54,stanh:14,stanhactiv:6,start:[23,32,44,45,54],startup:45,structur:50,suffici:26,sum:19,sum_cost:[10,16],sum_evalu:9,sum_to_one_norm:16,sum_to_one_norm_lay:10,summar:23,summari:54,sumpool:13,system:44,table_project:[10,16],take:26,tanh:14,tanhactiv:6,task:24,tear:44,templat:44,tensor:16,tensor_lay:10,test:[36,41,43,56,57,58],text:59,text_conv_pool:[11,17],timer:38,tip:38,toi:50,toler:24,tool:38,train:[22,23,24,26,27,29,39,41,43,44,45,49,50,51,54,56,57,58,59],trainer:[22,24,44,56],tran:16,trans_full_matrix_project:[10,16],trans_lay:10,transfer:54,tune:[38,41],tutori:[49,51,53,57,58,59],ubuntu:28,uci_h:20,unit:[36,41],updat:[23,35,44],usag:[26,29,37],use:26,user:[24,49,55,56,58,59],util:9,value_printer_evalu:9,vector:41,verifi:44,version:35,vgg_16_network:[11,17],visual:52,volum:44,vpc:44,warp_ctc:16,warp_ctc_lay:10,what:38,why:[26,38],wmt14:20,word:[49,54],work:29,workflow:59,workspac:39,wrapper:36,write:[36,54],yaml:45,your:35,zoo:[52,53]}})
\ No newline at end of file
Search.setIndex({docnames:["about/index_en","api/index_en","api/v1/data_provider/dataprovider_en","api/v1/data_provider/pydataprovider2_en","api/v1/index_en","api/v1/predict/swig_py_paddle_en","api/v1/trainer_config_helpers/activations","api/v1/trainer_config_helpers/attrs","api/v1/trainer_config_helpers/data_sources","api/v1/trainer_config_helpers/evaluators","api/v1/trainer_config_helpers/layers","api/v1/trainer_config_helpers/networks","api/v1/trainer_config_helpers/optimizers","api/v1/trainer_config_helpers/poolings","api/v2/config/activation","api/v2/config/attr","api/v2/config/layer","api/v2/config/networks","api/v2/config/optimizer","api/v2/config/pooling","api/v2/data","api/v2/model_configs","api/v2/run_logic","design/api","design/dist/README","design/multi_language_interface/why_plain_c","design/reader/README","getstarted/basic_usage/index_en","getstarted/build_and_install/build_from_source_en","getstarted/build_and_install/docker_install_en","getstarted/build_and_install/index_en","getstarted/build_and_install/ubuntu_install_en","getstarted/index_en","howto/deep_model/rnn/index_en","howto/deep_model/rnn/rnn_config_en","howto/dev/contribute_to_paddle_en","howto/dev/new_layer_en","howto/index_en","howto/optimization/gpu_profiling_en","howto/usage/cluster/cluster_train_en","howto/usage/cmd_parameter/arguments_en","howto/usage/cmd_parameter/detail_introduction_en","howto/usage/cmd_parameter/index_en","howto/usage/cmd_parameter/use_case_en","howto/usage/k8s/k8s_aws_en","howto/usage/k8s/k8s_en","howto/usage/k8s/src/k8s_data/README","howto/usage/k8s/src/k8s_train/README","index_en","tutorials/embedding_model/index_en","tutorials/gan/index_en","tutorials/image_classification/index_en","tutorials/imagenet_model/resnet_model_en","tutorials/index_en","tutorials/quick_start/index_en","tutorials/rec/ml_dataset_en","tutorials/rec/ml_regression_en","tutorials/semantic_role_labeling/index_en","tutorials/sentiment_analysis/index_en","tutorials/text_generation/index_en"],envversion:50,filenames:["about/index_en.rst","api/index_en.rst","api/v1/data_provider/dataprovider_en.rst","api/v1/data_provider/pydataprovider2_en.rst","api/v1/index_en.rst","api/v1/predict/swig_py_paddle_en.rst","api/v1/trainer_config_helpers/activations.rst","api/v1/trainer_config_helpers/attrs.rst","api/v1/trainer_config_helpers/data_sources.rst","api/v1/trainer_config_helpers/evaluators.rst","api/v1/trainer_config_helpers/layers.rst","api/v1/trainer_config_helpers/networks.rst","api/v1/trainer_config_helpers/optimizers.rst","api/v1/trainer_config_helpers/poolings.rst","api/v2/config/activation.rst","api/v2/config/attr.rst","api/v2/config/layer.rst","api/v2/config/networks.rst","api/v2/config/optimizer.rst","api/v2/config/pooling.rst","api/v2/data.rst","api/v2/model_configs.rst","api/v2/run_logic.rst","design/api.md","design/dist/README.md","design/multi_language_interface/why_plain_c.md","design/reader/README.md","getstarted/basic_usage/index_en.rst","getstarted/build_and_install/build_from_source_en.md","getstarted/build_and_install/docker_install_en.rst","getstarted/build_and_install/index_en.rst","getstarted/build_and_install/ubuntu_install_en.rst","getstarted/index_en.rst","howto/deep_model/rnn/index_en.rst","howto/deep_model/rnn/rnn_config_en.rst","howto/dev/contribute_to_paddle_en.md","howto/dev/new_layer_en.rst","howto/index_en.rst","howto/optimization/gpu_profiling_en.rst","howto/usage/cluster/cluster_train_en.md","howto/usage/cmd_parameter/arguments_en.md","howto/usage/cmd_parameter/detail_introduction_en.md","howto/usage/cmd_parameter/index_en.rst","howto/usage/cmd_parameter/use_case_en.md","howto/usage/k8s/k8s_aws_en.md","howto/usage/k8s/k8s_en.md","howto/usage/k8s/src/k8s_data/README.md","howto/usage/k8s/src/k8s_train/README.md","index_en.rst","tutorials/embedding_model/index_en.md","tutorials/gan/index_en.md","tutorials/image_classification/index_en.md","tutorials/imagenet_model/resnet_model_en.md","tutorials/index_en.md","tutorials/quick_start/index_en.md","tutorials/rec/ml_dataset_en.md","tutorials/rec/ml_regression_en.rst","tutorials/semantic_role_labeling/index_en.md","tutorials/sentiment_analysis/index_en.md","tutorials/text_generation/index_en.md"],objects:{"paddle.trainer.PyDataProvider2":{provider:[3,0,1,""]},"paddle.trainer_config_helpers":{attrs:[7,1,0,"-"],data_sources:[8,1,0,"-"]},"paddle.trainer_config_helpers.attrs":{ExtraAttr:[7,2,1,""],ExtraLayerAttribute:[7,3,1,""],ParamAttr:[7,2,1,""],ParameterAttribute:[7,3,1,""]},"paddle.trainer_config_helpers.attrs.ParameterAttribute":{set_default_parameter_name:[7,4,1,""]},"paddle.trainer_config_helpers.data_sources":{define_py_data_sources2:[8,0,1,""]}},objnames:{"0":["py","function","Python function"],"1":["py","module","Python module"],"2":["py","attribute","Python attribute"],"3":["py","class","Python class"],"4":["py","method","Python method"]},objtypes:{"0":"py:function","1":"py:module","2":"py:attribute","3":"py:class","4":"py:method"},terms:{"0000x":54,"00186201e":5,"00m":38,"02595v1":[10,16],"03m":38,"0424m":38,"0473v3":[11,17],"055ee37d":44,"05d":51,"0630u":38,"06u":38,"0810u":38,"08823112e":5,"0957m":38,"0ab":[10,16],"0rc2":29,"0th":59,"10007_10":58,"10014_7":58,"100gb":38,"100gi":44,"10m":38,"1150u":38,"11e6":45,"12194102e":5,"124n":38,"13m":45,"1490u":38,"15501715e":5,"1550u":38,"15mb":54,"1636k":59,"16mb":54,"16u":38,"173m":52,"173n":38,"1770u":38,"18ad":44,"18e457ce3d362ff5f3febf8e7f85ffec852f70f3b629add10aed84f930a68750":45,"197u":38,"1gb":38,"1st":[49,52,58,59],"202mb":59,"210u":38,"211839e770f7b538e2d8":[11,17],"215n":38,"228u":38,"234m":52,"2520u":38,"252kb":54,"25639710e":5,"25k":54,"2680u":38,"27787406e":5,"279n":38,"27m":38,"285m":38,"2863m":38,"28m":38,"28x28":3,"2977m":38,"2cbf7385":44,"2nd":[10,16,58,59],"302n":38,"30u":38,"32777140e":5,"328n":38,"32u":38,"32x32":[20,51],"331n":38,"3320u":38,"36540484e":5,"365e":44,"36u":38,"3710m":38,"3768m":38,"387u":38,"38u":38,"3920u":38,"39u":38,"3rd":[56,58,59],"4035m":38,"4090u":38,"4096mb":41,"4279m":38,"43630644e":5,"43u":38,"448a5b355b84":45,"4560u":38,"4563m":38,"45u":38,"4650u":38,"4726m":38,"473m":45,"48565123e":5,"48684503e":5,"49316648e":5,"4gb":41,"50bd":44,"50gi":44,"51111044e":5,"514u":38,"525n":38,"526u":38,"53018653e":5,"536u":38,"5460u":38,"5470u":38,"54u":38,"55g":59,"5690m":38,"573u":38,"578n":38,"5798m":38,"586u":38,"58s":45,"5969m":38,"6080u":38,"6082v4":[10,16],"6140u":38,"6305m":38,"639u":38,"655u":38,"6780u":38,"6810u":38,"682u":38,"6970u":38,"6ce9":44,"6node":39,"6th":59,"704u":38,"70634608e":5,"7090u":38,"72296313e":5,"72u":38,"73u":38,"75u":38,"760u":38,"767u":38,"783n":38,"784u":38,"78m":38,"7eamaa":20,"7kb":45,"8250u":38,"8300u":38,"830n":38,"849m":38,"85625684e":5,"861u":38,"864k":59,"8661m":38,"892m":38,"901n":38,"90u":38,"918u":38,"9247m":38,"924n":38,"9261m":38,"93137714e":5,"9330m":38,"94u":38,"9530m":38,"96644767e":5,"983m":38,"988u":38,"997u":38,"99982715e":5,"99m":52,"99u":38,"9f18":45,"\u4e0d\u4f7f\u7528\u9759\u6001\u5e93":25,"\u4e0d\u4f7f\u7528c":25,"\u4e0d\u4f7f\u7528swig":25,"\u4e0d\u540c\u7248\u672c\u7684\u7f16\u8bd1\u5668\u4e4b\u95f4":25,"\u4e0d\u540c\u8bed\u8a00\u7684\u63a5\u53e3\u9002\u5e94\u4e0d\u540c\u8bed\u8a00\u7684\u7279\u6027":25,"\u4e0d\u5d4c\u5165\u5176\u4ed6\u8bed\u8a00\u89e3\u91ca\u5668":25,"\u4e0d\u5d4c\u5165python\u89e3\u91ca\u5668":25,"\u4e0d\u663e\u793a\u7684\u5199\u6bcf\u4e2a\u7c7b\u5177\u4f53\u5305\u542b\u4ec0\u4e48":25,"\u4e14\u589e\u52a0\u4e00\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00":25,"\u4e14c99\u652f\u6301bool\u7c7b\u578b\u548c\u5b9a\u957f\u6574\u6570":25,"\u4e14c99\u76f8\u5bf9\u4e8ec11\u4f7f\u7528\u66f4\u52a0\u5e7f\u6cdb":25,"\u4e2d":25,"\u4e2d\u5b8c\u5168\u4e00\u81f4":25,"\u4e5f\u4e0d\u4f7f\u7528\u5176\u4ed6\u52a8\u6001\u5e93":25,"\u4e66\u5199":25,"\u4ec5\u4ec5\u4f7f\u7528":25,"\u4ed6\u7684\u76ee\u6807\u662f\u4f7f\u7528c":25,"\u4ee3\u7801\u751f\u6210\u7684\u7b26\u53f7\u53ef\u80fd\u4e0d\u4e00\u81f4":25,"\u4f1a\u5bfc\u81f4\u4e0d\u540c\u7248\u672cpython\u5728\u4e00\u4e2a\u8fdb\u7a0b\u91cc\u7684bug":25,"\u4f1a\u76f4\u63a5\u62a5\u9519\u9000\u51fa":25,"\u4f46\u662f\u89e3\u91ca\u6027\u8bed\u8a00":25,"\u4f5c\u4e3a\u7c7b\u53e5\u67c4":25,"\u4f7f\u7528\u52a8\u6001\u5e93":25,"\u4f7f\u7528\u9759\u6001\u5e93\u548c\u52a8\u6001\u5e93\u96be\u5ea6\u5dee\u4e0d\u591a":25,"\u4f7f\u7528c99\u505a\u63a5\u53e3":25,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c11\u7684\u539f\u56e0\u662f":25,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c89":25,"\u4f7f\u7528swig\u53ea\u652f\u6301cpython\u89e3\u91ca\u5668":25,"\u4f7f\u7528swig\u9700\u8981\u591a\u8bed\u8a00\u7ed1\u5b9a\u7684\u5f00\u53d1\u4eba\u5458\u719f\u7ec3\u638c\u63e1swig\u914d\u7f6e":25,"\u4f7f\u7528void":25,"\u4f8b\u5982":25,"\u4f8b\u5982\u5bf9\u4e8ejava\u6216\u8005python":25,"\u4f8b\u5982\u5bf9\u4e8ejava\u6765\u8bf4":25,"\u4f8b\u5982\u5bf9\u4e8epython":25,"\u4f8b\u5982c":25,"\u4f8b\u5982java\u4e0epython\u7684\u9519\u8bef\u5904\u7406\u662f\u76f4\u63a5\u6254\u51fa\u6765except":25,"\u4f8b\u5982python\u53ef\u4ee5\u4f7f\u7528":25,"\u4f8b\u5982python\u7684":25,"\u4fbf\u662f\u5c06\u9759\u6001\u5e93\u52a0\u5165jvm\u4e2d":25,"\u505a\u63a5\u53e3":25,"\u5176\u4e2d":25,"\u5185\u90e8\u9a71\u52a8python\u89e3\u91ca\u5668\u8fdb\u884c\u6a21\u578b\u914d\u7f6e\u89e3\u6790\u548c\u6570\u636e\u8bfb\u53d6":25,"\u518d\u5728\u6bcf\u4e00\u4e2aapi\u4e2d\u81ea\u5df1\u68c0\u67e5\u7c7b\u578b":25,"\u5199\u4ee3\u7801":25,"\u51fd\u6570\u547d\u540d":25,"\u52a8\u6001\u5e93":25,"\u5373\u8fd9\u4e2a\u52a8\u6001\u5e93\u662f\u4e0d\u4f9d\u8d56\u4e8e\u5176\u4ed6\u4efb\u4f55\u6587\u4ef6\u7684":25,"\u53c2\u6570":25,"\u53ea\u80fd\u8c03\u7528paddle\u7684\u52a8\u6001\u5e93":25,"\u53ef\u4ee5\u5728\u4efb\u4f55\u673a\u5668\u4e0a\u6267\u884c\u7684":25,"\u540d\u5b57\u4fee\u9970":25,"\u5426\u5219\u5f97\u628apaddle\u9759\u6001\u5e93\u94fe\u63a5\u5230\u89e3\u91ca\u5668\u91cc":25,"\u548c":25,"\u56e0\u4e3aswig\u5728\u7b2c\u4e09\u65b9\u8bed\u8a00\u4e2d\u66b4\u9732\u7684\u51fd\u6570\u540d":25,"\u5728\u8fd9\u4e2a\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":25,"\u5728c":25,"\u5728c\u7684\u5934\u6587\u4ef6":25,"\u5927\u591a\u6570\u8bed\u8a00\u90fd\u652f\u6301\u4f7f\u7528c\u8bed\u8a00api":25,"\u5982\u679c\u4f7f\u7528swig\u6211\u4eec\u9700\u8981\u5c06\u5728interface\u6587\u4ef6\u91cc":25,"\u5982\u679c\u7528\u6237\u8981\u628apaddle\u7684\u9759\u6001\u5e93":25,"\u5982\u679c\u8c03\u7528\u9759\u6001\u5e93\u53ea\u80fd\u5c06\u9759\u6001\u5e93\u4e0e\u89e3\u91ca\u5668\u94fe\u63a5":25,"\u5b66\u4e60\u6210\u672c\u9ad8":25,"\u5b9e\u73b0\u7b80\u5355":25,"\u5bf9\u4e8e\u4e0d\u540c\u8bed\u8a00":25,"\u5bf9\u4e8e\u540c\u4e00\u6bb5c":25,"\u5bf9\u4e8e\u591a\u8bed\u8a00\u63a5\u53e3":25,"\u5bf9\u4e8e\u5927\u591a\u6570\u8bed\u8a00":25,"\u5bf9\u6bd4":25,"\u5c06\u5927\u91cf\u7684":25,"\u5c31\u9700\u8981\u5bf9\u8fd9\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00\u589e\u52a0\u4e00\u4e9b\u5b9a\u4e49":25,"\u5e76\u4e14\u5728\u5e38\u89c1\u7684\u5e73\u53f0\u4e0a":25,"\u5e76\u4e14\u8ba9\u63a5\u53e3\u8131\u79bb\u5b9e\u73b0\u7ec6\u8282":25,"\u5e76\u6ca1\u6709paddle\u7279\u522b\u9700\u8981\u7684\u7279\u6027":25,"\u5f88\u96be\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":25,"\u5f97\u4f7f\u7528":25,"\u6211\u4eec\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":25,"\u6211\u4eec\u6700\u7ec8\u7684\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165python\u6216\u8005\u5176\u4ed6\u4efb\u4f55\u8bed\u8a00\u7684\u89e3\u91ca\u5668":25,"\u6216\u8005":25,"\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":25,"\u63a5\u53e3":25,"\u6570\u636e\u8bfb\u53d6\u5747\u4ea4\u7531\u5176\u4ed6\u8bed\u8a00\u5b8c\u6210":25,"\u6587\u4ef6":25,"\u6587\u4ef6\u5185\u5bb9\u4e3a":25,"\u65e0\u6cd5\u505a\u5230\u5bf9\u4e8e\u5404\u79cd\u8bed\u8a00\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u7684\u9002\u914d":25,"\u662f\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3\u7684\u4ee3\u7801\u751f\u6210\u5668":25,"\u662f\u4e0d\u5e38\u89c1\u7684\u505a\u6cd5":25,"\u662f\u56e0\u4e3ac99\u652f\u6301":25,"\u6700\u5e38\u89c1\u7684\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662fexcept":25,"\u6709\u6807\u51c6\u7684":25,"\u6709\u7684\u65f6\u5019":25,"\u6765\u786e\u4fdd\u628a":25,"\u6765\u8868\u793apaddle\u5185\u90e8\u7c7b":25,"\u6a21\u578b\u914d\u7f6e\u89e3\u6790":25,"\u73b0\u9636\u6bb5paddle\u6709\u4e00\u4e2a\u95ee\u9898\u662f":25,"\u751f\u6210\u5404\u79cd\u8bed\u8a00\u7684\u7ed1\u5b9a\u4ee3\u7801":25,"\u751f\u6210\u6587\u6863":25,"\u751f\u6210api\u6587\u6863":25,"\u7531\u4e8ec":25,"\u7684\u547d\u540d\u98ce\u683c\u5e76\u4e0d\u80fd\u9002\u5e94\u5176\u4ed6\u7b2c\u4e09\u65b9\u8bed\u8a00":25,"\u7684\u5934\u6587\u4ef6":25,"\u7684\u63a5\u53e3\u6837\u5f0f":25,"\u7684\u6e90\u7801\u91cc\u4f7f\u7528\u4e86":25,"\u7684\u89c4\u8303":25,"\u76ee\u524d\u5d4c\u5165python\u89e3\u91ca\u5668":25,"\u76ee\u524dpaddle\u7684\u8fdb\u7a0b\u6a21\u578b\u662fc":25,"\u76f4\u63a5\u4f7f\u7528c\u8bed\u8a00\u7684":25,"\u76f4\u63a5\u5bfc\u51fa\u5230c\u7684\u63a5\u53e3\u6bd4\u8f83\u56f0\u96be":25,"\u793e\u533a\u53c2\u4e0e\u56f0\u96be":25,"\u793e\u533a\u8d21\u732e\u4ee3\u7801\u5b66\u4e60\u6210\u672c\u9ad8":25,"\u7c7b\u540d\u548cc":25,"\u7c7b\u578b":25,"\u7ea2\u697c\u68a6":49,"\u7ed3\u8bba":25,"\u7f16\u8bd1\u5668\u6ca1\u6709":25,"\u7f16\u8bd1\u578b\u8bed\u8a00":25,"\u800c\u4e0d\u652f\u6301pypy\u89e3\u91ca\u5668":25,"\u800c\u5728cpp\u91cc\u9762\u5b9e\u73b0\u8fd9\u4e2ac\u7684\u63a5\u53e3":25,"\u800c\u591a\u8bed\u8a00\u63a5\u53e3\u9700\u8981\u76f4\u63a5\u8bfb\u53d6\u751f\u6210\u7684\u4e8c\u8fdb\u5236":25,"\u800c\u5bf9\u4e8egolang":25,"\u800c\u5bf9\u4e8egolang\u9519\u8bef\u5904\u7406\u5e94\u8be5\u4f7f\u7528\u8fd4\u56de\u503c":25,"\u800cswig\u53ea\u80fd\u7b80\u5355\u7684\u66b4\u9732c":25,"\u826f\u597d\u7684\u6587\u6863":25,"\u89e3\u91ca\u578b\u8bed\u8a00\u53ea\u80fd\u8c03\u7528\u52a8\u6001\u5e93":25,"\u89e3\u91ca\u6027\u8bed\u8a00\u5b9e\u9645\u8fd0\u884c\u7684\u4e8c\u8fdb\u5236\u662f\u89e3\u91ca\u5668\u672c\u8eab":25,"\u8fd9\u4e2a\u63a5\u53e3\u9700\u8981\u505a\u5230":25,"\u8fd9\u4e2a\u6587\u4ef6\u5177\u6709\u72ec\u7279\u7684\u8bed\u6cd5":25,"\u8fd9\u5bf9\u4e8e\u901a\u5e38\u7684java\u7684\u5f00\u53d1\u8005\u6765\u8bf4":25,"\u8fd9\u662f\u56e0\u4e3a":25,"\u8fd9\u90fd\u9700\u8981\u8fd9\u4e2a\u63a5\u53e3\u6309\u7167\u7ea6\u5b9a\u4fd7\u6210\u7684\u89c4