未验证 提交 50d4fa54 编写于 作者: zhouweiwei2014's avatar zhouweiwei2014 提交者: GitHub

[cherry-pick 2.4] remove incubate of all paddle sparse api (#47183)

上级 396427a7
......@@ -82,6 +82,7 @@ import paddle.static # noqa: F401
import paddle.vision # noqa: F401
import paddle.audio # noqa: F401
import paddle.geometric # noqa: F401
import paddle.sparse
from .tensor.attribute import is_complex # noqa: F401
from .tensor.attribute import is_integer # noqa: F401
......
......@@ -919,7 +919,7 @@ def monkey_patch_varbase():
indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
values = [1, 2, 3, 4, 5]
dense_shape = [3, 4]
sparse_x = paddle.incubate.sparse.sparse_coo_tensor(paddle.to_tensor(indices, dtype='int32'), paddle.to_tensor(values, dtype='float32'), shape=dense_shape)
sparse_x = paddle.sparse.sparse_coo_tensor(paddle.to_tensor(indices, dtype='int32'), paddle.to_tensor(values, dtype='float32'), shape=dense_shape)
print(sparse_x.values())
#[1, 2, 3, 4, 5]
"""
......@@ -944,7 +944,7 @@ def monkey_patch_varbase():
indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
values = [1, 2, 3, 4, 5]
dense_shape = [3, 4]
sparse_x = paddle.incubate.sparse.sparse_coo_tensor(paddle.to_tensor(indices, dtype='int64'), paddle.to_tensor(values, dtype='float32'), shape=dense_shape)
sparse_x = paddle.sparse.sparse_coo_tensor(paddle.to_tensor(indices, dtype='int64'), paddle.to_tensor(values, dtype='float32'), shape=dense_shape)
dense_x = sparse_x.to_dense()
#[[0., 1., 0., 2.],
# [0., 0., 3., 0.],
......
......@@ -64,7 +64,7 @@ class TestAddmm(unittest.TestCase):
sp_x.stop_gradient = False
sp_y = origin_y.detach()
sp_y.stop_gradient = False
sp_out = paddle.incubate.sparse.addmm(sp_input, sp_x, sp_y, 3.0, 2.0)
sp_out = paddle.sparse.addmm(sp_input, sp_x, sp_y, 3.0, 2.0)
np.testing.assert_allclose(sp_out.numpy(),
dense_out.numpy(),
......
......@@ -19,7 +19,7 @@ import paddle
from paddle import _C_ops, _legacy_C_ops
from paddle.fluid import core
from paddle.fluid.framework import _test_eager_guard
import paddle.incubate.sparse as sparse
import paddle.sparse as sparse
class TestSparseConv(unittest.TestCase):
......@@ -44,17 +44,17 @@ class TestSparseConv(unittest.TestCase):
correct_out_values = [[5], [11]]
sparse_input = core.eager.sparse_coo_tensor(indices, values,
dense_shape, False)
out = paddle.incubate.sparse.nn.functional.conv3d(
sparse_input,
out = paddle.sparse.nn.functional.conv3d(sparse_input,
dense_kernel,
bias=paddle.to_tensor(bias, dtype='float32'),
bias=paddle.to_tensor(
bias, dtype='float32'),
stride=strides,
padding=paddings,
dilation=dilations,
groups=1,
data_format="NDHWC")
out.backward(out)
out = paddle.incubate.sparse.coalesce(out)
out = paddle.sparse.coalesce(out)
assert np.array_equal(correct_out_values, out.values().numpy())
def test_subm_conv3d(self):
......@@ -64,11 +64,14 @@ class TestSparseConv(unittest.TestCase):
indices = paddle.to_tensor(indices, dtype='int32')
values = paddle.to_tensor(values, dtype='float32')
dense_shape = [1, 1, 3, 4, 1]
sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
indices, values, dense_shape, stop_gradient=True)
sparse_x = paddle.sparse.sparse_coo_tensor(indices,
values,
dense_shape,
stop_gradient=True)
weight = paddle.randn((1, 3, 3, 1, 1), dtype='float32')
