Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
514dd097
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
514dd097
编写于
4月 26, 2020
作者:
G
Guanghua Yu
提交者:
GitHub
4月 26, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix CrossEntropyLoss op en doc, test=release/2.0 (#24150)
上级
18877491
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
10 addition
and
5 deletion
+10
-5
python/paddle/nn/layer/loss.py
python/paddle/nn/layer/loss.py
+10
-5
未找到文件。
python/paddle/nn/layer/loss.py
浏览文件 @
514dd097
...
...
@@ -26,20 +26,22 @@ __all__ = [
class
CrossEntropyLoss
(
fluid
.
dygraph
.
Layer
):
"""
This operator implements the cross entropy loss function. This OP combines `
softmax
`,
`
cross_entropy`, and `reduce_sum`/`reduce_mean
` together.
This operator implements the cross entropy loss function. This OP combines `
`softmax`
`,
`
`cross_entropy``, and ``reduce_sum``/``reduce_mean`
` together.
It is useful when training a classification problem with `
C
` classes.
If provided, the optional argument `
weight
` should be a 1D Variable assigning
It is useful when training a classification problem with `
`C`
` classes.
If provided, the optional argument `
`weight`
` should be a 1D Variable assigning
weight to each of the classes.
For predictions label, and target label, the loss is calculated as follows.
.. math::
loss_j = -
\\
text{input[class]} +
\\
log
\\
left(
\\
sum_{i=0}^{K}
\\
exp(
\\
text{input}_i)
\\
right), j = 1,..., K
If weight is not `None`:
If weight is not ``None``:
.. math::
loss_j =
\\
text{weight[class]}(-
\\
text{input[class]} +
...
...
@@ -59,9 +61,12 @@ class CrossEntropyLoss(fluid.dygraph.Layer):
If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
Default is ``'mean'``.
Returns:
The tensor variable storing the cross_entropy_loss of input and label.
Return type: Variable.
Examples:
.. code-block:: python
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录