\u5219\u6765\u6ce8\u91ca\u5b8c\u5907":25,"\u90fd\u662fabi\u8c03\u7528\u6807\u51c6\u7684":25,"\u91cc\u6240\u6709\u7684\u7b26\u53f7\u90fd\u5199\u5165\u81ea\u5df1\u7684\u7a0b\u5e8f\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6\u91cc":25,"\u91cd\u547d\u540d\u6210":25,"\u94fe\u63a5\u5230\u81ea\u5df1\u7684\u7a0b\u5e8f\u91cc":25,"\u9519\u8bef\u5904\u7406":25,"\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662f\u8fd4\u56de\u503c":25,"\u9519\u8bef\u5904\u7406\u7684\u65b9\u5f0f\u4e5f\u4e0d\u5c3d\u76f8\u540c":25,"\u9700\u8981\u6709\u7a33\u5b9a\u7684\u5bfc\u51fa\u7b26\u53f7":25,"\ufb01xed":59,"abstract":[36,41],"api\u4e2d\u4f7f\u7528":25,"boolean":[10,16,25],"break":54,"c99\u662f\u76ee\u524dc\u6700\u5e7f\u6cdb\u7684\u4f7f\u7528\u6807\u51c6":25,"c\u6709\u6807\u51c6\u7684abi":25,"c\u8bed\u8a00\u662f\u6709\u5bfc\u51fa\u7b26\u53f7\u7684\u6807\u51c6\u7684":25,"case":[10,16,26,27,34,35,36,38,42,44,50,54],"char":56,"class":[5,7,10,12,14,15,16,17,18,19,20,22,23,25,40,51,58],"const":36,"default":[3,7,9,10,11,12,15,16,17,19,20,22,23,29,39,41,43,44,45,54,56,58,59],"export":[28,51],"final":[11,17,27,28,36,56,58],"float":[3,7,9,10,12,15,16,18,20,27,36,38,43,49,52,56],"function":[3,5,8,10,11,12,16,17,18,20,23,26,27,34,36,38,39,41,50,51,54,57,58,59],"golang\u53ef\u4ee5\u4f7f\u7528":25,"golang\u7684":25,"h\u5e76\u4e0d\u56f0\u96be":25,"import":[3,5,9,10,16,23,27,34,38,44,49,50,51,52,54,56,58,59],"int":[3,7,9,10,11,12,15,16,17,20,25,26,36,43,54,56,57],"interface\u6587\u4ef6\u7684\u5199\u6cd5\u975e\u5e38":25,"long":[2,10,11,16,17,20,29,38,57,58],"new":[3,10,16,20,24,26,35,37,44,45,50,54,57,58],"null":[10,36,41,56],"paddle\u4e00\u4e2a\u52a8\u6001\u5e93\u53ef\u4ee5\u5728\u4efb\u4f55linux\u7cfb\u7edf\u4e0a\u8fd0\u884c":25,"paddle\u5185\u5d4c\u7684python\u89e3\u91ca\u5668\u548c\u5916\u90e8\u4f7f\u7528\u7684python\u5982\u679c\u7248\u672c\u4e0d\u540c":25,"paddle\u5185\u90e8\u7684\u7c7b\u4e3ac":25,"paddle\u7684\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0\u5305\u62ec\u4e00\u4e0b\u51e0\u4e2a\u65b9\u9762":25,"paddle\u7684\u94fe\u63a5\u65b9\u5f0f\u6bd4\u8f83\u590d\u6742":25,"paddle\u9700\u8981\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3":25,"paddle\u9759\u6001\u5e93\u94fe\u63a5\u590d\u6742":25,"public":[20,36,39,44,45,58],"return":[3,8,9,10,11,16,17,19,20,22,23,27,34,36,44,50,52,54,55,56,59],"short":[10,11,16,17,27,56,57,58],"static":[10,44],"super":36,"swig\u652f\u6301\u7684\u8bed\u8a00\u6216\u8005\u89e3\u91ca\u5668\u6709\u5c40\u9650":25,"swig\u66b4\u9732\u7684\u63a5\u53e3\u4fdd\u7559\u4e86c":25,"swig\u751f\u6210\u7684\u4ee3\u7801\u4e0d\u80fd\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":25,"swig\u76f4\u63a5\u8bfb\u53d6c":25,"swig\u9700\u8981\u5199\u4e00\u4e2ainterface\u6587\u4ef6":25,"switch":[44,58],"throw":44,"true":[3,7,9,10,11,12,15,16,17,19,20,22,23,26,27,34,36,41,43,44,52,56,57,58,59],"try":[12,18,24,26,38,50,56],"void":[25,36],"while":[2,3,7,9,15,20,26,29,34,41,50,54,58,59],AGE:[44,45],AND:56,ARE:56,AWS:[37,46,47],Abs:6,Age:55,And:[3,9,10,12,16,18,20,26,29,31,35,43,44,45,49,52,56,58,59],But:[3,10,11,16,17],EOS:[10,16],For:[2,3,8,9,10,12,16,18,20,23,26,27,28,29,34,36,38,39,40,41,43,49,51,52,54,58,59],Going:58,Has:3,IDs:[20,54],Ids:54,Into:44,Its:[3,34,44,56],Not:[23,24,39],ONE:3,One:[9,10,11,17,22,34,36,41,50,54,58,59],QoS:45,THE:3,TLS:[23,44],That:[10,16,20,26,29,41,43],The:[2,3,5,7,8,9,10,11,12,14,15,16,17,18,20,22,23,24,26,27,28,29,30,31,34,35,36,38,39,41,43,44,45,49,50,51,52,54,55,56,57,58,59],Their:[3,10,16,24],Then:[5,10,28,29,34,35,36,38,44,45,49,51,56,57,58],There:[9,10,16,20,22,23,24,27,29,31,38,44,50,51,52,53,54,56,59],These:[39,43,51,57],USE:56,USING:56,Use:[3,23,26,36,38,41,42,44,56],Used:[11,17],Useful:3,Using:[45,58],VPS:44,WITH:35,Will:[20,22],With:[3,10,11,16,17,27,50,57],Yes:29,___fc_layer_0__:44,__init__:36,__list_to_map__:56,__main__:52,__meta__:56,__name__:52,__rnn_step__:34,_error:50,_link:[11,17],_proj:[10,16],_res2_1_branch1_bn:52,_source_language_embed:[34,49],_target_language_embed:[34,49],aaaaaaaaaaaaa:44,abc:[10,16],abl:[10,16,23,50,58],about:[5,10,11,16,17,27,29,38,40,41,44,48,57,58,59],abov:[3,5,10,16,23,24,27,29,38,44,45,50,52,54,57],abs:[11,17,50],absolut:[2,39],academ:55,acceler:43,accept:[3,5,20,23,26,54,57],acceptor:57,access:[2,10,11,17,23,29,34,59],accessmod:44,accident:55,accomplish:29,accord:[2,3,9,10,16,34,35,39,40,41,43],accordingli:[5,36],accordingto:57,accrod:[11,17],accumul:24,accuraci:[9,36,54,55,58],achiev:[38,51],ack:41,acl:58,aclimdb:58,across:[10,16],act:[10,11,16,17,27,34,54],act_typ:54,action:[44,55],activ:[0,4,5,10,11,16,17,21,27,28,36,41,54,58],activi:[11,17],actual:[3,10,16,27],adadelta:[12,54],adagrad:[12,54],adam:[12,23,54,58,59],adamax:[12,54],adamoptim:[49,54,58,59],adapt:[9,12,18,27,58,59],add:[3,10,11,16,17,20,27,28,35,36,38,43,54,56],add_input:36,add_test:36,add_to:[10,16],add_unittest_without_exec:36,addbia:36,added:[3,9,36],adding:52,addit:[10,11,16,17,29,54],address:[24,29,38,41],addrow:36,addtion:39,addto:10,addtolay:[10,16],adject:58,adjust:27,admin:55,adopt:57,advanc:[34,38,41],advantag:[29,58],adventur:55,adverb:58,adversari:26,advic:38,affect:[10,16],afi:3,aforement:39,after:[10,16,20,28,31,34,36,39,41,43,44,45,50,51,52,54,56,57,58,59],again:[23,24,38],against:44,age:[20,56],agg_level:[10,16],aggreg:44,aggregatelevel:[10,16],aid:38,aim:[58,59],aircraft:59,airplan:51,aistat:[10,16],alex:[10,16,58],alexnet_pass1:43,alexnet_pass2:43,algorithm:[10,12,16,18,27,34,49,51,58,59],alia:[6,7,13,14,15],align:[10,11,16,17,20,59],all:[0,3,7,9,10,12,15,16,18,23,24,27,29,34,35,36,38,39,40,41,43,44,45,49,50,52,54,55,56,57,58,59],alloc:[7,15,36,43],allow:[23,29,35,36,38,41,44,54],allow_only_one_model_on_one_gpu:[40,41,43],almost:[11,17,27,39,49],along:58,alreadi:[24,29,38,39,41,44,45,58],alreali:[40,59],also:[2,3,9,10,11,16,17,20,23,26,28,29,34,36,38,39,45,50,51,52,54,57,58],although:27,alwai:[5,10,11,16,17,22,26,27,41,44,59],amaz:51,amazon:[44,45,54,58],amazonaw:44,amazonec2fullaccess:44,amazonelasticfilesystemfullaccess:44,amazonroute53domainsfullaccess:44,amazonroute53fullaccess:44,amazons3fullaccess:44,amazonvpcfullaccess:44,ambigu:[26,57],amd64:44,amend:35,american:51,among:[44,58],amount:[38,58],analysi:[27,38,53,57],analyz:[54,58],andd:44,ani:[2,3,10,11,16,17,20,23,24,26,34,35,38,44,54,56,59],anim:55,annot:57,annual:57,anoth:[3,10,16,23,29,41,44,57,58],ans:44,answer:[27,44,57],anyth:[20,26,35,44,57],api:[16,20,22,23,28,36,38,44,48,50,54,56,58],apiserv:44,apivers:[44,45],apo:59,appar:59,appear:57,append:[3,22,26,34,36,39,56],append_gradient_machin:22,appleclang:28,appleyard:38,appli:[0,10,11,16,17,34,36,51,54],applic:[29,38,44,45,58],appreci:[35,58],approach:[10,16],apt:[28,31,51],arbitrari:10,architectur:[49,57,58,59],architecur:58,archiv:[20,25],arg:[3,8,9,10,11,12,16,17,20,27,40,50,51,52,54,56,57,58],arg_nam:[10,16],argu:57,argument:[3,5,8,10,16,20,34,36,41,42,49,50,51,52,56,57,58,59],argv:52,arn:44,around:[3,10,16,44],arrai:[5,10,16,20,22,26,27,52],art:[27,57],articl:[39,45],artifact:44,artifici:50,artist:55,arxiv:[10,11,16,17,50,58],ask:24,aspect:58,assign:[10,41,44],associ:[57,58,59],assum:[10,16,34,43,49],assur:2,astyp:[26,50],async:[12,24,40],async_count:41,async_lagged_grad_discard_ratio:41,async_lagged_ratio_default:[40,41],async_lagged_ratio_min:[40,41],asynchron:[24,41],atla:28,atlas_root:28,attenion:[11,17],attent:[10,11,17,29,59],attitud:58,attr:[7,11,15,16,17],attribut:[3,4,10,11,16,17,21,36,49,57],auc:[9,40],aucvalidationlay:41,authent:44,author:[44,52],authorized_kei:39,autmot:35,auto:[25,36,38,53,56],autom:[44,59],automak:28,automat:[10,16,23,28,34,36,39,40,41,44,56,57,59],automaticli:[10,16],automobil:51,avail:[24,28,44],availabel:28,averag:[9,10,12,16,19,41,52,54,56,57,58,59],average_test_period:[40,41,57],average_window:58,averagepool:[10,16],avg:[13,38,54],avgcost:[9,54,56,58,59],avgpool:[10,16,54],avoid:[24,38],avx:[28,29,31],await:45,awar:[23,24,29,44],aws_account_id:44,awsaccountid:44,awskeymanagementservicepowerus:44,b2t:49,b363:45,b8561f5c79193550d64fa47418a9e67ebdd71546186e840f88de5026b8097465:45,ba5f:44,back:[3,24,29],background:32,backward:[10,11,14,16,17,34,36,41,43],backward_first:34,backwardactiv:36,bag:[54,58],baidu:[0,10,16,27,31,35,45,49],baik:49,balanc:[41,44,50],balasubramanyan:58,bank:57,bardward:[11,17],bare:45,barrier:41,barrierstatset:38,base:[6,12,16,17,19,20,23,27,31,34,35,36,38,39,41,44,49,50,54,56,58,59],baseactiv:[10,11],baseev:22,basematrix:36,basenam:9,basepool:13,basepoolingtyp:[10,11,16,17],baseregular:12,basestr:[7,8,9,10,11,15,16,17,19,22,56],bash:[29,44,45],bashrc:28,basic:[3,10,22,29,35,36,54,55,58],batch:[3,9,10,11,12,16,17,18,20,22,23,24,36,39,41,44,45,50,51,52,54,56,57,58,59],batch_0:52,batch_id:22,batch_norm:[10,17],batch_norm_lay:11,batch_norm_typ:[10,16],batch_read:26,batch_siz:[3,12,20,22,27,39,49,50,51,54,56,58,59],batchsiz:[10,16,36],bcd:[10,16],bcebo:20,beam:[10,34,41,57,59],beam_gen:[10,34],beam_search:[22,34],beam_siz:[10,34,40,41,43],beamsiz:59,becaus:[5,10,16,20,23,24,26,34,35,36,43,44,51,54,57],becom:[35,38],been:[3,28,35,51,54,57,58,59],befor:[5,10,11,16,17,24,26,29,35,39,44,51,56,58,59],begin:[5,9,10,36],beginiter:[22,23],beginn:34,beginpass:[22,23],begintrain:23,behavior:38,being:[24,26,50],belong:[10,16,59],below:[3,10,16,20,24,26,34,36,38,39,44,50,51,54,56],benefit:[11,17],bengio:[10,16],bertolami:58,besid:[2,10,16,20,59],best:[8,10,16,28,29,41,54,56,58,59],best_model_path:57,besteffort:45,beta1:[12,18],beta2:[12,18],beta:52,better:[10,11,16,17,27,39,44,50,56],between:[10,12,16,18,24,27,35,44,50,54,55,58,59],bgr:52,bi_lstm:[11,17],bia:[10,11,12,16,17,18,34,36,52],bias:[10,16,36],bias_attr:[10,11,16,17,27,34],bias_param_attr:[11,17],biases_:36,biasparameter_:36,biassiz:36,bidi:45,bidirect:[11,17,34,57,59],bidirectional_lstm_net:58,big:38,bigger:24,biggest:58,bilinear:[10,16],bilinear_interpol:[10,16],bilinearfwdbwd:38,bin:[28,29,39,44,45,56],binari:[3,9,10,16,20,38,44,49,54,58],bird:51,bison:28,bit:54,bitext:59,bla:28,blank:[10,16,44],block:[10,16,27,36,38,41,52,58],block_expand:10,block_i:[10,16],block_x:[10,16],blog:58,bn_attr:17,bn_bias_attr:[11,17],bn_layer_attr:11,bn_param_attr:[11,17],bollen:58,book:20,bool:[3,7,9,10,11,12,15,16,17,19,20,36,41,43,54,56,58],boot:[10,34],boot_bia:10,boot_bias_active_typ:10,boot_lay:[10,34],boot_with_const_id:10,bootstrap:28,bos_id:[10,34],both:[0,7,10,11,14,15,16,17,23,24,29,34,36,38,44,50,52,54],bottleneck:[38,52],bottom:58,bow:[54,58],box:38,branch:[10,16,23,35],breadth:[41,59],brelu:6,brendan:58,brew:28,briefli:38,broadcast:24,brows:29,browser:[29,44],bryan:58,bucket_nam:44,buf_siz:20,buffer:[3,20,26,41],buffered_read:26,bug:44,bui:58,build:[0,20,27,29,32,41,44,46,47,49,51,52,54,56,58,59],build_dict:20,built:[0,28,29,50,57],bunch:[38,54],bunk:58,button:[35,44],c11:25,c99e:44,cach:[54,56,57],cache_pass_in_mem:[3,54,56,57],cachetyp:[3,54,56,57],calc_batch_s:[3,57],calcul:[3,9,10,11,12,16,17,18,24,34,36,38,41,43,50,56],call:[3,10,11,16,17,23,27,34,36,38,41,44,51,52,54,58,59],callabl:[3,10,20],callback:36,caller:44,caltech:51,can:[2,3,5,7,8,9,10,11,15,16,17,20,23,24,26,27,28,29,31,34,35,36,38,39,40,41,43,44,45,49,50,51,52,54,56,57,58,59],can_over_batch_s:[3,57],candid:[10,16],cannot:36,caoi:59,capabl:[28,58],capac:44,caption:[27,59],captur:[27,39],card:39,care:[11,17,26,40,41,55],carefulli:[39,41,52],cat:[29,51,52,58],categor:57,categori:[10,16,20,24,54,58],categorig:20,categoryfil:45,caus:24,caution:[44,45],ccb2_pc30:59,cde:[10,16],cdn:20,ceil:[10,16],ceil_mod:[10,16],cell:[10,11,16,17,58],center:3,ceph:45,certain:[2,40,57],certif:[23,44],cffi:25,cfg:45,cgo:25,chain:[20,36],challeng:24,chanc:[23,36,54],chang:[10,20,26,27,29,34,35,36,38,41,44,54,58],channel:[10,16,38,39,52],channl:[39,52],char_bas:56,charact:[54,56],character:27,characterist:[43,51],check:[3,20,27,28,29,35,41,43,44,55],check_align:20,check_eq:36,check_fail_continu:3,check_l:36,check_sparse_distribution_batch:[40,41],check_sparse_distribution_in_pserv:[40,41],check_sparse_distribution_ratio:[40,41],check_sparse_distribution_unbalance_degre:[40,41],checkgrad:41,checkgrad_ep:41,checkout:35,children:55,chines:53,chmod:[28,44],choic:[29,55],choos:[41,54,56],chosen:[2,55,59],chunk:[9,50,57],chunk_schem:9,chunktyp:9,cifar:[50,51],cifar_vgg_model:51,claim:44,claimnam:44,clang:[25,28,29,35],class1:58,class2:58,class_dim:58,classfic:[52,58],classfiic:51,classic:[10,16,27],classif:[3,5,10,16,43,52,53,54,58,59],classifc:58,classifi:[9,50,51,52,54,58],classification_cost:[51,54],classification_error_evalu:[50,54,58,59],classification_threshold:9,claster:44,clean:[5,56],cleric:55,cli:44,click:[35,38,44],client:35,clip:[7,12,15,41,54,58],clock:[10,16],clone:[28,29],close:[3,26],closer:27,cloud:24,cls:54,cludform:44,cluster:[23,24,40,41,45,54,59],cluster_train:39,cm469:44,cmake3:28,cmake:[28,36,38],cmakelist:36,cmd:45,cna:[10,16],cname:44,cnn:[45,52,54],code:[0,3,5,16,20,23,26,27,28,29,30,34,36,37,38,39,44,45,50,54,55],coeff:[10,16],coeffici:[10,16],collabor:24,collect:[10,16,20,22,27,55],collectbia:36,colleg:55,color:[51,52],colour:20,column:[9,10,16,26,36,49,59],colunm:59,com:[10,11,16,17,20,28,29,31,35,44,45,52],combin:[10,11,16,17,20,22,50,56,58],come:58,comedi:55,comma:[41,49],command:[2,5,27,28,29,31,35,36,37,38,39,44,45,46,47,49,50,51,52,56,57,58],commandlin:[38,58],commenc:54,comment:[11,17,35,54,58],commnun:39,common:[34,36,40],common_util:[39,56],commonli:[34,38,43],commun:[0,24,36,39,44],compani:58,compar:[36,50,54],compat:3,compet:58,competit:50,compil:[28,29,35,36],complet:[0,5,10,11,16,17,20,22,24,36,44,45,54],complex:[2,3,11,17,26,34,38,54],complic:[10,16],compon:36,compos:[20,23,50,57],composenotalign:20,comput:[10,11,16,17,23,24,27,28,29,34,36,38,43,44,54,56,57,58],computation:34,conat:16,conat_lay:10,concat:[10,59],concat_lay:34,concaten:[11,17],concept:[3,23,29,34],concern:23,concurr:24,concurrentremoteparameterupdat:41,condit:[10,16,34,39,45,59],conduct:38,conf:[5,10,16,39,49,50,52,59],conf_paddle_gradient_num:44,conf_paddle_n:44,conf_paddle_port:44,conf_paddle_ports_num:44,conf_paddle_ports_num_spars:44,confid:58,config:[3,7,10,11,15,16,17,27,36,39,40,41,44,45,49,50,51,52,54,58,59],config_:41,config_arg:[40,41,43,52,54,57,58],config_bas:[16,17,22],config_fil:57,config_gener:[39,56],config_lay:36,config_pars:[5,36],configur:[1,2,3,5,8,10,16,27,33,35,36,38,41,49,51,52,58,59],conflict:35,confront:59,congest:41,conll05st:57,conll:[20,57],connect:[2,11,17,27,36,44,45,50,51,52,54,56,58],connectionist:[10,16,58],connor:58,consequ:[10,11,16,17],consid:[9,10,12,16,18,28,29,38,43,51],consider:[3,11,17],consist:[10,16,20,26,51,52,54,57,59],consol:[38,44],constant:36,construct:[3,5,23,34,56],construct_featur:56,constructor:36,consum:[24,58],contact:24,contain:[3,8,9,10,11,16,17,19,20,22,23,30,31,34,35,39,44,51,52,54,55,58,59],containerport:44,contemporan:58,content:[45,57,58],context:[10,11,16,17,20,34,49,54,56,57,58,59],context_attr:[11,17],context_len:[10,11,16,17,54,56],context_proj_layer_nam:11,context_proj_nam:17,context_proj_param_attr:[11,17],context_project:[11,17,56],context_start:[10,11,16,17,54],contibut:35,contin:44,continu:[3,24,31,41],contrast:[10,16,59],contribut:[0,30,37,58],contributor:0,control:[7,15,41,44,45,59],conv:[11,17],conv_act:[11,17],conv_attr:17