y = paddle.incubate.sparse.nn.functional.subm_conv3d(
sparse_x, weight, key='subm_conv')
y = paddle.sparse.nn.functional.subm_conv3d(sparse_x,
weight,
key='subm_conv')
assert np.array_equal(sparse_x.indices().numpy(),
y.indices().numpy())
......@@ -82,17 +85,20 @@ class TestSparseConv(unittest.TestCase):
values = paddle.to_tensor(values, dtype='float32')
dense_shape = [1, 1, 3, 4, 1]
correct_out_values = [[4], [10]]
sparse_input = paddle.incubate.sparse.sparse_coo_tensor(
sparse_input = paddle.sparse.sparse_coo_tensor(
indices, values, dense_shape, False)
sparse_conv3d = paddle.incubate.sparse.nn.Conv3D(
1, 1, (1, 3, 3), data_format='NDHWC')
sparse_conv3d = paddle.sparse.nn.Conv3D(1,
1, (1, 3, 3),
data_format='NDHWC')
sparse_out = sparse_conv3d(sparse_input)
#test errors
with self.assertRaises(ValueError):
#Currently, only support data_format='NDHWC'
conv3d = paddle.incubate.sparse.nn.SubmConv3D(
1, 1, (1, 3, 3), data_format='NCDHW', key='subm_conv')
conv3d = paddle.sparse.nn.SubmConv3D(1,
1, (1, 3, 3),
data_format='NCDHW',
key='subm_conv')
def test_SubmConv3D(self):
with _test_eager_guard():
......@@ -102,11 +108,13 @@ class TestSparseConv(unittest.TestCase):
values = paddle.to_tensor(values, dtype='float32')
dense_shape = [1, 1, 3, 4, 1]
correct_out_values = [[4], [10]]
sparse_input = paddle.incubate.sparse.sparse_coo_tensor(
sparse_input = paddle.sparse.sparse_coo_tensor(
indices, values, dense_shape, False)
subm_conv3d = paddle.incubate.sparse.nn.SubmConv3D(
1, 1, (1, 3, 3), data_format='NDHWC', key='subm_conv')
subm_conv3d = paddle.sparse.nn.SubmConv3D(1,
1, (1, 3, 3),
data_format='NDHWC',
key='subm_conv')
# test extra_repr
print(subm_conv3d.extra_repr())
......@@ -117,8 +125,10 @@ class TestSparseConv(unittest.TestCase):
#test errors
with self.assertRaises(ValueError):
#Currently, only support data_format='NDHWC'
conv3d = paddle.incubate.sparse.nn.SubmConv3D(
1, 1, (1, 3, 3), data_format='NCDHW', key='subm_conv')
conv3d = paddle.sparse.nn.SubmConv3D(1,
1, (1, 3, 3),
data_format='NCDHW',
key='subm_conv')
def test_Conv3D_bias(self):
with _test_eager_guard():
......@@ -128,10 +138,7 @@ class TestSparseConv(unittest.TestCase):
sp_x = x.to_sparse_coo(4)
conv3d = paddle.nn.Conv3D(3, 2, 3, data_format='NDHWC')
sp_conv3d = paddle.incubate.sparse.nn.Conv3D(3,
2,
3,
data_format='NDHWC')
sp_conv3d = paddle.sparse.nn.Conv3D(3, 2, 3, data_format='NDHWC')
sp_conv3d.weight.set_value(
paddle.to_tensor(conv3d.weight.numpy().transpose(2, 3, 4, 1,
0)))
......
......@@ -18,20 +18,20 @@ from operator import __add__, __sub__, __mul__, __truediv__
import numpy as np
import paddle
import paddle.incubate.sparse as sparse
import paddle.sparse as sparse
op_list = [__add__, __sub__, __mul__, __truediv__]
def get_actual_res(x, y, op):
if op == __add__:
res = paddle.incubate.sparse.add(x, y)
res = paddle.sparse.add(x, y)
elif op == __sub__:
res = paddle.incubate.sparse.subtract(x, y)
res = paddle.sparse.subtract(x, y)
elif op == __mul__:
res = paddle.incubate.sparse.multiply(x, y)
res = paddle.sparse.multiply(x, y)
elif op == __truediv__:
res = paddle.incubate.sparse.divide(x, y)
res = paddle.sparse.divide(x, y)
else:
raise ValueError("unsupported op")
return res
......
......@@ -92,7 +92,7 @@ class TestSparseAttentionAPI1(unittest.TestCase):
output = paddle.matmul(softmax, value)
output.backward()
output_sp = paddle.incubate.sparse.nn.functional.attention(
output_sp = paddle.sparse.nn.functional.attention(
query_sp, key_sp, value_sp, sp_mask, kp_mask, attn_mask)
output_sp.backward()
else:
......@@ -103,7 +103,7 @@ class TestSparseAttentionAPI1(unittest.TestCase):
output = paddle.matmul(softmax, value)
output.backward()
output_sp = paddle.incubate.sparse.nn.functional.attention(
output_sp = paddle.sparse.nn.functional.attention(
query_sp, key_sp, value_sp, sp_mask)
output_sp.backward()
......
......@@ -16,12 +16,12 @@ from __future__ import print_function
import unittest
import paddle
from paddle.incubate.sparse.binary import is_same_shape
from paddle.sparse.binary import is_same_shape
class TestSparseIsSameShapeAPI(unittest.TestCase):
"""
test paddle.incubate.sparse.is_same_shape
test paddle.sparse.is_same_shape
"""
def setUp(self):
......
......@@ -58,7 +58,7 @@ class TestMatmul(unittest.TestCase):
sp_x.stop_gradient = False
sp_y = origin_y.detach()
sp_y.stop_gradient = False
sp_out = paddle.incubate.sparse.matmul(sp_x, sp_y)
sp_out = paddle.sparse.matmul(sp_x, sp_y)
np.testing.assert_allclose(sp_out.numpy(),
dense_out.numpy(),
......@@ -107,7 +107,7 @@ class TestMaskedMatmul(unittest.TestCase):
x = paddle.to_tensor(np_x, stop_gradient=False)
y = paddle.to_tensor(np_y, stop_gradient=False)
mask = paddle.to_tensor(np.ones([10, 6]) * np_mask).to_sparse_csr()
out = paddle.incubate.sparse.masked_matmul(x, y, mask)
out = paddle.sparse.masked_matmul(x, y, mask)
np.testing.assert_allclose(np_out.indptr,
out.crows().numpy(),
......@@ -145,7 +145,7 @@ class TestMaskedMatmul(unittest.TestCase):
sp_x.stop_gradient = False
sp_y = origin_y.detach()
sp_y.stop_gradient = False
sp_out = paddle.incubate.sparse.matmul(sp_x, sp_y)
sp_out = paddle.sparse.matmul(sp_x, sp_y)
sp_out.backward()
np.testing.assert_allclose(sp_out.numpy(),
......
......@@ -15,8 +15,7 @@
import unittest
import numpy as np
import paddle
from paddle.incubate import sparse
from paddle.incubate.sparse import nn
from paddle.sparse import nn
from paddle.fluid.framework import _test_eager_guard
......@@ -26,7 +25,7 @@ class TestGradientAdd(unittest.TestCase):
indentity = sp_x
out = nn.functional.relu(sp_x)
values = out.values() + indentity.values()
out = sparse.sparse_coo_tensor(out.indices(),
out = paddle.sparse.sparse_coo_tensor(out.indices(),
values,
shape=out.shape,
stop_gradient=out.stop_gradient)
......
......@@ -61,7 +61,7 @@ class TestCsrMv(unittest.TestCase):
sp_x.stop_gradient = False
sp_vec = origin_vec.detach()
sp_vec.stop_gradient = False
sp_out = paddle.incubate.sparse.mv(sp_x, sp_vec)
sp_out = paddle.sparse.mv(sp_x, sp_vec)
sp_out.backward()
np.testing.assert_allclose(sp_out.numpy(),
......@@ -99,7 +99,7 @@ class TestCooMv(unittest.TestCase):
sp_x.stop_gradient = False
sp_vec = origin_vec.detach()
sp_vec.stop_gradient = False
sp_out = paddle.incubate.sparse.mv(sp_x, sp_vec)
sp_out = paddle.sparse.mv(sp_x, sp_vec)
sp_out.backward()
np.testing.assert_allclose(sp_out.numpy(),
......