,conv_batchnorm_drop_r:[11,17],conv_bias_attr:[11,17],conv_filter_s:[11,17],conv_layer_attr:11,conv_num_filt:[11,17],conv_op:[10,16],conv_pad:[11,17],conv_param_attr:[11,17],conv_shift:10,conv_strid:[11,17],conv_with_batchnorm:[11,17],conveni:[23,39],converg:[39,50,58],convert:[3,5,20,26,34,49,51,52,54,56],convlay:[10,16],convolut:[10,11,16,17,50,52,56],convoper:[10,16],convtran:[10,16],convtranslay:[10,16],cool:[3,35],copi:[22,23,44,50,56],copy_shared_paramet:50,copytonumpymat:50,core:[3,7,15,41,59],coreo:44,corespond:57,corpora:59,corpu:[20,57],correct:[3,9,10,16,36,44],correctli:[9,20,36,50],correl:[27,51,58],correspoind:23,correspond:[3,5,23,27,34,36,51,55,57,58,59],corss_entropi:23,cos:[10,16],cos_sim:56,cosin:[10,16,56],cost:[5,12,18,22,23,27,41,50,54,56,58,59],cost_id:10,could:[3,5,9,10,16,20,22,23,26,29,38,39,44,54,56],count:[24,26,38,41,43,45,49,56,57,58,59],counter:24,coupl:27,coverag:28,coveral:28,coveralls_uploadpackag:28,cpickl:[52,56],cpp:[25,35,36,38,54,56,59],cpu:[2,3,7,10,15,16,28,31,38,41,45,50,57,58,59],cpuinfo:29,craftsman:55,crash:[24,38,39,41],crazi:39,creat:[5,7,10,15,16,20,22,23,24,27,28,29,36,39,41,49,50,51,59],create_bias_paramet:36,create_input_paramet:36,createargu:50,createfromconfigproto:[5,50],createstack:44,creation:44,creationd:44,creator:20,credit:50,cretor:20,crf:[10,57],crf_decod:10,crime:55,critic:58,crop:52,crop_siz:52,cross:[10,16,54,57],cross_entropi:[16,23,50],cross_entropy_with_selfnorm:16,csc:36,cslm:59,csr:36,csv:55,ctc:10,ctc_layer:9,ctest:29,ctrl:[39,56],ctx:57,ctx_0:57,ctx_0_slot:57,ctx_n1:57,ctx_n1_slot:57,ctx_n2:57,ctx_n2_slot:57,ctx_p1:57,ctx_p1_slot:57,ctx_p2:57,ctx_p2_slot:57,cub:51,cuda:[28,29,31,38,39,41],cuda_dir:[40,41],cudaconfigurecal:38,cudadevicegetattribut:38,cudaeventcr:38,cudaeventcreatewithflag:38,cudafre:38,cudagetdevic:38,cudagetdevicecount:38,cudagetdeviceproperti:38,cudagetlasterror:38,cudahostalloc:38,cudalaunch:38,cudamalloc:38,cudamemcpi:38,cudaprofilerstart:38,cudaprofilerstop:38,cudaruntimegetvers:38,cudasetdevic:38,cudasetupargu:38,cudastreamcr:38,cudastreamcreatewithflag:38,cudastreamsynchron:38,cudeviceget:38,cudevicegetattribut:38,cudevicegetcount:38,cudevicegetnam:38,cudevicetotalmem:38,cudnn:[10,16,19,28,31,41],cudnn_batch_norm:[10,16],cudnn_conv:[10,16],cudnn_conv_workspace_limit_in_mb:[40,41],cudnn_convt:[10,16],cudnn_dir:[40,41],cudrivergetvers:38,cuinit:38,cumul:[10,16],curl:[28,44],current:[3,10,12,16,24,27,29,34,35,36,39,41,44,54,58,59],current_word:34,currentcost:[9,54,56,58,59],currentev:[9,54,56,58,59],curv:[23,51,57],custom:[2,3,23,36,44,55,58],custom_batch_read:26,cutoff:20,cycl:24,cyclic:[10,16],cython:25,d3e0:44,daemon:29,dai:59,daili:58,dalla:3,dan:57,danger:3,darwin:44,dat:[20,39,56],data:[1,2,3,5,8,11,12,17,18,22,23,24,28,29,32,36,38,39,40,41,43,46,52,55],data_batch_gen:50,data_dir:[49,51,58,59],data_feed:20,data_fil:27,data_initialz:54,data_lay:[3,9,27,34,50,51,54,56,57],data_nam:20,data_provid:8,data_read:[20,26],data_reader_creator_random_imag:26,data_sourc:[8,50],data_typ:[16,20],databas:[20,58],datadim:[10,16],datalay:[10,16],dataprovid:[2,8,27,34,39,56,57],dataprovider_bow:54,dataprovider_emb:54,dataproviderconvert:5,datasci:[10,16],dataset:[1,3,26,27,41,49,51,52,54,57,58],datasourc:[4,56],date:57,db_lstm:57,dcgan:50,dcmake_install_prefix:28,dead:24,deal:[35,50],deb:[30,31],debian:[29,30],debug:3,decai:[12,18,51],decid:[23,26],declar:[10,11,16,56],decod:[10,11,16,17,34,57,59],decoder_boot:34,decoder_group_nam:34,decoder_input:34,decoder_mem:34,decoder_prev:[11,17],decoder_s:34,decoder_st:[11,17,34],deconv:[10,16],deconvolut:[10,16],decor:[3,20,36],decreas:27,decrypt:44,deep:[0,10,16,27,29,38,50,51,52,54,57],deeper:[27,29,52],deer:51,def:[3,10,16,20,23,26,27,34,36,50,52,54,56,57],defalut:[10,16,41,43],default_devic:43,default_valu:43,defferenct:3,defin:[2,3,8,9,10,11,16,17,20,23,26,27,34,36,39,41,49,50,51,56,57],define_py_data_sources2:[3,8,27,51,52,54,56],defini:59,definit:[3,20,24,27,29,49,54,58],degre:[10,16],del:56,delai:41,delar:54,delet:24,deletestack:44,delimit:[9,55,56],demand:24,demo:[10,20,34,39,45,46,49,50,51,52,53,54,55,56,57,58,59],demograph:55,demolish:45,demonstr:[27,34,50,56],denot:[43,54,55,57],dens:[3,10,16,20,36,44,54,56],dense_vector:[3,5,16,20,27,56],dense_vector_sequ:20,depend:[24,27,29,31,39,43,51,55],deploi:[39,43],deploy:[39,44],deriv:[14,23],descent:[10,12,16,24],describ:[23,27,36,44,45,50,54,57],describestack:44,describestackev:44,describestackresourc:44,descript:[5,28,34,42,44,51,56],deseri:22,design:[3,10,16,20,25,58],desir:[24,44,45,49],destructor:36,detail:[3,5,7,10,11,12,15,16,17,18,34,35,36,38,39,42,43,44,45,49,50,52,54,56,58,59],detect:9,determin:[3,10,16,20,36,50],dev:[28,29,51,56,59],devel:28,develop:[0,28,35,40,41,59],deverlop:41,deviat:[7,15],devic:[7,15,41,59],deviceid:43,devid:[10,16,41],dez:58,dfs:11,diagnos:39,diagram:52,dict:[3,8,20,22,54,56,58,59],dict_dim:58,dict_fil:[9,34,54,57],dict_nam:8,dict_siz:20,dictionai:54,dictionari:[3,8,9,10,20,22,23,34,43,52,54,56,57,58,59],dictsiz:59,did:3,differ:[3,8,9,10,16,24,27,29,34,35,36,39,41,44,45,49,51,52,54,58,59],difficult:27,dig:[29,38,44],digit:[3,10,16],dim:[20,36,49,52,54,58],dimens:[10,14,16,19,20,36,43,49,54,56,58],dimension:[3,27,34,36,50,54],dimenst:49,dimes:[10,16],din:56,dir:[39,52,54,56,57,58,59],dirctori:29,direct:[10,11,16,17,29,52,57],directli:[2,3,11,17,27,29,39,45,58],directori:[2,28,29,35,38,39,41,45,51,52,54,56,57,58,59],diretcoti:52,dis_conf:50,dis_train:50,dis_training_machin:50,disabl:3,discard:[20,24,41],discount:[10,16],discov:[24,57],discoveri:44,discrep:38,discrimin:50,discriminator_train:50,discuss:23,disk:45,dispatch:[24,39,41],disput:59,dist_train:23,distanc:9,distibut:49,distinguish:[39,50,59],distribut:[10,16,28,37,45,46,47,50,54,57],distribute_test:[40,41],distributedli:36,disucss:23,divid:[12,18,40,51,59],diy_beam_search_prob_so:[40,41],dmkl_root:28,dns:44,do_forward_backward:26,doc:[5,11,17,20,28,29,39],docker:[30,44,46,47],docker_build:23,docker_push:23,dockerhub:29,doctor:55,document:[3,5,11,17,28,35,43,51,54,56,57,58],documentari:[3,55],doe:[3,5,11,17,24,26,27,31,34,36,38,54,56,57],doesn:[7,10,15,20,23,26,35,38,45,59],dog:[51,52],doing:38,domain:44,don:[11,17,23,26,27,44,58],done:[10,11,16,17,24,34,38,44,50,58],dopenblas_root:28,dot:[41,52,59],dot_period:[41,43,50,51,56,58,59],dotmuloper:[10,16],dotmulproject:[10,16],doubl:[3,28,41],down:[38,54],download:[20,24,29,31,50,51,54,57,58],download_cifar:51,downsampl:51,doxygen:[28,35],dpkg:31,drama:55,drop:3,drop_rat:[7,15],dropout:[7,10,15,16,36,54],dropout_lay:10,dropout_r:[11,17],drwxr:45,dtoh:38,dtype:[5,27,52],dubai:59,due:[55,56],duplic:55,durat:38,dure:[2,3,10,16,24,27,35,36,40,41,44,54,56,57,59],durn:3,dwith_doc:28,dwith_profil:38,dwith_tim:38,dynam:[2,3,26,28,38,41],dynamic_cast:36,each:[2,3,5,9,10,16,19,20,22,24,26,27,29,34,35,36,39,41,43,44,49,51,52,54,55,56,57,58,59],each_feature_vector:14,each_meta:56,each_pixel_str:3,each_sequ:[10,16],each_time_step_output:14,each_timestep:[10,16],each_word:3,eaqual:[10,16],eas:[20,26,52],easi:[0,26,29,36,39,54],easier:[23,26,36],easili:[23,26,27],echo:[29,56,58],edit:[9,29,44],editor:[29,35],edu:[20,44,45,51],educ:55,eeoi3ezpr86c:44,effect:[3,41,44],effici:[0,2,3,34,36],efg:[10,16],efs:44,efs_dns_nam:44,efsvol:44,eight:57,either:[10,16,20,22,23,38,54,56],elb:44,elbapis:44,elec:54,electron:[45,54],elem_dim:[10,16],element:[3,5,9,10,11,16,17,20,22,26,54,58,59],elif:[23,56],elimin:57,els:[10,23,29,36,52,54,56],emac:[29,35],emb:[45,54],embed:[10,23,34,53,56,58],embedd:57,embedding_lay:[34,54,56],embedding_nam:34,embedding_s:34,emphas:38,empir:[10,16],emplace_back:36,emploi:[34,55],empti:[9,20,24,27],emul:59,enabl:[3,7,15,38,39,41,44],enable_grad_shar:[40,41],enable_parallel_vector:41,enc_proj:[11,17,34],enc_seq:[11,17],enc_vec:34,encod:[11,17,34,59],encoded_proj:[11,17,34],encoded_sequ:[11,17,34],encoded_vector:34,encoder_last:10,encoder_proj:34,encoder_s:34,encrypt:44,encrypt_decrypt:44,end:[3,9,10,16,26,27,34,41,49,57,58,59],end_pass:23,enditer:[22,23],endpass:[22,23],endpoint:44,endtrain:23,engin:[0,38,55],english:[3,10,16,59],enjoi:29,enough:27,ensembl:[11,17],ensur:[3,24,36],enter:[29,55],entir:[10,11,16,17,58],entri:[20,36,44,55],entropi:[10,16,54,57],enumer:[10,14,54,56],enumerate_data_types_of_data_lay:20,env:[35,44],environ:[23,28,29,31,38,39,40,41,44,45,50,51,56],eol:35,eos:10,eos_id:[10,16,34],epel:28,epoch:55,epsilon:[12,18],equal:[10,11,12,16,17,24,41],equat:[10,11,12,16,17,18,29],equilibrium:50,equip:[28,34],equival:[10,16,23],error:[7,9,10,12,15,16,18,23,27,31,36,39,41,44,51,52,54,55,56,58,59],error_clipping_threshold:[7,15],errorr:9,especi:[3,11,17,57],essenc:23,essenti:[10,23,28,57,59],estat:27,estim:[10,16,23],eta:45,etc:[12,20,26,29,39,40,43,44,58,59],etcd:24,eth0:[39,44],ethternet:39,eval:[9,54,56,58,59],eval_bleu:59,evalu:[2,4,10,16,22,32,38,39,54,58,59],evaluate_pass:58,evaluator_bas:9,evalut:[27,59],even:[23,26,38,41,58],evenli:44,event:45,event_handl:[22,23],everi:[2,3,9,10,11,17,20,23,24,34,35,36,41,54,57,58,59],everyth:[27,29,35],exactli:[3,9,10,11,16,17,29,44,57],exampl:[2,3,8,9,10,11,12,16,17,18,20,22,26,27,28,29,34,36,38,39,40,41,43,44,45,51,52,53,54,58,59],exceed:10,except:[3,20,43,49,56,58],excluded_chunk_typ:9,exconv:[10,16],exconvt:[10,16],exdb:20,exec:[29,41],execut:[24,36,38,44,55,57,58],exist:[23,24,26,36,41,44,55,58],exit:[41,45],exp:6,expand:[10,36,57,58,59],expand_a:[10,16],expand_level:[10,16],expandconvlay:[10,16],expandlevel:[10,16],expect:[10,16,38,58],expens:59,experi:43,expir:24,explain:[3,9,24,39,50,58],explan:[10,16,54,59],explanatori:[27,29],explicit:36,explicitli:[3,23],exploit:51,explor:10,exponenti:14,expos:[29,44],express:[23,44,58],extend:[0,56],extens:[12,55,56,59],extern:[3,25],extra:[10,11,15,16,17,27],extra_lay:22,extraattr:[7,15,43],extraattribut:[16,17],extraattributenon:16,extract:[10,16,44,51,57,58],extract_fea_c:52,extract_fea_pi:52,extract_para:49,extralayerattribut:[7,10,11,15],extralayeroutput:11,extrapaddl:17,extrem:[10,38],extremli:2,f120da72:45,f7e3:44,fa0wx:45,fabric:39,facotr:[10,16],fact:52,factor:[7,10,12,15,16,18],factori:25,fail:[3,41,43,45,51],failur:24,fake:50,fake_imag:26,fals:[3,7,9,10,11,12,15,16,17,18,20,26,27,34,36,41,43,45,49,54,56,57,58,59],false_label:26,false_read:26,famili:59,familiar:[3,27],fanscin:3,fantasi:55,fantast:54,far:0,farmer:55,fascinatingli:2,fast:[10,16,35,38],faster:[10,11,16,17,34,38,58],favori:29,favorit:35,favourit:29,fbd1f2bb71f4:45,fc1:[36,43],fc2:43,fc3:43,fc4:43,fc8a365:44,fc8a:44,fc_act:[11,17],fc_attr:[11,17],fc_bias_attr:[11,17],fc_layer:[27,36,43,54,56],fc_layer_nam:11,fc_mat:22,fc_name:17,fc_param_attr:[11,17],fclayer:36,fdata:57,fea:52,fea_output:52,feat:58,featur:[3,10,14,16,20,35,41,51,54,58,59],feature_map:56,feed:[11,17,20,22,23,27,58],feedback:0,feeder:20,feedforward:51,femal:55,fernan:58,festiv:3,fetch:[20,34,36],few:[3,24,26,29],fewer:10,fg0:[10,16],field:[10,16,22,38,44],figur:[23,34,36,38,49,50,51,52,57,58,59],file1:59,file2:59,file:[2,3,5,9,10,16,20,22,23,24,26,27,28,29,34,35,36,39,41,49,51,52,57,58,59],file_list:3,file_nam:[3,27,52,54,57],filenam:[3,56],filer:[10,16],filesystem:[29,44],fill:[10,16,24,44,54],film:55,filter:[10,16,52],filter_s:[10,11,16,17],filter_size_i:[10,16],finali:39,find:[10,12,18,24,29,38,51,58,59],fine:[7,15,56],fingerprint:44,finish:[3,24,29,39,44,45,51],finit:36,first:[3,10,16,20,23,24,27,29,31,34,35,36,38,41,43,44,49,50,51,52,54,56,57,58,59],first_seq:34,firstn:20,firstseen:45,fit:[2,20,35],five:[38,54],fix:[3,7,15,25,59],flag:[20,41,50,51,57],flexiabl:26,flexibl:[0,2,10,11,17,23,34],flight:59,float32:[5,20,26,27,50,52],floor:[10,16],flow:35,fly:[27,54],fnt03:44,focu:[3,38],folder:[28,29,44,51,58,59],follow:[2,3,9,10,11,12,16,17,18,20,23,24,26,28,29,31,34,35,36,38,39,43,44,45,46,47,49,50,51,52,54,55,56,57,58,59],fool:50,forbid:23,force_load:25,forecast:58,forget:[12,18,23,58],form:[2,3,11,12,17,18,38,57],format:[2,3,9,27,35,36,41,44,49,51,55,56,58],former:[23,59],formula:[10,11,16,17],formular:[10,16],forward:[11,14,17,34,35,36,43,50,57,58],forwardactiv:36,forwardtest:5,found:[3,5,10,16,28,34,50,51,54,58],four:[3,31,49,52,54,56,57,58],frame:9,framework:[23,36,52,54,58],free:[20,59],french:59,frequenc:[20,38,49,54,58],frequent:[26,39,59],frog:51,from:[0,3,5,10,11,16,17,20,22,24,26,27,29,32,34,35,36,38,39,41,43,44,45,49,50,51,52,54,55,56,57,58,59],from_timestep:[10,16],fromfil:[26,27,52],fulfil:38,full:[10,16,24,29,34,36],full_matrix_project:[11,17,34],fulli:[27,35,36,38,50,51,52,54,56,58],fullmatrixproject:[10,16],fully_matrix_project:[11,17],fullyconnect:49,fullyconnectedlay:36,func:20,fundament:27,further:10,fusion:56,gain:[10,16],game:50,gamma:52,gan:23,gan_train:50,gap:41,gate:[10,11,16,17,58],gate_act:[10,11,16,17],gate_recurr:[10,16],gather:[10,36,56],gauss:[7,15],gaussian:50,gcc:[25,28,29],gdebi:31,gen:[10,59],gen_conf:[50,59],gen_data:59,gen_result:59,gen_train:50,gen_training_machin:50,gen_trans_fil:34,gender:[20,55,56],gener:[2,3,5,9,10,11,16,17,20,22,23,24,26,27,28,29,38,39,41,43,44,49,52,53,54,56,58],generatedinput:34,generator_conf:50,generator_machin:50,generator_train:50,genert:3,genr:[55,56],gereat:9,get:[3,10,11,16,17,20,22,27,28,31,34,36,38,39,44,48,51,52,54,56,57,58],get_batch_s:57,get_best_pass:58,get_config_arg:[43,54,56,58],get_data:[45,54,57],get_dict:20,get_embed:20,get_imdb:58,get_input_lay:36,get_mnist_data:50,get_model:52,get_movie_title_dict:20,get_nois:50,get_output_attr:17,get_output_layer_attr:11,get_shap:22,get_training_loss:50,get_word_dict:20,getbatchs:36,getenv:23,getinput:36,getinputgrad:36,getinputvalu:36,getoutputgrad:36,getoutputvalu:36,getparameterptr:36,getsiz:36,getslotvalu:50,gettempl:44,gettranspos:36,getw:36,getweight:36,getwgrad:36,gfortran:28,gildea:57,gist:[11,17],git:[28,29,35],github:[10,11,16,17,28,29,31,52],give:[3,24,27,29,36,38,44,54],given:[3,20,22,26,36,41,50,54,57,58,59],global:[3,7,12,15,23,24,38,41,44,56,58],global_learning_r:[7,15],globalstat:38,globalstatinfo:38,globe:3,goal:[38,57],godoc:25,goe:[10,11,16,17,24,27],going:[54,58],good:[10,16,26,38,58,59],goodfellow13:[10,16],googl:23,googleapi:44,gpg2:44,gpg:44,gpu:[2,3,7,10,12,15,16,19,28,31,37,39,50,51,52,56,57,58,59],gpu_id:[41,43,50],gpugpu_id:40,grab:[24,58],grad:[41,55],grad_share_block_num:[40,41],gradient:[7,9,10,12,15,16,18,22,24,41,54,58],gradient_clipping_threshold:[7,12,15,54,58],gradient_machin:22,gradientmachin:[5,22,50,56,59],gradual:[27,38],grai:51,gram:[49,58],grant:44,graph:[10,22,24,49],graphviz:52,grave:58,grayscal:3,greater:[10,16],grep:[29,58],groudtruth:34,ground:[9,10,16,54,59],group:[11,17,58],group_id:56,group_input:34,grouplen:[20,55],gru:[10,16,34,54,59],gru_attr:17,gru_bias_attr:[11,17],gru_decod:34,gru_decoder_with_attent:34,gru_encoder_decod:[49,59],gru_layer_attr:11,gru_memori:[11,17],gru_siz:54,gru_step:[17,34],gru_step_lay:[11,34],grumemori:[11,17,34],gserver:[10,36],gsizex:38,guarante:36,guess:[27,58],gui:38,guid:[30,34,35,36,38,44,45,49,51,58,59],guidenc:27,gur_group:[11,17],gzip:45,hack:[30,39],hadoop:23,half:44,hand:[55,56,58],handl:[23,26,39,56,58],handler:22,handwrit:[3,58],hard:[44,54],hardwar:[29,38],has:[3,5,10,11,12,16,17,18,20,23,24,29,34,36,38,44,45,49,51,54,55,56,57,58,59],has_kei:22,have:[2,3,5,9,10