......@@ -16,7 +16,7 @@ from __future__ import print_function
import unittest
import numpy as np
import paddle
from paddle.incubate.sparse import nn
from paddle.sparse import nn
import paddle.fluid as fluid
import copy
......@@ -40,7 +40,7 @@ class TestSparseBatchNorm(unittest.TestCase):
dense_x2 = copy.deepcopy(dense_x)
dense_x2.stop_gradient = False
sparse_x = dense_x2.to_sparse_coo(sparse_dim)
sparse_batch_norm = paddle.incubate.sparse.nn.BatchNorm(channels)
sparse_batch_norm = paddle.sparse.nn.BatchNorm(channels)
# set same params
sparse_batch_norm._mean.set_value(batch_norm._mean)
sparse_batch_norm._variance.set_value(batch_norm._variance)
......@@ -66,8 +66,8 @@ class TestSparseBatchNorm(unittest.TestCase):
shape = [2, 3, 6, 6, 3]
x = paddle.randn(shape)
sparse_x = x.to_sparse_coo(4)
sparse_batch_norm = paddle.incubate.sparse.nn.BatchNorm(
3, data_format='NCDHW')
sparse_batch_norm = paddle.sparse.nn.BatchNorm(3,
data_format='NCDHW')
sparse_batch_norm(sparse_x)
def test2(self):
......@@ -76,7 +76,7 @@ class TestSparseBatchNorm(unittest.TestCase):
x_data = paddle.randn((1, 6, 6, 6, channels)).astype('float32')
dense_x = paddle.to_tensor(x_data)
sparse_x = dense_x.to_sparse_coo(4)
batch_norm = paddle.incubate.sparse.nn.BatchNorm(channels)
batch_norm = paddle.sparse.nn.BatchNorm(channels)
batch_norm_out = batch_norm(sparse_x)
dense_bn = paddle.nn.BatchNorm1D(channels)
dense_x = dense_x.reshape((-1, dense_x.shape[-1]))
......
......@@ -48,7 +48,7 @@ class TestMaxPool3DFunc(unittest.TestCase):
self.setUp()
self.dense_x.stop_gradient = False
sparse_x = self.dense_x.to_sparse_coo(4)
sparse_out = paddle.incubate.sparse.nn.functional.max_pool3d(
sparse_out = paddle.sparse.nn.functional.max_pool3d(
sparse_x,
self.kernel_sizes,
stride=self.strides,
......@@ -109,8 +109,8 @@ class TestMaxPool3DAPI(unittest.TestCase):
with _test_eager_guard():
dense_x = paddle.randn((2, 3, 6, 6, 3))
sparse_x = dense_x.to_sparse_coo(4)
max_pool3d = paddle.incubate.sparse.nn.MaxPool3D(
kernel_size=3, data_format='NDHWC')
max_pool3d = paddle.sparse.nn.MaxPool3D(kernel_size=3,
data_format='NDHWC')
out = max_pool3d(sparse_x)
out = out.to_dense()
......
......@@ -19,7 +19,7 @@ import unittest
class TestReshape(unittest.TestCase):
"""
Test the API paddle.incubate.sparse.reshape on some sparse tensors.
Test the API paddle.sparse.reshape on some sparse tensors.
x: sparse, out: sparse
"""
......@@ -31,7 +31,7 @@ class TestReshape(unittest.TestCase):
Transform a sparse tensor with shape "x_shape" to
a sparse tensor with shape "new_shape".
Compare the output of paddle.reshape and the output of
paddle.incubate.sparse.reshape.
paddle.sparse.reshape.
"""
mask = np.random.randint(0, 2, x_shape)
np_x = np.random.randint(-100, 100, x_shape) * mask
......@@ -49,7 +49,7 @@ class TestReshape(unittest.TestCase):
sp_x = paddle.to_tensor(np_x,
place=paddle.CPUPlace()).to_sparse_csr()
sp_x.stop_gradient = False
sp_out = paddle.incubate.sparse.reshape(sp_x, new_shape)
sp_out = paddle.sparse.reshape(sp_x, new_shape)
np.testing.assert_allclose(sp_out.to_dense().numpy(),
dense_out.numpy(),
......@@ -75,7 +75,7 @@ class TestReshape(unittest.TestCase):
sp_x = paddle.to_tensor(
np_x, place=paddle.CUDAPlace(0)).to_sparse_csr()
sp_x.stop_gradient = False
sp_out = paddle.incubate.sparse.reshape(sp_x, new_shape)
sp_out = paddle.sparse.reshape(sp_x, new_shape)
np.testing.assert_allclose(sp_out.to_dense().numpy(),
dense_out.numpy(),
......
......@@ -48,7 +48,7 @@ class TestCsrSoftmax(unittest.TestCase):
np_out = np.concatenate([np_out, x_exp / x_exp_sum])
csr = paddle.to_tensor(np_x, stop_gradient=False).to_sparse_csr()
m = paddle.incubate.sparse.nn.Softmax()
m = paddle.sparse.nn.Softmax()
out = m(csr)
np.testing.assert_allclose(out.crows().numpy(),
np_csr.indptr,
......@@ -105,7 +105,7 @@ class TestCsrSoftmax(unittest.TestCase):
np_out = np.concatenate([np_out, x_exp / x_exp_sum])
csr = paddle.to_tensor(np_x, stop_gradient=False).to_sparse_csr()
m = paddle.incubate.sparse.nn.Softmax()
m = paddle.sparse.nn.Softmax()
out = m(csr)
np.testing.assert_allclose(out.values().numpy(), np_out, rtol=1e-05)
......
......@@ -35,7 +35,7 @@ class TestTranspose(unittest.TestCase):
else:
sp_x = origin_x.detach().to_sparse_csr()
sp_x.stop_gradient = False
sp_out = paddle.incubate.sparse.transpose(sp_x, dims)
sp_out = paddle.sparse.transpose(sp_x, dims)
np.testing.assert_allclose(sp_out.to_dense().numpy(),
dense_out.numpy(),
......
......@@ -90,84 +90,79 @@ class TestSparseUnary(unittest.TestCase):
self.check_result(dense_func, sparse_func, 'csr', attr1, attr2)
def test_sparse_sin(self):
self.compare_with_dense(paddle.sin, paddle.incubate.sparse.sin)
self.compare_with_dense(paddle.sin, paddle.sparse.sin)
def test_sparse_tan(self):
self.compare_with_dense(paddle.tan, paddle.incubate.sparse.tan)
self.compare_with_dense(paddle.tan, paddle.sparse.tan)
def test_sparse_asin(self):
self.compare_with_dense(paddle.asin, paddle.incubate.sparse.asin)
self.compare_with_dense(paddle.asin, paddle.sparse.asin)
def test_sparse_atan(self):
self.compare_with_dense(paddle.atan, paddle.incubate.sparse.atan)
self.compare_with_dense(paddle.atan, paddle.sparse.atan)
def test_sparse_sinh(self):
self.compare_with_dense(paddle.sinh, paddle.incubate.sparse.sinh)
self.compare_with_dense(paddle.sinh, paddle.sparse.sinh)
def test_sparse_tanh(self):
self.compare_with_dense(paddle.tanh, paddle.incubate.sparse.tanh)
self.compare_with_dense(paddle.tanh, paddle.sparse.tanh)
def test_sparse_asinh(self):
self.compare_with_dense(paddle.asinh, paddle.incubate.sparse.asinh)
self.compare_with_dense(paddle.asinh, paddle.sparse.asinh)
def test_sparse_atanh(self):
self.compare_with_dense(paddle.atanh, paddle.incubate.sparse.atanh)
self.compare_with_dense(paddle.atanh, paddle.sparse.atanh)
def test_sparse_sqrt(self):
self.compare_with_dense(paddle.sqrt, paddle.incubate.sparse.sqrt)
self.compare_with_dense(paddle.sqrt, paddle.sparse.sqrt)
def test_sparse_square(self):
self.compare_with_dense(paddle.square, paddle.incubate.sparse.square)
self.compare_with_dense(paddle.square, paddle.sparse.square)
def test_sparse_log1p(self):
self.compare_with_dense(paddle.log1p, paddle.incubate.sparse.log1p)
self.compare_with_dense(paddle.log1p, paddle.sparse.log1p)
def test_sparse_relu(self):
self.compare_with_dense(paddle.nn.ReLU(),
paddle.incubate.sparse.nn.ReLU())
self.compare_with_dense(paddle.nn.ReLU(), paddle.sparse.nn.ReLU())
def test_sparse_relu6(self):
self.compare_with_dense(paddle.nn.ReLU6(),
paddle.incubate.sparse.nn.ReLU6())
self.compare_with_dense(paddle.nn.ReLU6(), paddle.sparse.nn.ReLU6())
def test_sparse_leaky_relu(self):
self.compare_with_dense(paddle.nn.LeakyReLU(0.1),
paddle.incubate.sparse.nn.LeakyReLU(0.1))
paddle.sparse.nn.LeakyReLU(0.1))