,11,16,17,20,23,24,26,27,28,29,34,35,36,38,39,41,43,44,49,51,54,55,56,58,59],hdf:2,head:[35,49,58],header:[27,36,49,52,56],health:55,heavi:39,height:[10,16,20,25,26,36,51],held:24,hello:23,help:[3,5,35,39],helper:[8,10,11,16,17,36],here:[3,5,7,10,11,15,16,17,20,23,26,27,28,34,39,40,43,44,45,49,51,52,53,54,55,56,57,58,59],heurist:[10,41,59],hidden:[10,11,16,17,34,44,54,56,58],hidden_s:[11,17,56],hierarch:[10,16,34],high:[7,15,36,50],higher:2,highest:[20,59],highli:[2,3,20,34,43,56,58],him:23,hint:27,histor:58,hl_get_sync_flag:36,hold:[23,24,44],home:[39,44,45],homemak:55,hook:[3,56,57],hope:0,horizont:[10,16,52],horror:55,hors:51,horst:58,host:[28,29,39,44,45],hostnam:[39,44],hostpath:45,hostport:44,hot:56,hour:59,hous:[3,20,27,49],how:[2,3,7,10,15,16,23,24,27,34,39,41,44,45,48,51,52,54,56],howev:[3,11,17,26,27,34,35,40,41,44,58,59],hpp:25,html:[20,29,51],htod:38,http:[10,11,16,17,20,28,29,31,35,44,45,50,51,52,59],huber:[10,16],huge:[10,16,35],huina:58,human:59,hyper:[10,16,36],hyperplan:20,i0601:56,i0706:59,i0719:59,i1117:38,iamfullaccess:44,iamusersshkei:44,ib0:39,ics:20,icwsm:58,id_input:[9,34],idea:[10,16,26],ident:[27,29,44,55],identifi:[34,36],identityoffsetproject:[10,16],identityproject:[10,16],ids:[9,10,16,36,54,56],idx:36,ieee:58,ignor:[3,9,10,41,49],ijcnlp:58,illustr:[3,24,34,36,38,54],ilsvrc:52,imag:[3,19,20,23,26,27,30,43,44,46,47,50,52,53,59],image_a:26,image_b:26,image_classif:51,image_fil:26,image_lay:26,image_list_provid:52,image_nam:23,image_path:26,image_provid:51,image_reader_cr:26,image_s:52,imagenet:53,imagepullpolici:44,imageri:[10,16],images_reader_cr:26,imdb:55,imdber:58,img:[3,10,16,51],img_conv:17,img_conv_lay:11,img_featur:3,img_norm_typ:10,img_pool:17,img_pool_lay:11,img_siz:51,imgsiz:38,imgsizei:38,imgsizex:38,immedi:44,immutable_paramet:23,implement:[3,10,11,12,16,17,18,20,34,54,57],importerror:56,improv:[0,38,44,58,59],inbound:44,includ:[2,3,10,11,16,17,20,23,25,28,29,34,36,38,41,44,45,49,54,55,57,59],inconsist:55,incorrect:[10,16],increas:[24,41,59],increment:41,incupd:36,inde:[20,26,29],independ:[10,16,54],index:[3,9,10,16,19,20,22,24,34,39,44,56],indexslot:[10,57],indic:[3,9,10,16,27,39,44,57],individu:[27,44],industri:24,infer:[1,23,24,28],infiniband:39,info:[9,10,16,20,36,39],infom:35,inform:[5,9,20,36,38,41,44,55,56,57,58,59],infrastructur:[44,50],ingor:41,ininst:23,init:[7,15,36,43,44,50,54,56,57],init_hook:[54,56,57],init_hook_wrapp:8,init_model_path:[40,41,43,49,54,57],initi:[3,5,7,10,15,16,20,34,36,41,49,50,54,57],initial_max:[7,15],initial_mean:[7,10,15,16],initial_min:[7,15],initial_std:[7,10,15,16],initpaddl:[5,50],inlcud:[11,17],inlin:44,inner:36,inner_param_attr:[11,17],input1:[10,11,16,17],input2:[10,16],input:[3,5,9,10,11,14,16,17,19,20,22,26,27,34,36,43,49,50,51,52,54,56,57,58,59],input_data:36,input_data_target:36,input_featur:14,input_fil:[27,57],input_hassub_sequence_data:36,input_id:[10,16],input_imag:[11,17,51],input_index:36,input_label:36,input_lay:[10,36],input_nam:23,input_sequence_data:36,input_sequence_label:36,input_sparse_float_value_data:36,input_sparse_non_value_data:36,input_t:36,input_typ:[27,34,54,56],inputdef:36,inputlayers_:36,inputtyp:[3,20],insid:[9,10,16,24,26,29,44],inspir:49,instal:[29,32,35,39,45,51,52,56,57,58],instanc:[10,12,16,24,34,36,38,41,57],instance_ip:44,instanti:24,instead:[10,16,19,26,29,35,39,54,59],instruct:[29,31,38,54],int32:41,integ:[3,9,10,16,20,25,34,36,54,58],integer_valu:[3,20,54],integer_value_sequ:[3,20,34,54,57],integr:[28,57],intend:0,inter:[10,16,39],interact:[29,44],intercept:[10,16],interest:[38,58],interfac:[1,5,7,10,11,15,16,17,39,44,51,56,58],interg:54,intergr:[10,16],intermedi:57,intern:[10,11,17,20,22,44],internet:[24,58],interpol:10,interpret:[3,9,28,38],interv:58,intrins:28,introduc:[3,24,45,56,58],introduct:[4,50],invalid:26,invari:51,invok:[3,10,22,38,44,56],involv:50,iob:9,ioe:9,ips:44,ipt:[10,16,34],ipython:23,is_async:12,is_discriminator_train:50,is_gener:[10,49,50,59],is_generator_train:50,is_kei:56,is_layer_typ:10,is_predict:[54,56,58],is_seq:[10,34,56],is_sequ:56,is_stat:[7,15],is_test:[52,57,58],is_train:3,isn:38,isol:29,isspars:36,issu:[28,29,38],item:[10,16,20,22,26],iter:[10,11,12,17,18,20,22,23,24,26,51,57,58],its:[3,9,10,11,16,17,23,24,36,38,41,44,49,50,51,54,58,59],itself:[11,17,24],java:25,jeremi:38,jie:[57,58],jmlr:[10,16],job:[5,9,20,40,41,43,52,54,56,57,58,59],job_dispatch_packag:39,job_id:20,job_mod:49,job_nam:44,job_namespac:44,job_path:44,job_workspac:39,jobpath:44,jobport0:44,jobport1:44,jobport2:44,jobport3:44,johan:58,join:24,joint:[49,59],jointli:[11,17,59],journal:[57,58],journei:29,jpeg:51,jpg:52,json:[39,44,45,56],jth:[11,17],judg:59,jupyt:29,just:[3,9,10,11,14,16,17,20,27,35,39,43,44,49,51,56,57,58],jx4xr:44,jypyt:23,k8s_data:44,k8s_job:23,k8s_token:23,k8s_train:44,k8s_user:23,kaim:[10,16],kaimingh:52,kebilinearinterpbw:38,kebilinearinterpfw:38,keep:[3,10,16,24],kei:[3,20,22,24,38,39,56,58],kernel:[10,16,38,54],key1:41,key2:41,key_pair_nam:44,keyid:44,keymetadata:44,keypair:44,keyserv:44,keystat:44,keyusag:44,keyword:3,kill:[24,44],kind:[2,3,23,24,27,44,45,50,54,56],kingsburi:57,kms:44,know:[3,11,17,23,27,36,38,44,56],knowledg:58,known:[50,58,59],kriz:[20,51],ksimonyan:[11,17],kube_cluster_tl:23,kube_ctrl_start_job:23,kube_list_containers_in_job_and_return_current_containers_rank:23,kubeconfig:44,kubectl:45,kuberent:44,kubernet:[23,24,37,39,46,47],kubernetes_service_host:23,kwarg:[3,9,10,11,12,16,17,18,20,54,56,57],l1_rate:[7,15],l2_rate:[7,15],l2regular:[51,54,58],label:[3,5,9,10,12,16,18,20,22,26,27,34,45,50,51,52,53,54,56,58],label_dict:57,label_dim:[10,16,54],label_fil:[26,57],label_lay:[10,26],label_list:57,label_path:26,label_slot:57,labeledbow:58,labl:58,lag:41,lake:3,lambdacost:[10,16],lambdarank:[10,16],languag:[10,16,20,43,49,57,58,59],laptop:29,larg:[19,20,57,58,59],larger:[3,7,9,10,12,15,16,39],last:[9,10,11,16,17,27,34,39,41,54,58,59],last_time_step_output:10,lastseen:45,late:58,latenc:[39,44],later:[28,35,44,54],latest:[10,16,24,29,35,45,58],latter:59,launch:[41,44,58],launcher:23,lawyer:55,layer1:[10,11,16,17],layer2:[10,16],layer3:[10,16],layer:[4,5,7,9,11,15,17,19,20,21,22,26,27,34,37,40,41,49,50,51,52,54,56,57,58],layer_0:36,layer_attr:[10,16,34,43],layer_num:[43,52],layer_s:[10,16],layer_typ:[10,16],layerbas:36,layerconfig:36,layergradutil:36,layermap:36,layeroutout:[10,16],layeroutput:[9,11,56],lbl:[9,51],ld_library_path:[28,31,39],lead:38,learn:[0,7,9,10,11,12,15,16,17,18,20,23,26,27,29,34,36,38,51,52,54,57,58,59],learnabl:[10,16],learning_method:[12,27,49,51,54,56,58,59],learning_r:[7,12,15,27,49,51,54,56,58,59],leas:24,least:[9,10,16,24,28,55],leav:[3,44],lecun:20,left:[10,16,27,52],leman:59,len:[3,10,16,34,36,54,56,57],length:[10,11,16,17,20,34,41,45,58,59],less:[10,16,23,39,59],less_than:23,let02:45,let:[5,10,16,23,27,29,44,56],level:[7,10,15,16,39,41,50,56,58,59],lib64:[28,39,41],libcudnn:28,libjpeg:51,libpaddl:25,libpython:28,librari:[10,16,28,29,39,41,56],licens:57,life:24,like:[3,9,10,16,20,24,26,27,28,34,38,39,40,43,44,49,52,54,56,58,59],limit:[10,20,38,41],line:[2,3,5,9,20,27,35,37,38,39,43,44,49,51,52,56,57,58,59],linear:[6,10,16,32],linear_comb:10,linearactiv:[10,27],linguist:57,link:[10,11,16,17,28,44,54,58],linux:[28,29,31,44,59],lipeng:49,lipton:58,list:[2,3,8,9,10,11,16,20,22,23,27,29,34,36,39,41,43,44,51,52,54,56,57,58,59],listen:41,literatur:58,littl:[2,3,41,54,58],lium:59,live:[24,29],liwicki:58,load:[2,3,5,10,16,23,24,27,41,44,52,56,57,58,59],load_featur:52,load_feature_c:52,load_feature_pi:52,load_missing_parameter_strategi:[40,41,43,49,57],load_uniform_data:50,loadparamet:5,loadsave_parameters_in_pserv:[40,41],local:[7,15,24,28,29,35,39,40,41,45,51,58],localhost:29,locat:[34,36,54,57],lock:24,log:[3,6,35,36,39,41,44,45,51,56,57,58,59],log_barrier_abstract:41,log_barrier_lowest_nod:[40,41],log_barrier_show_log:[40,41],log_clip:[40,41],log_error_clip:[40,41],log_period:[41,43,45,50,51,54,56,57,58,59],log_period_serv:[40,41],logarithm:14,logger:3,logic:[3,39],login:29,longer:59,look:[3,9,27,39,40,44,45,50,54],lookup:54,loop:26,loss:[10,16,36,50,54,58,59],lot:40,low:[10,16],lower:39,lowest:41,lst:56,lstm:[10,16,34,45,54],lstm_attr:17,lstm_bias_attr:[11,17],lstm_cell_attr:[11,17],lstm_group:[11,17],lstm_layer_attr:11,lstm_size:54,lstm_step:[11,17],lstmemori:[11,17,34],lstmemory_group:10,ltr:[10,16],lucki:27,mac:[28,29],machan:[11,17],machin:[10,11,12,16,17,20,22,27,35,36,40,41,43,44,45,54,56,58,59],made:[3,24,27,34,55],mai:[3,8,9,10,16,26,29,35,38,44,55],main:[3,5,35,44,51,57,58],mainli:41,maintain:[10,44],major:[29,35,50,52,58,59],make:[3,10,16,23,24,26,28,29,35,36,38,39,44,51,54,56,58],male:55,malloc:36,manag:[24,35,39],manageri:55,mandarin:[10,16],mani:[0,10,11,16,17,27,29,41,54,55,56,58],mannal:39,manual:35,manufactur:59,mao:58,map:[3,10,16,20,22,23,41,51,52,56],map_read:20,mapreduc:23,marcu:58,mark:[3,34,57],mark_slot:57,market:[27,55,58],martha:57,mask:[7,10,15,16],master:[23,35,41,58],mat_param_attr:[11,17],match:38,math:[11,17,25,36,38],matirx:[10,16],matplotlib:51,matric:[5,34,36],matrix:[9,10,11,16,17,20,22,25,34,36,40,43,52,57],matrixptr:36,matter:3,max:[3,7,10,13,15,16,20,38,41,43,51,54,56],max_id:[22,54],max_job_id:20,max_length:[10,34],max_movie_id:20,max_sort_s:[10,16],max_user_id:20,maxid:[9,10,54],maxid_lay:[9,54],maxim:[10,59],maximum:[9,20,34,38,41,54,57,58],maxinum:19,maxout:10,maxpool:[10,16],mayb:[10,11,16,17,51],md5:20,mean:[3,7,9,10,11,12,15,16,17,18,19,20,22,26,27,34,38,39,41,43,44,49,50,51,52,54,56,57,58,59],mean_img_s:51,mean_meta:52,mean_meta_224:52,mean_valu:52,measur:[27,38],mechan:[10,11,17,34,44,58],media:58,meet:57,mem:10,member:23,memcpi:38,memor:58,memori:[2,3,11,17,34,36,38,41,43,45,54,57,58,59],memory_nam:10,memory_threshold_on_load_data:41,mere:[11,17],merg:[35,41,49,59],mergedict:[49,59],messag:[27,41,45,56,58,59],meta:[39,51,52,54],meta_config:[39,56],meta_fil:56,meta_gener:[39,56],meta_path:51,meta_to_head:56,metadata:[44,45],metaplotlib:23,method:[3,8,10,11,12,16,18,22,29,36,38,41,43,54,56,58,59],might:[10,16,29,36,44],mileag:38,million:[20,43,55],min:[7,15,38,43,44,56],min_pool_s:3,mind:39,mini:[3,10,16,20,22,24],mini_batch:26,minibatch:[10,16],minibatch_data:20,minim:[3,12,18,27,41],minimum:[10,16],minimun:41,minst:3,minut:[24,44,59],miss:[41,49,57],mit:44,mix:[11,17,34,57],mixed_attr:17,mixed_bias_attr:[11,17],mixed_lay:[11,34,57],mixed_layer_attr:11,mixedlayertyp:10,mkdir:[28,29,44],mkl:28,mkl_path:28,mkl_root:28,ml_data:[39,56],mnist:[3,5,26],mnist_provid:3,mnist_random_image_batch_read:26,mnist_train:[3,26],mnist_train_batch_read:26,mod:57,modal:57,mode:[10,16,41,50,51,52,56,58,59],model:[1,2,5,8,10,11,12,16,17,20,24,32,35,36,37,41,44,56,57,58],model_averag:12,model_config:[5,50],model_list:[41,43,57,58],model_output:58,model_path:43,model_zoo:[49,52],modelaverag:12,modifi:[5,34,35,36,39,44],modul:[2,3,5,8,11,17,20,22,27,28,51,52,54,56,57],modulo:[10,16],momentum:[7,12,15,27,54],momentumoptim:[27,51],mon:45,monitor:[54,58],mono:[10,16],month:[54,59],mood:58,more:[2,3,5,9,10,11,16,17,20,23,24,26,27,29,34,36,38,39,43,45,51,54,57,58,59],morin:[10,16],mose:[58,59],moses_bleu:59,mosesdecod:58,most:[3,5,10,20,23,26,27,34,36,38,40,56,57,58,59],mostli:[51,55],mount:[29,44,45],mountpath:[44,45],move:[10,16,24,38,44,56,58],movement:[38,58],movi:[3,20,58],movie_categori:20,movie_featur:56,movie_head:56,movie_id:56,movie_info:20,movie_meta:56,movie_nam:56,movie_review:20,movieid:55,movieinfo:20,movielen:53,moving_average_fract:[10,16],mpi:39,mse:10,mse_cost:[27,56],much:[10,16,24,26,38],mul:36,mulit:39,multi:[10,16,36,40,41,52,59],multi_binary_label_cross_entropi:16,multi_crop:52,multinomi:[10,16],multipl:[9,10,11,16,17,20,23,29,34,36,41,43,44,50,54,56,58],multipli:[9,10,16,36,51],multithread:3,music:55,must:[3,9,10,11,14,16,17,26,28,29,34,35,36,39,41,43,44,59],my_cluster_nam:44,my_cool_stuff_branch:35,my_external_dns_nam:44,mypaddl:45,mysteri:55,name:[3,7,8,9,10,11,15,16,17,19,20,22,23,24,27,29,34,36,38,39,41,43,45,46,47,49,50,51,52,54,56,58,59],namespac:[25,29,36,45],nano:35,nativ:[10,16],natur:[43,57,58],nchw:[10,16],ndarrai:22,ndarri:22,ndcg:[10,16],ndcg_num:[10,16],nearest:54,necessari:[3,10,16,28,36,39,54,58],necessarili:36,need:[3,10,11,16,17,20,23,27,28,29,31,34,35,36,39,40,41,43,44,45,50,51,52,54,56,57,58,59],neg:[3,9,10,16,54,57,58],neg_distribut:[10,16],negat:57,neighbor:54,nest:[3,20],net:[10,11,16,17],net_conf:58,net_diagram:52,network:[2,3,4,5,7,9,10,12,15,16,18,20,21,22,23,26,27,29,36,38,39,41,49,58,59],network_config:43,networkadministr:44,neural:[3,5,10,11,12,16,17,18,20,22,23,27,38,41,49,50,52,58,59],neuralnetwork:[10,16,32],neuron:[5,36,54,58],never:[20,26,44,45],newest:35,newtork:58,next:[10,20,24,34,36,38,41,44,45,57,58,59],nfs4:44,nfs:44,nfsver:44,nginx:29,nic:[39,40,41],nine:[20,57],nlp:[3,10],nltk:20,nmt:59,nnz:36,no_cach:3,no_sequ:[3,56],noah:58,noavx:[29,31],node:[10,16,36,39,41,44,45,58,59],node_0:44,node_1:44,node_2:44,nodefil:39,noir:55,nois:[10,16,50],noise_dim:50,non:[10,16,24,36,41,44],none:[2,3,5,7,8,9,10,11,12,15,16,17,18,19,20,22,23,27,34,52,54],nonlinear:36,norm:50,norm_by_tim:[10,16],normal:[3,5,10,11,16,17,20,31,34,36,39,41,45,49,50,52],normzal:52,north:51,notat:[10,16],note:[3,5,7,10,11,12,15,16,17,19,22,23,26,28,38,41,43,44,49,51,56,58],notebook:29,noth:[14,22,41],notic:[34,36],novel:58,now:[0,3,10,16,24,27,29,35,41,44,50,56,57],np_arrai:20,nproc:28,ntst1213:59,ntst14:59,nullptr:36,num:[10,16,39,41,54,57,58,59],num_channel:[10,11,16,17,51],num_chunk_typ:9,num_class:[10,11,16,17,51],num_filt:[10,11,16,17],num_gradient_serv:[40,41],num_group:[10,16],num_neg_sampl:[10,16],num_parameter_serv:23,num_pass:[22,27,40,41,43,45,54,56,57,58,59],num_repeat:[10,16],num_result:9,num_results_per_sampl:10,number:[3,9,10,16,20,24,26,27,36,39,41,44,49,51,52,54,57,58,59],numchunktyp:9,numdevices_:43,numlogicaldevices_:43,numofallsampl:9,numofwrongpredict:9,numpi:[20,22,26,27,28,50,52],numsampl:38,numtagtyp:9,nvcc:29,nvidia:[28,29,38,41],obj:[3,8,27,51,52,54,56],object:[3,5,7,8,9,10,11,12,15,16,17,18,20,22,23,25,38,50,51,52,54,57],observ:[12,18,27,36,38,59],obtain:[54,57,58],occup:[55,56],occur:[20,22,35],oct:45,odd:[10,16],off:29,offer:[5,57],offici:[29,44,51],offlin:24,offset:[10,16,56],often:[9,39,54,59],ograd:36,old:[29,35,41],omit:54,on_init:3,on_travisexclud:28,onc:[3,10,24,29,35,36,44,54],one:[3,8,9,10,11,12,14,16,17,18,19,20,23,24,26,27,29,35,36,39,41,43,44,45,49,50,51,52,54,56,57,58,59],one_host_dens:56,one_hot_dens:56,onli:[2,3,5,9,10,11,16,17,19,20,22,23,27,28,34,35,36,38,40,41,43,44,45,49,52,54,55,58,59],onlin:[12,18,24,26],onto:44,open:[0,3,10,16,23,26,27,29,44,52,54,56,57],openbla:28,openblas_path:28,openblas_root:28,oper:[10,11,12,16,17,18,29,34,36,38,41,44,49,51,56],opinion:58,opt:[23,28],optim:[3,4,7,15,21,22,27,36,38,58],option:[3,9,10,16,23,27,35,36,39,43],order:[3,10,11,16,17,20,26,36,41,44,45,50,52,54,58,59],ordinari:58,oregon:44,org:[10,11,16,17,20,28,50],organ:[10,16,51,58,59],origin:[0,2,3,10,16,20,35,50,57,59],other:[3,9,10,11,12,16,17,20,28,29,31,34,35,43,44,45,49,50,51,52,54,55,56,57,58,59],otherchunktyp:9,otherwis:[2,8,10,16,20,23,24,26,34,39,43,56,59],our:[23,29,34,36,44,45,49,51,54,57,58,59],out:[10,16,22,23,27,34,38,41,44,45,51,58],out_dir:44,out_left