def test_sparse_abs(self):
self.compare_with_dense(paddle.abs, paddle.incubate.sparse.abs)
self.compare_with_dense(paddle.abs, paddle.sparse.abs)
def test_sparse_expm1(self):
self.compare_with_dense(paddle.expm1, paddle.incubate.sparse.expm1)
self.compare_with_dense(paddle.expm1, paddle.sparse.expm1)
def test_sparse_deg2rad(self):
self.compare_with_dense(paddle.deg2rad, paddle.incubate.sparse.deg2rad)
self.compare_with_dense(paddle.deg2rad, paddle.sparse.deg2rad)
def test_sparse_rad2deg(self):
self.compare_with_dense(paddle.rad2deg, paddle.incubate.sparse.rad2deg)
self.compare_with_dense(paddle.rad2deg, paddle.sparse.rad2deg)
def test_sparse_neg(self):
self.compare_with_dense(paddle.neg, paddle.incubate.sparse.neg)
self.compare_with_dense(paddle.neg, paddle.sparse.neg)
def test_sparse_pow(self):
self.compare_with_dense_one_attr(paddle.pow, paddle.incubate.sparse.pow,
3)
self.compare_with_dense_one_attr(paddle.pow, paddle.sparse.pow, 3)
def test_sparse_mul_scalar(self):
self.compare_with_dense_one_attr(paddle.Tensor.__mul__,
paddle.incubate.sparse.multiply, 3)
paddle.sparse.multiply, 3)
def test_sparse_div_scalar(self):
self.compare_with_dense_one_attr(paddle.Tensor.__div__,
paddle.incubate.sparse.divide, 2)
paddle.sparse.divide, 2)
def test_sparse_cast(self):
self.compare_with_dense_two_attr(paddle.cast,
paddle.incubate.sparse.cast, 'int32',
'float32')
self.compare_with_dense_two_attr(paddle.cast,
paddle.incubate.sparse.cast, 'int32',
'float64')
self.compare_with_dense_two_attr(paddle.cast, paddle.sparse.cast,
'int32', 'float32')
self.compare_with_dense_two_attr(paddle.cast, paddle.sparse.cast,
'int32', 'float64')
if __name__ == "__main__":
......
......@@ -16,7 +16,6 @@ from __future__ import print_function
import unittest
import numpy as np
import paddle
from paddle.incubate import sparse
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.framework import _test_eager_guard
......@@ -33,7 +32,7 @@ class TestSparseCreate(unittest.TestCase):
dense_shape = [3, 4]
dense_indices = paddle.to_tensor(indices)
dense_elements = paddle.to_tensor(values, dtype='float32')
coo = paddle.incubate.sparse.sparse_coo_tensor(dense_indices,
coo = paddle.sparse.sparse_coo_tensor(dense_indices,
dense_elements,
dense_shape,
stop_gradient=False)
......@@ -46,8 +45,7 @@ class TestSparseCreate(unittest.TestCase):
indices = [[0, 1, 2], [1, 2, 0]]
values = [1.0, 2.0, 3.0]
dense_shape = [3, 3]
coo = paddle.incubate.sparse.sparse_coo_tensor(
indices, values, dense_shape)
coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
assert np.array_equal(3, coo.nnz())
assert np.array_equal(indices, coo.indices().numpy())
assert np.array_equal(values, coo.values().numpy())
......@@ -62,8 +60,7 @@ class TestSparseCreate(unittest.TestCase):
dense_cols = paddle.to_tensor(cols)
dense_elements = paddle.to_tensor(values, dtype='float32')
stop_gradient = False
csr = paddle.incubate.sparse.sparse_csr_tensor(
dense_crows,
csr = paddle.sparse.sparse_csr_tensor(dense_crows,
dense_cols,
dense_elements,
dense_shape,
......@@ -75,8 +72,8 @@ class TestSparseCreate(unittest.TestCase):
cols = [1, 3, 2, 0, 1]
values = [1, 2, 3, 4, 5]
dense_shape = [3, 4]
csr = paddle.incubate.sparse.sparse_csr_tensor(
crows, cols, values, dense_shape)
csr = paddle.sparse.sparse_csr_tensor(crows, cols, values,
dense_shape)