:[10,16],out_mem:34,out_right:[10,16],out_size_i:[10,16],out_size_x:[10,16],outlin:42,outperform:57,output:[5,7,9,10,14,15,16,17,19,20,22,23,26,27,34,36,38,41,43,45,49,50,51,52,54,56,57,58,59],output_:[10,16,36],output_dir:52,output_fil:57,output_id:[10,16],output_lay:[22,52],output_max_index:19,output_mem:[10,16,34],outputh:[10,16],outputw:[10,16],outsid:[3,10,11,16,17,29],outter_kwarg:3,outv:36,over:[2,10,11,16,17,23,35,36,38,54,57,58],overcom:58,overhead:38,overlap:36,overrid:[24,36],owe:0,own:[29,35,39,44],pacakg:31,pack:29,packag:[3,16,20,29,30,44],pad:[10,34,54],pad_c:[10,16],pad_h:[10,16],pad_w:[10,16],paddepaddl:2,padding_attr:[10,16],padding_i:[10,16],padding_x:[10,16],paddl:[3,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,27,28,29,30,31,35,36,37,38,39,41,43,44,50,51,54,56,57,58,59],paddle_error:25,paddle_matrix:25,paddle_matrix_shap:25,paddle_n:39,paddle_output:45,paddle_port:39,paddle_ports_num:39,paddle_ports_num_for_spars:39,paddle_pserver2:39,paddle_root:49,paddle_source_root:49,paddle_train:39,paddledev:[44,45],paddlepaddl:[0,2,3,5,10,11,12,16,17,20,24,26,27,28,31,32,34,35,36,37,38,39,46,47,52,54,56,57,58],paddlepadl:3,paddlpaddl:0,paddpepaddl:3,page:[35,44,56],pai:29,pair:[9,57],palceholder_just_ignore_the_embed:49,palmer:57,paper:[10,16,49,50,52,57,58,59],paraconvert:49,paragraph:58,parallel:[38,41,43,44,45,59],parallel_nn:[7,15,40,41],param:[7,10,15,16,56],param_attr:[10,11,16,17,27,34],paramattr:[7,10,15,16,27,34],paramet:[2,3,4,5,8,9,10,11,12,16,17,18,19,20,21,26,27,36,37,43,50,51,54,56,57,58,59],parameter_attribut:[10,16],parameter_block_s:[40,41],parameter_block_size_for_spars:[40,41],parameter_learning_r:[7,15],parameter_nam:[22,23],parameter_serv:23,parameterattribut:[7,10,11,15,16,17],parametermap:36,parameters_:36,parameterset:23,parametris:[12,18],paramt:[44,49],paramutil:56,paraphras:59,paraphrase_data:49,paraphrase_model:49,paraspars:36,parent:[10,36],pars:[5,20,43,44,50,56,57],parse_config:[5,50],parser:56,part:[3,16,27,34,35,36,38,50,54,56,57,58,59],parti:[38,56],partial:[10,16,50],participl:49,particular:38,partit:[24,44],pass:[3,8,10,16,20,22,24,26,27,35,36,38,39,41,44,45,50,51,54,56,57,58,59],pass_id:22,pass_idx:26,pass_test:50,passtyp:36,password:[29,39],past:[23,29,44],path:[2,3,9,20,22,24,26,27,28,34,39,41,43,44,45,49,51,52,54,57,58,59],pattern:[20,24,25,27,44,56,58],paul:57,paus:24,pave:59,pdf:[10,11,16,17],pem:[23,44],pend:24,penn:57,per:[10,20,26,41,51,54],perfom:[41,43],perform:[2,10,11,16,17,27,34,35,36,37,39,40,50,51,54,58,59],period:[2,24,41,54,56,57,58,59],perl:[58,59],permiss:44,peroid:[10,16],persist:44,persistentvolum:44,persistentvolumeclaim:44,person:23,perspect:38,perturb:36,pgp:44,phase:27,photo:51,pick:[3,44],pickl:56,picklabl:8,pictur:54,piec:[10,11,16,17,27],pillow:51,pip:[28,35,39,51,56],pipe:55,pipelin:57,pixel:[3,10,16,20],pixels_float:3,pixels_str:3,place:[2,3,24,36,38,39,52,59],placehold:[27,49],plai:[57,58],plain:[2,9,10,16,22],plan:[24,36],platform:[0,27,44],pleas:[3,5,7,10,11,12,15,16,17,18,23,24,26,28,29,30,34,35,36,44,49,51,54,56,57],plot:[23,51],plotcurv:51,png:[51,52],pnpairvalidationlay:41,pnpairvalidationpredict_fil:40,pod:[44,45],pod_nam:44,point:[27,38],polar:[20,58],polici:44,polit:58,poll:58,poo:51,pool3:36,pool:[3,4,11,17,21,51,54,56],pool_attr:[11,17],pool_bias_attr:[11,17],pool_layer_attr:11,pool_pad:[11,17],pool_siz:[3,10,11,16,17],pool_size_i:[10,16],pool_strid:[11,17],pool_typ:[10,11,16,17],pooling_lay:[11,54,56],pooling_typ:[10,16,54],poolingtyp:19,popular:[27,52],port:[29,39,40,41,44,45],port_num:40,ports_num:41,ports_num_for_spars:[40,41,43],pos:[56,58],pose:24,posit:[3,9,10,16,20,54,57,58,59],positive_label:9,possibl:[23,35,38,50],post1:28,potenti:38,power:[10,54,59],practic:[8,10,16,27,34,36],pre:[3,10,11,17,20,23,29,44,45,49,51,57,58,59],pre_dictandmodel:49,precis:[9,28],pred:[54,57],predefin:58,predetermin:[10,41,59],predic:[20,57],predicate_dict:57,predicate_dict_fil:57,predicate_slot:57,predict:[3,4,9,10,12,16,18,22,27,34,39,41,49,54,59],predict_fil:41,predict_output_dir:[40,41,54],predict_sampl:5,predicted_label_id:54,predictor:56,predin:51,prefer:58,prefetch:36,prefix:[24,44],pregrad:36,preinstal:28,premodel:49,prepar:[5,32,46,54],preprcess:58,preprocess:[20,34,39,45,58],prerequisit:28,present:[23,52,57,59],pretti:27,prev_batch_st:[40,41],prevent:[2,12,18,23,24],previou:[10,11,16,17,24,36,41,44,57,59],previous:[45,52],price:[20,27],primari:16,primarili:58,principl:23,print:[7,15,22,23,27,34,41,49,54,56,57,58,59],printallstatu:38,printer:9,printstatu:38,prite:9,privileg:44,prob:[9,22,50],probabilist:[10,16,49],probability_of_label_0:54,probability_of_label_1:54,probabl:[9,10,16,22,34,35,52,54,57],problem:[5,10,12,16,18,23,32,54,57,58],proc:29,proc_from_raw_data:54,proce:[20,26,44],procedur:[49,57,59],proceed:[10,16,57],process:[2,3,5,7,8,10,11,12,15,16,17,23,27,29,34,39,41,43,44,45,49,51,52,54,56,57,58,59],process_pr:54,process_test:8,process_train:8,processdata:[51,52],processor:38,produc:[11,17,20,24,26,29,52,54],product:[0,29,36,44,54,58],productgraph:45,profil:28,proflier:38,program:[2,20,23,26,29,38,39,41],programm:55,progress:[24,41],proivid:3,proj:[10,16],project:[10,11,16,17,28,34,36,56],promis:[10,11,17],prompt:35,prone:23,prop:57,propag:[12,18,41,43],properli:54,properti:[3,41],propos:59,proposit:57,protect:36,proto:19,protobuf:28,protocol:41,prove:54,proven:59,provid:[0,8,10,16,20,23,27,29,34,38,39,44,49,50,51,52,55,58],providermemory_threshold_on_load_data:40,provis:44,provod:3,prune:10,ps_desir:24,pserver:[39,40,41,44],pserver_num_thread:[40,41],pserverstart_pserv:40,pseudo:23,psize:36,pull:[29,49,59],punctuat:58,purchas:54,purpos:[0,24,38],push_back:36,put:[24,29,36,39,45,54],pvc:44,pwd:29,py_paddl:[5,20,50],pydataprovid:[2,3,54],pydataprovider2:[4,5,27,34,54,56,58],pydataproviderwrapp:8,pyramid:[10,16],pyramid_height:[10,16],python:[2,3,4,8,16,22,23,25,27,28,35,39,49,50,51,57,58,59],pythonpath:51,pzo:58,qualifi:28,qualiti:54,queri:[10,16,44,59],question:[10,16,23,44,57],quick:[41,45,53,59],quick_start:[44,45,46,54],quick_start_data:45,quickli:27,quickstart:45,quit:38,quot:55,rac:10,rais:20,ramnath:58,ran:38,rand:[38,41,43,50,57],random:[3,7,10,15,16,20,26,27,41,50,51,57],randomli:58,randomnumberse:40,rang:[3,10,16,20,26,41,43,51,55,57],rank:[10,16,23,44,52,54],rare:3,rate:[7,9,12,15,18,20,36,39,51,54,56,58,59],rather:[5,44,58],ratio:41,raw:[10,16,27,54,58],raw_meta:56,rdma:[28,41],rdma_tcp:[40,41],reach:[24,38,57],read:[2,3,20,22,23,24,26,27,34,39,44,52,54,56],read_from_realistic_imag:23,read_from_rng:23,read_mnist_imag:23,read_ranking_model_data:23,reader:[1,22,59],reader_creator_bool:26,reader_creator_random_imag:[20,26],reader_creator_random_image_and_label:[20,26],readi:[24,27,44,45,51],readm:[55,56,58],readonesamplefromfil:3,readwritemani:44,real:[3,26,27,50],realist:23,reason:[10,11,17,23,24,29,45],rebas:35,recal:9,receiv:[8,24],recent:59,reciev:41,recogn:51,recognit:[3,10,16,52,58],recommand:3,recommend:[2,11,17,23,29,34,36,39,41,56],recommonmark:28,recompil:38,record:[44,56,57],recordio:23,recov:[24,27,50],rectangular:[10,16],recurr:[57,58],recurrent_group:[11,17,34],recurrent_lay:11,recurrentgroup:9,recurrentlay:41,recv:44,reduc:[12,18,39,41,43],refer:[2,5,7,8,10,11,12,15,16,17,18,24,34,36,39,45,49,51,54,56,59],referenc:10,regard:57,regardless:59,regex:56,region:[38,57],regist:[36,38],register_gpu_profil:38,register_lay:36,register_timer_info:38,registri:45,regress:[9,32,53],regular:[7,12,15,36,44,51,54,58],rel:[2,11,17,39],relat:[3,8,24,29,31,45,56,58],relationship:[20,27,50],releas:[28,29,31,44,55,57],relev:[57,59],reli:28,reliabl:24,relu:[6,10,16,36],reluactiv:10,remain:54,rememb:10,remot:[7,15,29,35,36,39,41,43,44],remoteparameterupdat:41,remov:[20,39,41,58],renam:59,reorgan:[10,16],repeat:10,replac:58,repo:[29,35],report:[38,39],repositori:35,repres:[3,5,10,12,16,20,34,36,44,51,54,55],represent:[54,58],reproduc:59,request:[24,44,45,49,59],requir:[2,9,10,16,23,24,36,39,44,45,50,51,54,56],requrest:35,res5_3_branch2c_bn:52,res5_3_branch2c_conv:52,res:57,research:[10,16,20,51,55,58],resembl:58,reserv:3,reserveoutput:36,reset:[10,16,24],reshap:26,reshape_s:[10,16],residu:52,resnet:53,resnet_101:52,resnet_152:52,resnet_50:52,resolv:[35,45],resourc:[29,44],respect:[3,27,34,36,41,51,52,57,59],respons:[10,16,44,45],rest:[3,10,16,27],restart:[24,44,45],restartpolici:[44,45],restrict:41,resu:26,result:[5,9,10,14,16,22,34,38,41,44,51,52,54,56,57,58],result_fil:[9,34],ret_val:56,retir:55,retran:44,retriev:[36,45],return_seq:[11,17],reus:[26,36],reveal:23,revers:[10,11,16,17,34,57,58],review:[20,35,45,54,58],reviews_electronics_5:45,revis:54,rewrit:59,rgb:[10,16],rgen:58,rho:[12,18],rich:27,right:[3,10,16,52],rmsprop:[12,54],rmspropoptim:56,rnn:[10,11,17,37,40,54,58],rnn_bias_attr:34,rnn_layer_attr:34,rnn_out:34,rnn_step:10,rnn_use_batch:[40,41],rnnlm:20,robot:51,role:[20,23,34,44,53,58],roman:58,romanc:55,root:[12,18,19,29,39,44,45],root_dir:39,rot:[10,16],rotat:10,roughli:[3,50],routin:56,routledg:58,row:[5,9,10,16,20,36,52],row_id:[10,16],rsize:44,rtype:[10,56],rule:[36,44],run:[23,24,29,35,36,37,38,41,44,46,47,49,51,52,54,56,58,59],runinitfunct:38,runtim:[2,3,28,29,39],s_fusion:56,s_id:56,s_param:50,s_recurrent_group:34,sacrif:2,sai:[27,41,43],sake:36,sale:55,same:[3,5,8,9,10,11,16,17,23,34,39,43,44,49,54,56,57,58,59],samping_id:[10,16],sampl:[3,5,9,20,39,41,43,49,50,52,54,56,57,58,59],sample_dim:50,sample_id:9,sample_num:9,santiago:58,satisfi:[39,44,54],save:[3,10,16,20,24,27,41,43,44,45,51,52,54,56,57,58,59],save_dir:[27,41,43,45,50,51,54,56,57,58,59],save_only_on:[40,41],saving_period:[40,41],saving_period_by_batch:[40,41,43,54],saw:3,sbin:29,scalabl:0,scalar:[3,10,16],scale:[0,10,14,52,55,56],scalingproject:[10,16],scatter:10,scenario:[27,40],scene:40,schdule:44,schedul:[44,50],scheduler_factor:[7,15],schema:49,scheme:[9,12,57],schmidhub:58,schwenk:59,sci:55,scienc:58,scientist:[0,55],score:[9,10,16,56,58,59],screen:56,scrip:54,script:[5,20,29,39,44,51,52,54,57,58,59],seaplane_s_000978:51,search:[10,24,28,34,41,57,59],seat:59,second:[3,10,16,20,23,26,27,35,39,49,52,54,55,56,58],secret:44,section:[3,34,36,39,44,54],sed:58,see:[3,5,10,11,16,17,23,27,29,35,38,44,49,50,52,54,56,58,59],seed:[38,41],segment:9,segmentor:49,sel_fc:[10,16],select:[10,16,35,44,55,59],selectiv:[10,16],selector:45,self:[27,36,55,58],selfnorm:[10,16],semant:[20,23,34,53,58],semat:23,sen_len:57,send:[24,41,44],sens:10,sent:[23,45],sent_id:34,sentenc:[3,10,20,34,54,57,58,59],sentiment:[3,27,53,54,57],sentiment_data:58,sentiment_net:58,sentimental_provid:3,separ:[3,9,41,49,54,55,56,57,59],seq:[10,16,56],seq_pool:[10,16],seq_text_print:9,seq_to_seq_data:[49,59],seq_typ:[3,20,56],seqtext_printer_evalu:34,seqtoseq:[10,34,49,59],seqtoseq_net:[10,34,49,59],sequel:3,sequenc:[3,9,10,11,14,16,17,19,20,36,49,54,56,57,58,59],sequence_conv_pool:54,sequence_layer_group:10,sequence_nest_layer_group:10,sequencesoftmax:6,sequencestartposit:[10,16],sequencetextprint:9,sequencetyp:3,sequenti:[8,10,16,34,54,57],seri:[11,17,58],serial:[3,22],serv:[29,38,44,50],server:[23,29,36,39,40],serverless:24,servic:[29,55],session:[29,38],set:[2,3,5,7,9,10,11,15,16,17,20,22,23,24,27,28,29,31,34,36,37,38,39,40,41,43,44,45,49,51,52,54,55,56,57,58,59],set_active_typ:36,set_default_parameter_nam:[7,15],set_drop_r:36,set_input:10,set_siz:36,set_typ:36,setp:44,settup:36,setup:[3,29,36,54],sever:[3,10,16,39,43,44,53,54,56,57,58,59],sgd:[12,18,22,23,24,39,50,58,59],sgdasync_count:40,shallow:57,shape:[10,16,22,52],shard:[24,44],share:[10,16,28,29,38,41,45,57],shared_bia:[11,17],shared_bias:[10,16],shell:[44,52],shift:52,ship:51,shold:58,shop:58,shorten:[10,16],shorter:52,should:[3,5,9,10,12,16,20,22,23,26,27,31,34,35,39,44,51,54,56,57,58,59],should_be_fals:23,should_be_tru:23,should_shuffl:[3,57],shouldn:35,show:[5,12,16,18,20,24,27,35,41,44,45,49,52,54,56,57,58,59],show_check_sparse_distribution_log:[40,41],show_layer_stat:[40,41],show_parameter_stats_period:[40,41,43,45,54,57,58,59],shown:[3,9,10,16,23,34,36,38,44,50,51,52,54,56,58,59],shrink:36,shuf:56,shuffl:[3,20,56,58],sid:44,side:[10,16,22,52],sig:44,sigint:39,sigmoid:[6,10,16,17,36],sigmoidactiv:[10,11],sign:44,signal:39,signatur:44,signific:38,similar:[10,16,26,44,54,56],similarli:[10,16,57],simpl:[2,3,9,10,11,14,16,17,20,22,28,29,32,35,38,41,54,56,57,58],simple_attent:34,simple_gru:54,simple_lstm:[10,16,54],simple_rnn:[10,34],simplest:44,simpli:[2,10,16,23,28,29,34,35,38,49,52,56,58,59],simplifi:[23,36,45],simultan:44,sinc:[10,16,24,26,27,29,38,44,50,54,55,59],sincer:[35,58],singl:[3,9,11,12,17,20,24,29,36,39,45,52,54,57,59],site:44,six:[49,57,59],size:[3,9,10,11,12,16,17,18,20,24,26,27,34,36,39,41,50,51,52,54,55,56,57,58,59],size_a:[10,16],size_b:[10,16],size_t:36,sizeof:49,skill:59,skip:[26,27,39,44,52],slide:[10,12,16,18,20,24],slightli:51,slope:[10,16],slot:[56,57],slot_dim:56,slot_nam:56,slottyp:56,slow:[3,38],small:[3,20,36,39,41,51,59],small_messag:[40,41],small_vgg:51,smaller:[10,16,24],smith:58,snap:45,snapshot:44,snippet:[34,36,38,44,54],social:58,sock_recv_buf_s:[40,41],sock_send_buf_s:[40,41],socket:41,softmax:[6,10,11,16,17,23,34,36,49,54,57,58],softmax_param_attr:[11,17],softmax_selfnorm_alpha:[10,16],softmaxactiv:[34,54],softrelu:6,softwar:[29,38],solv:[23,57],solver:59,some:[3,7,10,12,15,16,20,22,23,27,28,35,36,38,40,41,43,44,50,54,55,56,57,58,59],some_python_class:25,somecppclass:25,somedata:22,somegotyp:25,someth:[3,10,16],sometim:[12,18,26,38,58],soon:24,sophist:[27,36,39],sort:[10,16,20,41,44,56,58,59],sourc:[0,8,10,16,20,26,27,29,32,34,35,44,45,49,54,56,59],source_dict_dim:34,source_language_word:34,space:[9,29,34,38],space_seperated_tokens_from_dictionary_according_to_seq:9,space_seperated_tokens_from_dictionary_according_to_sub_seq:9,spars:[3,7,10,12,15,16,18,20,36,39,41,44,54],sparse_binary_vector:[3,20,54],sparse_binary_vector_sequ:20,sparse_float_vector:3,sparse_non_value_slot:20,sparse_upd:[7,15],sparse_value_slot:20,sparse_vector:20,sparse_vector_sequ:20,sparseparam:36,sparseprefetchrowcpumatrix:36,spatial:[10,16,51],speak:[34,59],spec:[44,45],specfii:41,speci:51,special:[10,28,49,54,59],specif:[2,43,51,54,56],specifi:[2,3,9,10,16,20,23,27,28,34,36,41,44,50,51,52,54,55,56,58,59],speech:[10,16],speed:[11,17],spefici:52,sphinx:[25,28,29],sphinx_rtd_them:28,split:[3,10,16,39,43,44,49,52,54,57],split_count:44,spp:10,sql:2,squar:[6,10,12,16,18,19,27],squarerootn:13,squarerootnpool:[10,16],squash:59,srand:41,src:59,src_backward:34,src_dict:34,src_embed:34,src_forward:34,src_id:34,src_root:5,src_word_id:34,srl:[20,57],ssd:16,ssh:[29,39,44,45],sshd:29,ssl:28,sstabl:23,stabl:44,stack:[27,44,54,57],stacked_lstm_net:58,stacked_num:58,stackexchang:[10,16],stage:39,stake:59,stale:35,stamp:38,standard:[7,15,49,51,57,58,59],stanford:[20,45],stanh:6,star:55,start:[10,16,22,24,27,29,34,35,38,39,41,48,49,53,56,59],start_pass:[40,41],start_pserv:41,startup:[24,44],stat:[28,38,41,57,58,59],state:[10,11,16,17,24,27,34,41,45,50,57,59],state_act:[10,11,16,17],statement:[36,44],staticinput:[10,34],statist:[10,16,41,54,57,58,59],statset:38,statu:[9,35,38,44,45],status:45,std:[36,41],stderr:39,stdout:39,step:[5,10,11,12,16,17,19,24,34,36,38,39,44,45,54,56,57,58,59],still:52,stmt1482205552000:44,stmt1482205746000:44,stochast:[12,18,24],stock:58,stop:[10,29,39,41,45,56],storag:[44,45,51],store:[9,10,16,20,24,36,39,41,44,45,49,51,52,54,56,57,58,59],str:[22,43],straight:35,strategi:[3,19,24,41,57],street:[10,16,57],strength:50,strict:26,stride:[10,16],stride_i:[10,16],stride_x:[10,16],string:[2,3,8,9,10,16,36,41,44,58],strip:[54,56,57],structur:[20,39,44,49,51,54,56,57,58,59],sts:44,stub:[10,16],student:55,stuff:35,stun:3,style:[3,10,16,28,35],sub:[9,10,16,20,23,34,36,51,54,59],sub_sequ:3,subgradi:[12,18],submit:[35,40,41,44],subnet0:44,subnet:[23,44],subobjectpath:45,subsequenceinput:10,subset:[36,59],substanti:52,substitut:59,succe:58,succeed:45,success:[44,45,52,57],successfulcr:45,successfuli:58,successfulli:[52,56,58],successor:[41,59],sucessfulli:59,sudo:[28,31,44,51],suffic:[26,27],suffici:41,suffix:59,suggest:[10,16,38],suitabl:[35,41,51],sum:[9,10,12,13,16,18,34,36],sum_:10,sum_to_one_norm:10,summar:[54,58],sumpool:[10,16],support:[7,9,10,12,15,16,19,20,24,26,28,29,31,34,36,38,41,44,57],suppos:[27,36,54],sure:[35,36,44,51,58],survei:58,swap_channel:52,swig:[5,25,28],swig_paddl:[5,20,50],symbol:10,sync:[24,35,41,50],syncflag:36,synchron:[12,18,24,39,41,44],syntact:57,syntax:[26,56],synthect:27,synthes:50,synthet:27,sys:52,system:[24,28,29,39,45,54,57,58,59],t2b:49,tab:[29,54],tabl:[3,10,16,52,54,59],tableproject:[10,16],tag:[9,20,29,34],tagtyp:9,take:[3,5,9,10,11,16,17,23,34,36,38,44,45,50,57,59],taken:[3,57],tanh:[6,10,11,16,17,36],tanhactiv:[10,11,34],taobao:58,tar:[28,44],tarbal:44,target:[10,16,20,22,34,49,54,59],target_dict_dim:34,target_language_word:34,targetinlink:10,task:[3,9,10,16,27,34,43,49,52,57,58,59],tbd:25,tconf:58,tcp:[41,44],teach:54,tear:38,technic:24,technician:55,techniqu:[34,36],tee:[45,51,56,57,58,59],tell:[24,29,38,56],tellig:58,templat:[45,57],tempor:[10,16,54,57],tensor:10,term:[10,11,16,17,57,58],termin:45,terminolog:27,tese:2,tesh:57,test100:20,test10:20,test:[2,3,8,9,10,16,20,22,23,26,28,29,31,35,38,39,40,49,51,52,54,55,59],test_all_data_in_one_period:[45,51,56,57,58],test_data:59,test_fcgrad:36,test_gpuprofil:38,test_layergrad:36,test_list:[3,8,27,51,54],test_part_000:58,test_pass:[40,41,43,59],test_period:[40,41,43],test_ratio:56,test_wait:[40,41],testa:23,testb:23,testbilinearfwdbwd:38,testconfig:36,tester:[56,59],testfcgrad:36,testfclay:36,testlayergrad:36,testmodel_list:40,testq:23,testresult:22,testsave_dir:40,testutil:36,text:[2,3,9,11,17,20,23,29,34,44,49,53,54,56,58],text_conv:54,text_conv_pool:56,text_fil:[20,58],tflop:38,tgz:[20,28],than:[3,5,7,9,10,11,12,15,16,17,24,28,29,34,36,39,44,52,57,58,59],thank:[0,49,59],thei:[3,23,24,27,29,34,36,38,39,40,44,52,58],them:[2,3,11,17,23,24,26,27,29,34,38,40,41,44,51,52,54,56,58,59],theori:38,therefor:28,therein:[10,16],therun:52,thi:[2,3,7,8,9,10,11,12,15,16,17,18,20,22,23,24,26,27,28,29,31,34,35,36,38,39,41,43,44,45,49,50,51,52,54,55,56,57,58,59],thing:[3,27,34,35,38,56,57],think:23,third:[10,16,24,38,52,58],those:[24,52,57],thought:38,thread:[36,38,41,43,56,57,58,59],thread_local_rand_use_global_se:[40,41],threadid:43,threadloc:38,three:[3,9,10,12,16,24,26,27,34,41,50,52,58,59],threshold:[7,9,12,15,24,41,58],thriller:55,through:[5,10,16,24,34,36,38,39,49,50,51,58,59],throughout:54,throughput:38,thu:[3,10,16,27,36,44,59],tier:45,tight:28,time:[3,10,11,16,17,19,20,23,24,26,27,34,38,41,43,45,54,55,57,58,59],timelin:[10,16,38],timeo:44,timeout:24,timer:28,timestamp:[10,16,55],timestep:[3,10,16],titil:56,titl:[20,35,55,56],tmall:58,todo:[9,11,17,20,24],toend:[10,16],togeth:[3,10,11,16,17,20,22,34],token:[9,10,23,34,49,58,59],too:[20,29,31],tool:[29,34,35,44,58],toolchain:28,toolkit:[28,31],top:[9,52,57],top_k:9,topolog:[16,20,23],topolopi:22,toronto:[20,51],total:[9,22,24,26,38,39,45,49,59],total_pass:26,touch:58,tourism:58,tourist:59,toward:27,tra:59,track:[10,24],tractabl:10,tradesman:55,tradit:[10,16],trail:20,train100:20,train10:20,train:[1,2,3,5,7,8,9,10,12,15,16,18,20,32,34,36,37,38,40,46,47,52],train_conf:[49,59],train_config_dir:44,train_data:59,train_id:44,train_list:[3,8,27,51,52,54],train_part_000:58,trainabl:[10,16],traindot_period:40,trainer:[3,5,23,27,36,39,41,43,50,54,57,58,59],trainer_config:[2,3,27,39,44,45,54,56,58],trainer_config_help:[3,6,7,8,9,10,11,12,13,27,36,51,54,56],trainer_count:[40,41,43,44,45,56,57,58,59],trainer_id:[41,44],trainerintern:[54,56,59],training_machin:50,trainingtest_period:40,trainonedatabatch:50,tran:[10,36,41],trane:3,transact:[24,58],transfer:[2,3],transform:[10,16,34,36,50,51,54,57],transform_param_attr:[11,17],translat:[10,11,17,27,49,56,58,59],transpar:39,transport:41,transpos:[10,16,36,50],transposedfullmatrixproject:[10,16],travel:[3,11],travi:[28,35],treat:[10,16,34],tree:[10,16,35,41,59],trg:59,trg_dict:34,trg_dict_path:34,trg_embed:34,trg_id:34,trg_ids_next:34,triain:2,tricki:25,trivial:3,trn:54,truck:51,true_imag:26,true_label:26,true_read:26,truth:[9,10,16,54,59],tst:54,tune:[7,15,37,54,56,59],tuninglog_barrier_abstract:40,tupl:[3,8,10,11,16,20,22,26],ture:[10,16],turn:[10,26,50],tutori:[29,34,35,36,38,39,44,45,46,47,48,52,54],tweet:58,twelv:59,twitter:58,two:[2,3,10,11,16,17,23,26,27,29,34,38,39,43,44,49,50,51,52,54,56,57,58,59],txt:[3,36,39,44,54,56,58],type:[3,8,9,10,11,12,16,17,19,20,22,23,24,25,26,27,29,34,36,41,43,44,45,51,52,54,56,57],type_nam:[10,56],typedef:25,typic:[5,9,29,38,58],ubuntu:31,ubyt:26,uci:20,ufldl:[10,16],uid:45,uint64:25,uint64_t:25,unbalanc:41,unbound:34,unconstrain:58,under:[27,28,29,44,55,58],underli:27,understand:[29,38,49,51,58],understudi:59,undeterminist:38,unemploi:55,unexist:57,uniform:[7,10,15,16,20,26,41,50],uniqu:[23,24,35,41,44],unique_ptr:36,unit:[10,11,16,17,27,28,29,34,35,57],unittestcheckgrad_ep:40,univ:59,unix:39,unk:[49,59],unk_idx:[54,57],unknown:[10,16],unlabel:58,unlik:[57,58,59],unseg:[10,16],unsup:58,unsupbow:58,until:[24,39,44,57],unus:56,unzip:56,updat:[7,10,12,15,16,24,28,36,39,41,43,58],update_equ:22,updatecallback:36,updatestack:44,upload:24,upon:[0,57],upstream:35,uri:44,url:[20,31,58],urls_neg:58,urls_po:58,urls_unsup:58,usag:[2,3,9,10,11,16,17,20,22,27,38,49,50,56],use:[0,2,3,5,7,8,9,10,11,12,15,16,17,19,20,22,23,27,28,29,30,31,34,35,36,38,39,41,43,44,45,49,50,51,52,54,55,56,57,58,59],use_global_stat:[10,16],use_gpu:[40,41,43,45,50,51,52,54,56,57,58,59],use_jpeg:51,use_old_updat:[40,41],use_seq:[27,56],use_seq_or_not:56,used:[2,3,5,9,10,11,12,16,17,18,19,20,22,23,24,26,27,30,31,34,36,38,39,40,41,43,44,49,51,52,54,56,57,58,59],useful:[2,3,10,11,17,34,36,43,54,57,58],usegpu:[36,50],useless:39,user:[2,3,7,9,10,11,15,16,17,20,22,23,26,27,29,35,39,40,41,44,52,54,57],user_featur:56,user_head:56,user_id:56,user_info:20,user_meta:56,user_nam:56,userid:55,userinfo:20,usernam:35,uses:[3,24,34,35,36,41,44,51,52,54,56,59],using:[2,3,5,7,8,10,15,16,20,23,24,26,27,29,34,35,36,38,41,43,44,45,49,50,51,52,54,57,58],usr:[28,29,39,41,44],usrdict:49,usrmodel:49,usual:[10,16,20,22,27,28,38,41,43,44,58],utf:49,util:[5,28,34,36,38,51,56,58],v28:[10,16],valid:[26,44,52,58],valu:[3,5,7,9,10,12,15,16,18,19,20,22,24,27,34,36,41,43,44,50,51,52,57,58],value1:41,value2:41,value_rang:20,vanilla:34,vanish:58,vari:[38,44],variabl:[3,10,16,20,23,27,28,31,36,39,44,45,58],varianc:[10,16,52],variant:29,vast:35,vector:[3,10,11,16,17,20,23,34,36,49,54,56,58,59],vectorenable_parallel_vector:40,verb:[20,57],veri:[3,10,16,19,34,38,51,54,58],verifi:[35,36],versa:28,version:[10,11,16,17,28,29,31,36,38,39,40,41,44,45,49,51,55,57,58,59],versu:23,vertic:[10,16,52],vgg:[11,17,51],vgg_16_cifar:51,via:[24,26,28,38,39,44,54],vice:28,view:[10,16],vim:35,virtual:29,virtualenv:56,visibl:29,vision:51,visipedia:51,visual:[10,16,29,38],viterbi:57,voc_dim:54,vocab:58,volum:[29,45],volumemount:[44,45],volumn:44,voluntarili:55,vutbr:20,wai:[3,10,11,16,17,23,27,29,34,36,39,43,56,57,59],wait:[12,18,24,41],walk:[5,50],wall:57,want:[3,10,11,16,17,23,26,27,28,29,36,41,43,49,52,54,56,57,58],war:55,warn:[10,16],warp:[10,16,38],watch:24,wbia:[44,52],web:29,websit:[51,54,57,58],wei:[57,58],weight:[9,10,11,12,16,17,18,34,36,41,43,51,52],weight_act:[11,17],weightlist:36,weights_:36,weights_t:36,welcom:[56,58],well:[36,41,44,51,54],west:44,western:55,wether:[10,16],what:[7,10,11,12,15,16,17,18,27,39,54,56],wheel:28,when:[2,3,7,9,10,12,15,16,20,22,24,29,31,34,35,36,38,41,43,44,45,49,50,51,57,58,59],whenev:56,where:[3,10,11,12,16,17,18,23,24,27,34,36,38,39,41,43,49,52,57,59],whether:[9,10,11,16,17,26,36,41,50,51,56,58,59],which:[0,2,3,5,9,10,11,12,16,17,18,20,23,24,26,27,31,34,36,38,39,41,43,44,50,51,52,54,55,56,57,58,59],whichev:50,whl:28,who:[49,52,55],whole:[3,9,20,25,44,45,54,55,56,59],whole_cont:56,whose:[3,10,16,20,24,34,56,57],why:[11,17],wide:57,width:[9,10,16,20,25,26,36,51,59],wiki:[10,16],wikipedia:[10,16,20],wilder:3,window:[10,16,19,20,29,58],wise:[10,16],with_avx:29,with_avxcompil:28,with_coveragecompil:28,with_doccompil:28,with_doubl:36,with_doublecompil:28,with_dsocompil:28,with_gpu:29,with_gpucompil:28,with_profil:38,with_profilercompil:28,with_pythoncompil:28,with_rdmacompil:28,with_style_checkcompil:28,with_swig_pycompil:28,with_test:29,with_testingcompil:28,with_tim:38,with_timercompil:28,within:[10,27],without:[9,10,16,26,39,58],wmt14:59,wmt14_data:59,wmt14_model:59,wmt:59,wmt_shrinked_data:20,woboq:29,won:[38,52],wonder:3,word:[3,9,10,20,34,43,53,56,57,58,59],word_dict:[54,57],word_dim:54,word_id:3,word_idx:20,word_slot:57,word_vector:54,word_vector_dim:[34,49],words_freq_sort:20,work:[3,5,20,23,24,26,28,34,35,36,38,39,41,44,45,54,56],worker:44,workercount:44,workflow:[29,35,44],workspac:[29,41,56],worri:27,wors:50,would:[22,26,29,39,44,50,54,57],wrap:57,wrapper:[11,17,38],writ:56,write:[3,20,23,24,26,29,34,35,37,39,44,51,56,57,59],writelin:27,writer:[23,55],written:[56,58],wrong:[3,26],wsize:44,wsj:57,www:[10,16,20,51,59],x64:28,xarg:36,xgbe0:41,xgbe1:41,xiaojun:58,xrang:[26,27,36],xxbow:58,xxx:[23,52,59],xxxxxxxxx:44,xxxxxxxxxx:44,xxxxxxxxxxxxx:44,xxxxxxxxxxxxxxxxxxx:44,xzf:28,y_i:10,y_predict:27,yaml:[44,56],yann:20,year:55,yeild:[22,51],yield:[3,20,23,26,27,34,54,56,57,58],you:[2,3,5,7,10,11,12,15,16,17,27,28,29,31,34,35,36,38,39,41,43,44,49,50,51,52,54,56,57,58,59],your:[3,10,16,23,28,29,36,38,39,43,44,54,58],your_access_key_id:44,your_secrete_access_kei:44,yum:28,yuyang18:[11,17,20],zachari:58,zeng:58,zero:[3,7,10,12,15,16,18,20,24,36,41,44,54],zhidao:49,zhou:[57,58],zip:[20,55],zone:44,zxvf:44},titles:["ABOUT","API","Introduction","PyDataProvider2","API","Python Prediction","Activations","Parameter Attributes","DataSources","Evaluators","Layers","Networks","Optimizers","Poolings","Activation","Parameter Attribute","Layers","Networks","Optimizer","Pooling","Data Reader Interface and DataSets","Model Configuration","Training and Inference","PaddlePaddle Design Doc","Design Doc: Distributed Training","Paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0","Python Data Reader Design Doc","Simple Linear Regression","Installing from Sources","PaddlePaddle in Docker Containers","Install and Build","Debian Package installation guide","GET STARTED","RNN Models","RNN Configuration","Contribute Code","Write New Layers","HOW TO","Tune GPU Performance","Run Distributed Training","Argument Outline","Detail Description","Set Command-line Parameters","Use Case","Distributed PaddlePaddle Training on AWS with Kubernetes","Paddle On Kubernetes","&lt;no title&gt;","&lt;no title&gt;","PaddlePaddle Documentation","Chinese Word Embedding Model Tutorial","Generative Adversarial Networks (GAN)","Image Classification Tutorial","Model Zoo - ImageNet","TUTORIALS","Quick Start","MovieLens Dataset","Regression MovieLens Ratting","Semantic Role labeling Tutorial","Sentiment Analysis Tutorial","Text generation Tutorial"],titleterms:{"\u4e0d\u4f7f\u7528":25,"\u4e0d\u4f7f\u7528swig\u8fd9\u79cd\u4ee3\u7801\u751f\u6210\u5668":25,"\u4e0d\u5bfc\u51fapaddle\u5185\u90e8\u7684\u7ed3\u6784\u4f53":25,"\u4e0d\u5f15\u7528\u5176\u4ed6\u52a8\u6001\u5e93":25,"\u4ec5\u4ec5\u4f7f\u7528void":25,"\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":25,"\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":25,"\u539f\u56e0":25,"\u539f\u56e0\u5217\u8868":25,"\u57fa\u672c\u8981\u6c42":25,"\u5bfc\u51fac":25,"\u6307\u9488\u4f5c\u4e3a\u7c7b\u578b\u7684\u53e5\u67c4":25,"\u7b26\u53f7":25,"\u7b80\u5355\u5b9e\u73b0":25,"\u7c7b":25,"\u800c\u662f\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":25,"\u80cc\u666f":25,"\u8fd9\u4e2a\u52a8\u6001\u5e93\u4f7f\u7528c99\u6807\u51c6\u7684\u5934\u6587\u4ef6\u5bfc\u51fa\u4e00\u4e9b\u51fd\u6570":25,"case":43,"class":36,"function":49,"new":36,"paddle\u52a8\u6001\u5e93\u4e2d":25,"paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0":25,"return":26,AWS:44,Abs:14,DNS:44,EFS:44,For:45,KMS:44,Use:[43,45],Using:[29,35],With:29,about:0,absactiv:6,access:44,account:44,activ:[6,14],adadelta:18,adadeltaoptim:12,adagrad:18,adagradoptim:12,adam:18,adamax:18,adamaxoptim:12,adamoptim:12,add:44,address:44,addto:16,addto_lay:10,adversari:50,aggreg:[10,16],algorithm:[24,54],analysi:58,api:[1,4,29],appendix:54,applic:4,approach:38,architectur:[34,54],argument:[26,40,43,54],asset:44,associ:44,async:41,attent:34,attribut:[7,15],auc_evalu:9,avg:19,avgpool:13,aws:44,background:27,base:[9,10],baseactiv:6,basepool:19,basepoolingtyp:13,basesgdoptim:12,batch:26,batch_norm:16,batch_norm_lay:10,batch_siz:26,beam_search:[10,16],between:23,bidirect:58,bidirectional_lstm:[11,17],bilinear_interp:16,bilinear_interp_lay:10,bleu:59,block_expand:16,block_expand_lay:10,book:29,brelu:14,breluactiv:6,bucket:44,build:[28,30,45],built:38,cach:3,cento:28,check:[10,16,36,39],chines:49,choos:44,chunk_evalu:9,cifar:20,classif:[9,51],classification_error_evalu:9,classification_error_printer_evalu:9,clone:35,cloudform:44,cluster:[39,43,44],code:35,column_sum_evalu:9,command:[42,43,54,59],commit:[35,45],common:41,commun:41,compos:26,concat:16,concat_lay:10,concept:44,config:[4,43,56,57],configur:[21,34,37,39,44,54,56],conll05:20,connect:[10,16],contain:[29,45],content:[38,44],context_project:[10,16],contribut:35,conv:[10,16],conv_oper:[10,16],conv_project:[10,16],conv_shift:16,conv_shift_lay:10,convolut:[51,54],core:44,cos_sim:[10,16],cost:[10,16],cpu:[29,43],creat:[26,35,44,45],creator:26,credenti:44,credit:0,crf:16,crf_decod:16,crf_decoding_lay:10,crf_layer:10,cross_channel_norm:16,cross_entropi:10,cross_entropy_cost:16,cross_entropy_with_selfnorm:10,cross_entropy_with_selfnorm_cost:16,ctc:16,ctc_error_evalu:9,ctc_layer:10,cudnnavg:19,cudnnmax:19,custom:26,dat:55,data:[10,16,20,26,27,34,44,45,49,50,51,54,56,57,58,59],data_lay:10,datafeed:20,dataprovid:[3,4,41],dataset:[20,24,55,56,59],datasourc:8,datatyp:20,date:35,debian:31,decayedadagrad:18,decayedadagradoptim:12,decor:26,defin:[44,54,58,59],delet:44,delv:51,demo:44,depend:28,deriv:36,descript:[41,50,55,57],design:[23,24,26],destroi:44,detail:[41,51],develop:[29,37],devic:43,dictionari:[26,49],differ:43,directori:44,distribut:[23,24,39,41,44],doc:[23,24,26],docker:[29,45],document:[29,48],dotmul_oper:[10,16],dotmul_project:[10,16],down:44,download:[28,44,45,49,52,56,59],dropout_lay:[11,17],dynam:24,ec2:44,elast:44,embed:[16,49,54],embedding_lay:10,entri:26,eos:16,eos_lay:10,equat:36,evalu:[9,27,56],evalutaion:59,event:[22,23],exampl:[23,49,50],exercis:51,exp:14,expactiv:6,expand:16,expand_lay:10,extern:44,extract:[49,52,56,59],fault:24,fc_layer:10,featur:[52,55,56,57],field:56,file:[44,45,54,55,56],find:44,first_seq:[10,16],fork:35,format:[24,54],from:[23,28,30],full_matrix_project:[10,16],fulli:[10,16],gan:50,gate:34,gener:[34,50,59],get:[32,45],get_output:16,get_output_lay:10,github:35,gpu:[29,38,41,43],gradient:36,gradient_printer_evalu:9,group:[10,16,44],gru:[11,17,41],gru_group:[11,17],gru_step:16,gru_step_lay:10,gru_unit:[11,17],grumemori:[10,16],guid:31,hand:38,handler:[23,25],hook:35,how:[26,37,38],hsigmoid:[10,16],huber_cost:[10,16],iam:44,ident:14,identity_project:[10,16],identityactiv:6,imag:[10,11,16,17,29,45,51],imagenet:52,imdb:[20,58],img_cmrnorm:16,img_cmrnorm_lay:10,img_conv:16,img_conv_bn_pool:[11,17],img_conv_group:[11,17],img_conv_lay:10,img_pool:16,img_pool_lay:10,imikolov:20,implement:[26,36,50],infer:[22,54],info:52,ingredi:23,init_hook:3,initi:[43,44],input_typ:3,inspect:44,instal:[28,30,31,44,54],instanc:44,integr:44,interfac:[20,24,26,52],interpol:16,interpolation_lay:10,introduct:[2,49,52,58,59],isn:26,job:[24,39,44,45],join:[10,16],keep:35,kei:44,kill:39,kube:44,kubectl:44,kubernet:[44,45],label:57,lambda_cost:[10,16],last_seq:[10,16],lastest:35,launch:39,layer:[10,16,23,36,43],layeroutput:10,layertyp:10,line:[42,54],linear:[14,27],linear_comb:16,linear_comb_lay:10,linearactiv:6,list:26,local:[43,44],log:[14,54],logactiv:6,logist:54,lstm:[11,17,41,57,58],lstm_step:16,lstm_step_lay:10,lstmemori:[10,16],lstmemory_group:[11,17],lstmemory_unit:[11,17],map:26,master:24,math:[10,16],matrix:41,max:19,maxframe_printer_evalu:9,maxid:16,maxid_lay:10,maxid_printer_evalu:9,maxout:16,maxout_lay:10,maxpool:13,memori:[10,16],meta:56,mini:26,minibatch:20,misc:[11,17],mix:[10,16,43],mixed_lay:10,mnist:[20,50],model:[3,4,21,23,27,29,33,34,39,43,49,50,51,52,53,54,59],modifi:45,momentum:18,momentumoptim:12,movi:[55,56],movielen:[20,55,56],mse_cost:10,multi_binary_label_cross_entropi:10,multi_binary_label_cross_entropy_cost:16,multipl:26,name:44,nce:16,nce_lay:10,need:[26,38],network:[11,17,34,43,50,51,52,54,56,57],neural:[34,51,54,56,57],neuralnetwork:27,nlp:[11,17,41],non:3,norm:[10,16],nvprof:38,nvvp:38,object:[24,56],observ:[49,52],onli:[26,29],optim:[12,18,24,37,54],option:[28,49],outlin:40,output:[11,39,44],overview:54,packag:31,pad:16,pad_lay:10,paddl:[26,45],paddlepaddl:[23,29,30,44,48,49,59],pair:44,parallel_nn:43,paramet:[7,15,22,23,24,41,42,44,49,52],paraphras:49,pass:43,perform:[38,41],pnpair_evalu:9,point:44,pool:[10,13,16,19],pooling_lay:10,power:16,power_lay:10,pre:35,precision_recall_evalu:9,predict:[5,51,52,56,57,58],prefetch:26,prepar:[27,34,39,44,49,50,51,56,58,59],preprocess:[49,51,54,56,59],prerequisit:39,pretrain:[49,59],print:9,privat:44,problem:27,process:24,profil:38,provid:[3,26,54,56,57],pull:35,push:35,pydataprovider2:3,python:[5,26,29,36,52,54,56],queue:24,quick:54,randomnumb:41,rank:9,rank_cost:[10,16],rat:56,rate:55,reader:[20,23,26],recoveri:24,recurr:[10,11,16,17,34,54],recurrent_group:[10,16],recurrent_lay:10,refer:[3,38,57,58],region:44,regress:[27,54,56],relu:14,reluactiv:6,render:44,repeat:16,repeat_lay:10,request:35,requir:[28,35],reshap:[10,16],resnet:52,result:[39,45,59],revis:[35,49],rmsprop:18,rmspropoptim:12,rnn:[33,34,41],role:57,rotat:16,rotate_lay:10,route53:44,run:[39,45,57],sampl:[10,16],sampling_id:16,sampling_id_lay:10,scale:[16,24],scaling_lay:10,scaling_project:[10,16],script:45,secur:44,selective_fc:16,selective_fc_lay:10,semant:57,sentiment:[20,58],seq_concat:16,seq_concat_lay:10,seq_reshap:16,seq_reshape_lay:10,seqtext_printer_evalu:9,sequenc:34,sequence_conv_pool:[11,17],sequencesoftmax:14,sequencesoftmaxactiv:6,sequenti:3,server:[24,41,44],servic:44,set:[12,42],setup:[28,44],sgd:41,share:23,shuffl:26,sigmoid:14,sigmoidactiv:6,simpl:[27,34],simple_attent:[11,17],simple_gru:[11,17],simple_img_conv_pool:[11,17],simple_lstm:[11,17],singl:26,slice:[10,16],slope_intercept:16,slope_intercept_lay:10,softmax:14,softmaxactiv:6,softrelu:14,softreluactiv:6,sourc:[28,30],span:28,spars:43,specifi:[43,49],split:56,spp:16,spp_layer:10,squar:14,squareactiv:6,squarerootn:19,squarerootnpool:13,stack:58,standard:54,stanh:14,stanhactiv:6,start:[23,32,44,45,54],startup:45,structur:50,suffici:26,sum:19,sum_cost:[10,16],sum_evalu:9,sum_to_one_norm:16,sum_to_one_norm_lay:10,summar:23,summari:54,sumpool:13,system:44,table_project:[10,16],take:26,tanh:14,tanhactiv:6,task:24,tear:44,templat:44,tensor:16,tensor_lay:10,test:[36,41,43,56,57,58],text:59,text_conv_pool:[11,17],timer:38,tip:38,toi:50,toler:24,tool:38,train:[22,23,24,26,27,29,39,41,43,44,45,49,50,51,54,56,57,58,59],trainer:[22,24,44,56],tran:16,trans_full_matrix_project:[10,16],trans_lay:10,transfer:54,tune:[38,41],tutori:[49,51,53,57,58,59],ubuntu:28,uci_h:20,unit:[36,41],updat:[23,35,44],usag:[26,29,37],use:26,user:[24,49,55,56,58,59],util:9,value_printer_evalu:9,vector:41,verifi:44,version:35,vgg_16_network:[11,17],visual:52,volum:44,vpc:44,warp_ctc:16,warp_ctc_lay:10,what:38,why:[26,38],wmt14:20,word:[49,54],work:29,workflow:59,workspac:39,wrapper:36,write:[36,54],yaml:45,your:35,zoo:[52,53]}})
\ No newline at end of file
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -163,7 +163,7 @@
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -161,7 +161,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
......@@ -164,7 +164,7 @@
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
......
.. _api_v2.optimizer:
==========
Optimizer
==========
......
========
Datasets
========
==================================
Data Reader Interface and DataSets
==================================
DataTypes
......@@ -49,7 +49,6 @@ mnist
:members:
:noindex:
cifar
+++++
......@@ -61,7 +60,7 @@ conll05
+++++++
.. automodule:: paddle.v2.dataset.conll05
:members:
:members: get_dict,get_embedding,test
:noindex:
imdb
......@@ -85,6 +84,12 @@ movielens
:members:
:noindex:
.. autoclass:: paddle.v2.dataset.movielens.MovieInfo
:noindex:
.. autoclass:: paddle.v2.dataset.movielens.UserInfo
:noindex:
sentiment
+++++++++
......@@ -102,7 +107,7 @@ uci_housing
wmt14
+++++
.. automodule:: paddle.v2.dataset.uci_housing
.. automodule:: paddle.v2.dataset.wmt14
:members:
:noindex:
......@@ -6,18 +6,21 @@ Parameters
==========
.. automodule:: paddle.v2.parameters
:members: Parameters
:noindex:
Trainer
=======
.. automodule:: paddle.v2.trainer
:members: SGD
:noindex:
Event
=====
.. automodule:: paddle.v2.event
:members:
:noindex:
Inference
......@@ -25,3 +28,4 @@ Inference
.. autofunction:: paddle.v2.infer
:noindex:
\ No newline at end of file
......@@ -34,7 +34,7 @@
<link rel="search" title="搜索" href="../../../search.html"/>
<link rel="top" title="PaddlePaddle 文档" href="../../../index.html"/>
<link rel="up" title="Model Configuration" href="../model_configs.html"/>
<link rel="next" title="Datasets" href="../data.html"/>
<link rel="next" title="Data Reader Interface and DataSets" href="../data.html"/>
<link rel="prev" title="Networks" href="networks.html"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
......@@ -327,7 +327,7 @@ The details allocation in parallel_nn please refer to <a class="reference extern
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../data.html" class="btn btn-neutral float-right" title="Datasets" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="../data.html" class="btn btn-neutral float-right" title="Data Reader Interface and DataSets" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="networks.html" class="btn btn-neutral" title="Networks" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
......
......@@ -224,27 +224,177 @@
<div itemprop="articleBody">
<div class="section" id="optimizer">
<span id="api-v2-optimizer"></span><h1>Optimizer<a class="headerlink" href="#optimizer" title="永久链接至标题"></a></h1>
<h1>Optimizer<a class="headerlink" href="#optimizer" title="永久链接至标题"></a></h1>
<div class="section" id="momentum">
<h2>Momentum<a class="headerlink" href="#momentum" title="永久链接至标题"></a></h2>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">Momentum</code><span class="sig-paren">(</span><em>momentum=None</em>, <em>sparse=False</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>SGD Optimizer.</p>
<p>SGD is an optimization method, trying to find a neural network that
minimize the &#8220;cost/error&#8221; of it by iteration. In paddle&#8217;s implementation
SGD Optimizer is synchronized, which means all gradients will be wait to
calculate and reduced into one gradient, then do optimize operation.</p>
<p>The neural network consider the learning problem of minimizing an objective
function, that has the form of a sum</p>
<div class="math">
\[Q(w) = \sum_{i}^{n} Q_i(w)\]</div>
<p>The value of function Q sometimes is the cost of neural network (Mean
Square Error between prediction and label for example). The function Q is
parametrised by w, the weight/bias of neural network. And weights is what to
be learned. The i is the i-th observation in (trainning) data.</p>
<p>So, the SGD method will optimize the weight by</p>
<div class="math">
\[w = w - \eta \nabla Q(w) = w - \eta \sum_{i}^{n} \nabla Q_i(w)\]</div>
<p>where <span class="math">\(\eta\)</span> is learning rate. And <span class="math">\(n\)</span> is batch size.</p>
</dd></dl>
</div>
<div class="section" id="adam">
<h2>Adam<a class="headerlink" href="#adam" title="永久链接至标题"></a></h2>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">Adam</code><span class="sig-paren">(</span><em>beta1=0.9</em>, <em>beta2=0.999</em>, <em>epsilon=1e-08</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Adam optimizer.
The details of please refer <a class="reference external" href="https://arxiv.org/abs/1412.6980">Adam: A Method for Stochastic Optimization</a></p>
<div class="math">
\[\begin{split}m(w, t) &amp; = \beta_1 m(w, t-1) + (1 - \beta_1) \nabla Q_i(w) \\
v(w, t) &amp; = \beta_2 v(w, t-1) + (1 - \beta_2)(\nabla Q_i(w)) ^2 \\
w &amp; = w - \frac{\eta}{\sqrt{v(w,t) + \epsilon}}\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
<li><strong>beta1</strong> (<em>float</em>) &#8211; the <span class="math">\(\beta_1\)</span> in equation.</li>
<li><strong>beta2</strong> (<em>float</em>) &#8211; the <span class="math">\(\beta_2\)</span> in equation.</li>
<li><strong>epsilon</strong> (<em>float</em>) &#8211; the <span class="math">\(\epsilon\)</span> in equation. It is used to prevent
divided by zero.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
<div class="section" id="adamax">
<h2>Adamax<a class="headerlink" href="#adamax" title="永久链接至标题"></a></h2>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">Adamax</code><span class="sig-paren">(</span><em>beta1=0.9</em>, <em>beta2=0.999</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Adamax optimizer.</p>
<p>The details of please refer this <a class="reference external" href="https://arxiv.org/abs/1412.6980">Adam: A Method for Stochastic Optimization</a></p>
<div class="math">
\[\begin{split}m_t &amp; = \beta_1 * m_{t-1} + (1-\beta_1)* \nabla Q_i(w) \\
u_t &amp; = max(\beta_2*u_{t-1}, abs(\nabla Q_i(w))) \\
w_t &amp; = w_{t-1} - (\eta/(1-\beta_1^t))*m_t/u_t\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
<li><strong>beta1</strong> (<em>float</em>) &#8211; the <span class="math">\(\beta_1\)</span> in the equation.</li>
<li><strong>beta2</strong> (<em>float</em>) &#8211; the <span class="math">\(\beta_2\)</span> in the equation.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
<div class="section" id="adagrad">
<h2>AdaGrad<a class="headerlink" href="#adagrad" title="永久链接至标题"></a></h2>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">AdaGrad</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Adagrad(for ADAptive GRAdient algorithm) optimizer.</p>
<p>For details please refer this <a class="reference external" href="http://www.magicbroom.info/Papers/DuchiHaSi10.pdf">Adaptive Subgradient Methods for
Online Learning and Stochastic Optimization</a>.</p>
<div class="math">
\[\begin{split}G &amp;= \sum_{\tau=1}^{t} g_{\tau} g_{\tau}^T \\
w &amp; = w - \eta diag(G)^{-\frac{1}{2}} \circ g\end{split}\]</div>
</dd></dl>
</div>
<div class="section" id="decayedadagrad">
<h2>DecayedAdaGrad<a class="headerlink" href="#decayedadagrad" title="永久链接至标题"></a></h2>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">DecayedAdaGrad</code><span class="sig-paren">(</span><em>rho=0.95</em>, <em>epsilon=1e-06</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>AdaGrad method with decayed sum gradients. The equations of this method
show as follow.</p>
<div class="math">
\[\begin{split}E(g_t^2) &amp;= \rho * E(g_{t-1}^2) + (1-\rho) * g^2 \\
learning\_rate &amp;= 1/sqrt( ( E(g_t^2) + \epsilon )\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
<li><strong>rho</strong> (<em>float</em>) &#8211; The <span class="math">\(\rho\)</span> parameter in that equation</li>
<li><strong>epsilon</strong> (<em>float</em>) &#8211; The <span class="math">\(\epsilon\)</span> parameter in that equation.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
<div class="section" id="adadelta">
<h2>AdaDelta<a class="headerlink" href="#adadelta" title="永久链接至标题"></a></h2>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">AdaDelta</code><span class="sig-paren">(</span><em>rho=0.95</em>, <em>epsilon=1e-06</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>AdaDelta method. The details of adadelta please refer to this
<a class="reference external" href="http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf">ADADELTA: AN ADAPTIVE LEARNING RATE METHOD</a>.</p>
<div class="math">
\[\begin{split}E(g_t^2) &amp;= \rho * E(g_{t-1}^2) + (1-\rho) * g^2 \\
learning\_rate &amp;= sqrt( ( E(dx_{t-1}^2) + \epsilon ) / ( \
E(g_t^2) + \epsilon ) ) \\
E(dx_t^2) &amp;= \rho * E(dx_{t-1}^2) + (1-\rho) * (-g*learning\_rate)^2\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
<li><strong>rho</strong> (<em>float</em>) &#8211; <span class="math">\(\rho\)</span> in equation</li>
<li><strong>epsilon</strong> (<em>float</em>) &#8211; <span class="math">\(\rho\)</span> in equation</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
<div class="section" id="rmsprop">
<h2>RMSProp<a class="headerlink" href="#rmsprop" title="永久链接至标题"></a></h2>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">RMSProp</code><span class="sig-paren">(</span><em>rho=0.95</em>, <em>epsilon=1e-06</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>RMSProp(for Root Mean Square Propagation) optimizer. For details please
refer this <a class="reference external" href="http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf">slide</a>.</p>
<p>The equations of this method as follows:</p>
<div class="math">
\[\begin{split}v(w, t) &amp; = \rho v(w, t-1) + (1 - \rho)(\nabla Q_{i}(w))^2 \\
w &amp; = w - \frac{\eta} {\sqrt{v(w,t) + \epsilon}} \nabla Q_{i}(w)\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
<li><strong>rho</strong> (<em>float</em>) &#8211; the <span class="math">\(\rho\)</span> in the equation. The forgetting factor.</li>
<li><strong>epsilon</strong> (<em>float</em>) &#8211; the <span class="math">\(\epsilon\)</span> in the equation.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
</div>
......
......@@ -8,7 +8,7 @@
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Datasets &mdash; PaddlePaddle 文档</title>
<title>Data Reader Interface and DataSets &mdash; PaddlePaddle 文档</title>
......@@ -182,7 +182,7 @@
</nav>
<nav class="local-toc"><ul>
<li><a class="reference internal" href="#">Datasets</a><ul>
<li><a class="reference internal" href="#">Data Reader Interface and DataSets</a><ul>
<li><a class="reference internal" href="#datatypes">DataTypes</a></li>
<li><a class="reference internal" href="#datafeeder">DataFeeder</a></li>
<li><a class="reference internal" href="#reader">Reader</a><ul>
......@@ -224,7 +224,7 @@
<li><a href="../index_cn.html">API</a> > </li>
<li>Datasets</li>
<li>Data Reader Interface and DataSets</li>
</ul>
</div>
......@@ -233,8 +233,8 @@
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="datasets">
<h1>Datasets<a class="headerlink" href="#datasets" title="永久链接至标题"></a></h1>
<div class="section" id="data-reader-interface-and-datasets">
<h1>Data Reader Interface and DataSets<a class="headerlink" href="#data-reader-interface-and-datasets" title="永久链接至标题"></a></h1>
<div class="section" id="datatypes">
<h2>DataTypes<a class="headerlink" href="#datatypes" title="永久链接至标题"></a></h2>
<dl class="function">
......@@ -522,7 +522,7 @@ relationship.</p>
<span class="c1"># [ [1.0,2.0,3.0,4.0], 5, [6,7,8] ], # first sample</span>
<span class="c1"># [ [1.0,2.0,3.0,4.0], 5, [6,7,8] ] # second sample</span>
<span class="c1"># ]</span>
<span class="n">arg</span> <span class="o">=</span> <span class="n">feeder</span><span class="p">(</span><span class="n">minibatch_data</span><span class="p">)</span>
<span class="n">arg</span> <span class="o">=</span> <span class="n">feeder</span><span class="o">.</span><span class="n">convert</span><span class="p">(</span><span class="n">minibatch_data</span><span class="p">)</span>
</pre></div>
</div>
<div class="admonition note">
......@@ -842,18 +842,18 @@ Trailing new line (&#8216;\n&#8217;) of each line will be removed.</p>
<h3>mnist<a class="headerlink" href="#mnist" title="永久链接至标题"></a></h3>
<p>MNIST dataset.</p>
<p>This module will download dataset from <a class="reference external" href="http://yann.lecun.com/exdb/mnist/">http://yann.lecun.com/exdb/mnist/</a> and
parse train set and test set into paddle reader creators.</p>
parse training set and test set into paddle reader creators.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.mnist.</code><code class="descname">train</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>MNIST train set creator.</p>
<dd><p>MNIST training set creator.</p>
<p>It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Train reader creator</td>
<tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Training reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td>
</tr>
......@@ -882,26 +882,313 @@ parse train set and test set into paddle reader creators.</p>
</div>
<div class="section" id="cifar">
<h3>cifar<a class="headerlink" href="#cifar" title="永久链接至标题"></a></h3>
<p>CIFAR dataset: <a class="reference external" href="https://www.cs.toronto.edu/~kriz/cifar.html">https://www.cs.toronto.edu/~kriz/cifar.html</a></p>
<p>TODO(yuyang18): Complete the comments.</p>
<p>CIFAR dataset.</p>
<p>This module will download dataset from
<a class="reference external" href="https://www.cs.toronto.edu/~kriz/cifar.html">https://www.cs.toronto.edu/~kriz/cifar.html</a> and parse train/test set into
paddle reader creators.</p>
<p>The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes,
with 6000 images per class. There are 50000 training images and 10000 test
images.</p>
<p>The CIFAR-100 dataset is just like the CIFAR-10, except it has 100 classes
containing 600 images each. There are 500 training images and 100 testing
images per class.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.cifar.</code><code class="descname">train100</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>CIFAR-100 training set creator.</p>
<p>It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 99].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Training reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.cifar.</code><code class="descname">test100</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>CIFAR-100 test set cretor.</p>
<p>It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Test reader creator.</td>
</tr>
<tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.cifar.</code><code class="descname">train10</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>CIFAR-10 training set creator.</p>
<p>It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Training reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.cifar.</code><code class="descname">test10</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>CIFAR-10 test set cretor.</p>
<p>It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Test reader creator.</td>
</tr>
<tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
<div class="section" id="conll05">
<h3>conll05<a class="headerlink" href="#conll05" title="永久链接至标题"></a></h3>
<p>Conll05 dataset.
Paddle semantic role labeling Book and demo use this dataset as an example.
Because Conll05 is not free in public, the default downloaded URL is test set
of Conll05 (which is public). Users can change URL and MD5 to their Conll
dataset. And a pre-trained word vector model based on Wikipedia corpus is used
to initialize SRL model.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.conll05.</code><code class="descname">get_dict</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get the word, verb and label dictionary of Wikipedia corpus.</p>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.conll05.</code><code class="descname">get_embedding</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get the trained word vector based on Wikipedia corpus.</p>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.conll05.</code><code class="descname">test</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Conll05 test set creator.</p>
<p>Because the training dataset is not free, the test dataset is used for
training. It returns a reader creator, each sample in the reader is nine
features, including sentence sequence, predicate, predicate context,
predicate context flag and tagged sequence.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Training reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
<div class="section" id="imdb">
<h3>imdb<a class="headerlink" href="#imdb" title="永久链接至标题"></a></h3>
<p>IMDB dataset: <a class="reference external" href="http://ai.stanford.edu/%7Eamaas/data/sentiment/aclImdb_v1.tar.gz">http://ai.stanford.edu/%7Eamaas/data/sentiment/aclImdb_v1.tar.gz</a></p>
<p>TODO(yuyang18): Complete comments.</p>
<p>IMDB dataset.</p>
<p>This module downloads IMDB dataset from
<a class="reference external" href="http://ai.stanford.edu/%7Eamaas/data/sentiment/">http://ai.stanford.edu/%7Eamaas/data/sentiment/</a>. This dataset contains a set
of 25,000 highly polar movie reviews for training, and 25,000 for testing.
Besides, this module also provides API for building dictionary.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.imdb.</code><code class="descname">build_dict</code><span class="sig-paren">(</span><em>pattern</em>, <em>cutoff</em><span class="sig-paren">)</span></dt>
<dd><p>Build a word dictionary from the corpus. Keys of the dictionary are words,
and values are zero-based IDs of these words.</p>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.imdb.</code><code class="descname">train</code><span class="sig-paren">(</span><em>word_idx</em><span class="sig-paren">)</span></dt>
<dd><p>IMDB training set creator.</p>
<p>It returns a reader creator, each sample in the reader is an zero-based ID
sequence and label in [0, 1].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><strong>word_idx</strong> (<em>dict</em>) &#8211; word dictionary</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body">Training reader creator</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.imdb.</code><code class="descname">test</code><span class="sig-paren">(</span><em>word_idx</em><span class="sig-paren">)</span></dt>
<dd><p>IMDB test set creator.</p>
<p>It returns a reader creator, each sample in the reader is an zero-based ID
sequence and label in [0, 1].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><strong>word_idx</strong> (<em>dict</em>) &#8211; word dictionary</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body">Test reader creator</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
<div class="section" id="imikolov">
<h3>imikolov<a class="headerlink" href="#imikolov" title="永久链接至标题"></a></h3>
<p>imikolov&#8217;s simple dataset: <a class="reference external" href="http://www.fit.vutbr.cz/~imikolov/rnnlm/">http://www.fit.vutbr.cz/~imikolov/rnnlm/</a></p>
<p>Complete comments.</p>
<p>imikolov&#8217;s simple dataset.</p>
<p>This module will download dataset from
<a class="reference external" href="http://www.fit.vutbr.cz/~imikolov/rnnlm/">http://www.fit.vutbr.cz/~imikolov/rnnlm/</a> and parse training set and test set
into paddle reader creators.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.imikolov.</code><code class="descname">build_dict</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Build a word dictionary from the corpus, Keys of the dictionary are words,
and values are zero-based IDs of these words.</p>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.imikolov.</code><code class="descname">train</code><span class="sig-paren">(</span><em>word_idx</em>, <em>n</em><span class="sig-paren">)</span></dt>
<dd><p>imikolov training set creator.</p>
<p>It returns a reader creator, each sample in the reader is a word ID
tuple.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>word_idx</strong> (<em>dict</em>) &#8211; word dictionary</li>
<li><strong>n</strong> (<em>int</em>) &#8211; sliding window size</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">Training reader creator</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">callable</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.imikolov.</code><code class="descname">test</code><span class="sig-paren">(</span><em>word_idx</em>, <em>n</em><span class="sig-paren">)</span></dt>
<dd><p>imikolov test set creator.</p>
<p>It returns a reader creator, each sample in the reader is a word ID
tuple.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>word_idx</strong> (<em>dict</em>) &#8211; word dictionary</li>
<li><strong>n</strong> (<em>int</em>) &#8211; sliding window size</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">Test reader creator</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">callable</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
<div class="section" id="movielens">
<h3>movielens<a class="headerlink" href="#movielens" title="永久链接至标题"></a></h3>
<p>Movielens 1-M dataset.</p>
<p>TODO(yuyang18): Complete comments.</p>
<p>Movielens 1-M dataset contains 1 million ratings from 6000 users on 4000
movies, which was collected by GroupLens Research. This module will download
Movielens 1-M dataset from
<a class="reference external" href="http://files.grouplens.org/datasets/movielens/ml-1m.zip">http://files.grouplens.org/datasets/movielens/ml-1m.zip</a> and parse training
set and test set into paddle reader creators.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">get_movie_title_dict</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get movie title dictionary.</p>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">max_movie_id</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get the maximum value of movie id.</p>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">max_user_id</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get the maximum value of user id.</p>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">max_job_id</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get the maximum value of job id.</p>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">movie_categories</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get movie categoriges dictionary.</p>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">user_info</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get user info dictionary.</p>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">movie_info</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get movie info dictionary.</p>
</dd></dl>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">MovieInfo</code><span class="sig-paren">(</span><em>index</em>, <em>categories</em>, <em>title</em><span class="sig-paren">)</span></dt>
<dd><p>Movie id, title and categories information are stored in MovieInfo.</p>
</dd></dl>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">UserInfo</code><span class="sig-paren">(</span><em>index</em>, <em>gender</em>, <em>age</em>, <em>job_id</em><span class="sig-paren">)</span></dt>
<dd><p>User id, gender, age, and job information are stored in UserInfo.</p>
</dd></dl>
</div>
<div class="section" id="sentiment">
<h3>sentiment<a class="headerlink" href="#sentiment" title="永久链接至标题"></a></h3>
......@@ -919,7 +1206,7 @@ parse train set and test set into paddle reader creators.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.sentiment.</code><code class="descname">train</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Default train set reader creator</p>
<dd><p>Default training set reader creator</p>
</dd></dl>
<dl class="function">
......@@ -932,12 +1219,91 @@ parse train set and test set into paddle reader creators.</p>
<div class="section" id="uci-housing">
<h3>uci_housing<a class="headerlink" href="#uci-housing" title="永久链接至标题"></a></h3>
<p>UCI Housing dataset.</p>
<p>TODO(yuyang18): Complete comments.</p>
<p>This module will download dataset from
<a class="reference external" href="https://archive.ics.uci.edu/ml/machine-learning-databases/housing/">https://archive.ics.uci.edu/ml/machine-learning-databases/housing/</a> and
parse training set and test set into paddle reader creators.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.uci_housing.</code><code class="descname">train</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>UCI_HOUSING training set creator.</p>
<p>It returns a reader creator, each sample in the reader is features after
normalization and price number.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Training reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.uci_housing.</code><code class="descname">test</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>UCI_HOUSING test set creator.</p>
<p>It returns a reader creator, each sample in the reader is features after
normalization and price number.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Test reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
<div class="section" id="wmt14">
<h3>wmt14<a class="headerlink" href="#wmt14" title="永久链接至标题"></a></h3>
<p>UCI Housing dataset.</p>
<p>TODO(yuyang18): Complete comments.</p>
<p>WMT14 dataset.
The original WMT14 dataset is too large and a small set of data for set is
provided. This module will download dataset from
<a class="reference external" href="http://paddlepaddle.cdn.bcebos.com/demo/wmt_shrinked_data/wmt14.tgz">http://paddlepaddle.cdn.bcebos.com/demo/wmt_shrinked_data/wmt14.tgz</a> and
parse training set and test set into paddle reader creators.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.wmt14.</code><code class="descname">train</code><span class="sig-paren">(</span><em>dict_size</em><span class="sig-paren">)</span></dt>
<dd><p>WMT14 training set creator.</p>
<p>It returns a reader creator, each sample in the reader is source language
word ID sequence, target language word ID sequence and next word ID
sequence.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Training reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.wmt14.</code><code class="descname">test</code><span class="sig-paren">(</span><em>dict_size</em><span class="sig-paren">)</span></dt>
<dd><p>WMT14 test set creator.</p>
<p>It returns a reader creator, each sample in the reader is source language
word ID sequence, target language word ID sequence and next word ID
sequence.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Test reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
</div>
</div>
......
......@@ -35,7 +35,7 @@
<link rel="top" title="PaddlePaddle 文档" href="../../index.html"/>
<link rel="up" title="API" href="../index_cn.html"/>
<link rel="next" title="FAQ" href="../../faq/index_cn.html"/>
<link rel="prev" title="Datasets" href="data.html"/>
<link rel="prev" title="Data Reader Interface and DataSets" href="data.html"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
......@@ -222,21 +222,307 @@
<h1>Training and Inference<a class="headerlink" href="#training-and-inference" title="永久链接至标题"></a></h1>
<div class="section" id="parameters">
<h2>Parameters<a class="headerlink" href="#parameters" title="永久链接至标题"></a></h2>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.parameters.</code><code class="descname">Parameters</code></dt>
<dd><p>Parameters is a dictionary contains Paddle&#8217;s parameter. The key of
Parameters is the name of parameter. The value of Parameters is a plain
<code class="code docutils literal"><span class="pre">numpy.ndarry</span></code> .</p>
<p>Basically usage is</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>
<span class="o">...</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>
<span class="n">parameters</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">parameters</span><span class="o">.</span><span class="n">create</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>
<span class="n">parameter_names</span> <span class="o">=</span> <span class="n">parameters</span><span class="o">.</span><span class="n">names</span><span class="p">()</span>
<span class="n">fc_mat</span> <span class="o">=</span> <span class="n">parameters</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;fc&#39;</span><span class="p">)</span>
<span class="k">print</span> <span class="n">fc_mat</span>
</pre></div>
</div>
<dl class="method">
<dt>
<code class="descname">keys</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>keys are the names of each parameter.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">list of parameter name</td>
</tr>
<tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">list</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt>
<code class="descname">names</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>names of each parameter.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">list of parameter name</td>
</tr>
<tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">list</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt>
<code class="descname">has_key</code><span class="sig-paren">(</span><em>key</em><span class="sig-paren">)</span></dt>
<dd><p>has_key return true if there are such parameter name == key</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><strong>key</strong> (<em>basestring</em>) &#8211; Parameter name</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body">True if contains such key</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt>
<code class="descname">get_shape</code><span class="sig-paren">(</span><em>key</em><span class="sig-paren">)</span></dt>
<dd><p>get shape of the parameter.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><strong>key</strong> (<em>basestring</em>) &#8211; parameter name</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body">parameter&#8217;s shape</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body">tuple</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt>
<code class="descname">get</code><span class="sig-paren">(</span><em>parameter_name</em><span class="sig-paren">)</span></dt>
<dd><p>Get parameter by parameter name.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Note:</th><td class="field-body">It will always copy the parameter from C++ side.</td>
</tr>
<tr class="field-even field"><th class="field-name">参数:</th><td class="field-body"><strong>parameter_name</strong> (<em>basestring</em>) &#8211; parameter name</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">The parameter matrix.</td>
</tr>
<tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">np.ndarray</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt>
<code class="descname">set</code><span class="sig-paren">(</span><em>parameter_name</em>, <em>value</em><span class="sig-paren">)</span></dt>
<dd><p>Set parameter by parameter name &amp; matrix.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>parameter_name</strong> (<em>basestring</em>) &#8211; parameter name</li>
<li><strong>value</strong> (<em>np.ndarray</em>) &#8211; parameter matrix</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first last">Nothing.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt>
<code class="descname">append_gradient_machine</code><span class="sig-paren">(</span><em>gradient_machine</em><span class="sig-paren">)</span></dt>
<dd><p>append gradient machine to parameters. This method is used internally in
Trainer.train.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><strong>gradient_machine</strong> (<em>api.GradientMachine</em>) &#8211; Paddle C++ GradientMachine object.</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"></td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt>
<code class="descname">serialize</code><span class="sig-paren">(</span><em>name</em>, <em>f</em><span class="sig-paren">)</span></dt>
<dd><table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> &#8211; </li>
<li><strong>f</strong> (<em>file</em>) &#8211; </li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first last"></p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt>
<code class="descname">deserialize</code><span class="sig-paren">(</span><em>name</em>, <em>f</em><span class="sig-paren">)</span></dt>
<dd><table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> &#8211; </li>
<li><strong>f</strong> (<em>file</em>) &#8211; </li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first last"></p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</dd></dl>
</div>
<div class="section" id="trainer">
<h2>Trainer<a class="headerlink" href="#trainer" title="永久链接至标题"></a></h2>
<p>Module Trainer</p>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.trainer.</code><code class="descname">SGD</code><span class="sig-paren">(</span><em>cost</em>, <em>parameters</em>, <em>update_equation</em>, <em>extra_layers=None</em><span class="sig-paren">)</span></dt>
<dd><p>Simple SGD Trainer.
SGD Trainer combines data reader, network topolopy and update_equation together
to train/test a neural network.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
<li><strong>update_equation</strong> (<em>paddle.v2.optimizer.Optimizer</em>) &#8211; The optimizer object.</li>
<li><strong>cost</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Target cost that neural network should be optimized.</li>
<li><strong>parameters</strong> (<em>paddle.v2.parameters.Parameters</em>) &#8211; The parameters dictionary.</li>
<li><strong>extra_layers</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Some layers in the neural network graph are not
in the path of cost layer.</li>
</ul>
</td>
</tr>
</tbody>
</table>
<dl class="method">
<dt>
<code class="descname">train</code><span class="sig-paren">(</span><em>reader</em>, <em>num_passes=1</em>, <em>event_handler=None</em>, <em>feeding=None</em><span class="sig-paren">)</span></dt>
<dd><p>Training method. Will train num_passes of input data.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>reader</strong> (<em>collections.Iterable</em>) &#8211; A reader that reads and yeilds data items. Usually we use a
batched reader to do mini-batch training.</li>
<li><strong>num_passes</strong> &#8211; The total train passes.</li>
<li><strong>event_handler</strong> (<em></em><em>(</em><em>BaseEvent</em><em>) </em><em>=&gt; None</em>) &#8211; Event handler. A method will be invoked when event
occurred.</li>
<li><strong>feeding</strong> (<em>dict|list</em>) &#8211; Feeding is a map of neural network input name and array
index that reader returns.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first last"></p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt>
<code class="descname">test</code><span class="sig-paren">(</span><em>reader</em>, <em>feeding=None</em><span class="sig-paren">)</span></dt>
<dd><p>Testing method. Will test input data.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>reader</strong> (<em>collections.Iterable</em>) &#8211; A reader that reads and yeilds data items.</li>
<li><strong>feeding</strong> (<em>dict</em>) &#8211; Feeding is a map of neural network input name and array
index that reader returns.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first last"></p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</dd></dl>
</div>
<div class="section" id="event">
<h2>Event<a class="headerlink" href="#event" title="永久链接至标题"></a></h2>
<p>All training events.</p>
<p>Testing and training events.</p>
<p>There are:</p>
<ul class="simple">
<li>TestResult</li>
<li>BeginIteration</li>
<li>EndIteration</li>
<li>BeginPass</li>
<li>EndPass</li>
</ul>
<p>TODO(yuyang18): Complete it!</p>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.event.</code><code class="descname">TestResult</code><span class="sig-paren">(</span><em>evaluator</em>, <em>cost</em><span class="sig-paren">)</span></dt>
<dd><p>Result that trainer.test return.</p>
</dd></dl>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.event.</code><code class="descname">BeginPass</code><span class="sig-paren">(</span><em>pass_id</em><span class="sig-paren">)</span></dt>
<dd><p>Event On One Pass Training Start.</p>
</dd></dl>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.event.</code><code class="descname">EndPass</code><span class="sig-paren">(</span><em>pass_id</em>, <em>evaluator</em><span class="sig-paren">)</span></dt>
<dd><p>Event On One Pass Training Complete.</p>
</dd></dl>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.event.</code><code class="descname">BeginIteration</code><span class="sig-paren">(</span><em>pass_id</em>, <em>batch_id</em><span class="sig-paren">)</span></dt>
<dd><p>Event On One Batch Training Start.</p>
</dd></dl>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.event.</code><code class="descname">EndIteration</code><span class="sig-paren">(</span><em>pass_id</em>, <em>batch_id</em>, <em>cost</em>, <em>evaluator</em><span class="sig-paren">)</span></dt>
<dd><p>Event On One Batch Training Complete.</p>
</dd></dl>
</div>
<div class="section" id="inference">
<h2>Inference<a class="headerlink" href="#inference" title="永久链接至标题"></a></h2>
......@@ -293,7 +579,7 @@ or max_id.</li>
<a href="../../faq/index_cn.html" class="btn btn-neutral float-right" title="FAQ" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="data.html" class="btn btn-neutral" title="Datasets" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
<a href="data.html" class="btn btn-neutral" title="Data Reader Interface and DataSets" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
......
因为 它太大了无法显示 source diff 。你可以改为 查看blob
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册