# test the to_string.py
assert np.array_equal(5, csr.nnz())
assert np.array_equal(crows, csr.crows().numpy())
......@@ -89,7 +86,7 @@ class TestSparseCreate(unittest.TestCase):
indices = [[0, 1], [0, 1]]
values = [1.0, 2.0]
dense_shape = [2, 2]
coo = paddle.incubate.sparse.sparse_coo_tensor(indices,
coo = paddle.sparse.sparse_coo_tensor(indices,
values,
dense_shape,
place=place)
......@@ -100,7 +97,7 @@ class TestSparseCreate(unittest.TestCase):
crows = [0, 2, 3, 5]
cols = [1, 3, 2, 0, 1]
values = [1.0, 2.0, 3.0, 4.0, 5.0]
csr = paddle.incubate.sparse.sparse_csr_tensor(crows,
csr = paddle.sparse.sparse_csr_tensor(crows,
cols,
values, [3, 5],
place=place)
......@@ -116,7 +113,7 @@ class TestSparseCreate(unittest.TestCase):
dense_shape = [2, 2]
indices = paddle.to_tensor(indices, dtype='int32')
values = paddle.to_tensor(values, dtype='float32')
coo = paddle.incubate.sparse.sparse_coo_tensor(indices,
coo = paddle.sparse.sparse_coo_tensor(indices,
values,
dense_shape,
dtype='float64')
......@@ -125,7 +122,7 @@ class TestSparseCreate(unittest.TestCase):
crows = [0, 2, 3, 5]
cols = [1, 3, 2, 0, 1]
values = [1.0, 2.0, 3.0, 4.0, 5.0]
csr = paddle.incubate.sparse.sparse_csr_tensor(crows,
csr = paddle.sparse.sparse_csr_tensor(crows,
cols,
values, [3, 5],
dtype='float16')
......@@ -137,7 +134,7 @@ class TestSparseCreate(unittest.TestCase):
values = [1.0, 2.0]
indices = paddle.to_tensor(indices, dtype='int32')
values = paddle.to_tensor(values, dtype='float32')
coo = paddle.incubate.sparse.sparse_coo_tensor(indices, values)
coo = paddle.sparse.sparse_coo_tensor(indices, values)
assert [2, 2] == coo.shape
......@@ -155,7 +152,7 @@ class TestSparseConvert(unittest.TestCase):
#test to_sparse_coo_grad backward
out_grad_indices = [[0, 1], [0, 1]]
out_grad_values = [2.0, 3.0]
out_grad = paddle.incubate.sparse.sparse_coo_tensor(
out_grad = paddle.sparse.sparse_coo_tensor(
paddle.to_tensor(out_grad_indices),
paddle.to_tensor(out_grad_values),
shape=out.shape,
......@@ -171,7 +168,7 @@ class TestSparseConvert(unittest.TestCase):
values = [1.0, 2.0, 3.0, 4.0, 5.0]
indices_dtypes = ['int32', 'int64']
for indices_dtype in indices_dtypes:
sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
sparse_x = paddle.sparse.sparse_coo_tensor(
paddle.to_tensor(indices, dtype=indices_dtype),
paddle.to_tensor(values),
shape=[3, 4],
......@@ -187,7 +184,7 @@ class TestSparseConvert(unittest.TestCase):
sparse_x.grad.values().numpy())
paddle.device.set_device("cpu")
sparse_x_cpu = paddle.incubate.sparse.sparse_coo_tensor(
sparse_x_cpu = paddle.sparse.sparse_coo_tensor(
paddle.to_tensor(indices, dtype=indices_dtype),
paddle.to_tensor(values),
shape=[3, 4],
......@@ -218,7 +215,7 @@ class TestSparseConvert(unittest.TestCase):
with _test_eager_guard():
indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
values = [1.0, 2.0, 3.0, 4.0, 5.0]
sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
sparse_x = paddle.sparse.sparse_coo_tensor(
paddle.to_tensor(indices),
paddle.to_tensor(values),
shape=[3, 4],
......@@ -231,7 +228,7 @@ class TestSparseConvert(unittest.TestCase):
indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
values = [[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0],
[5.0, 5.0]]
sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
sparse_x = paddle.sparse.sparse_coo_tensor(
paddle.to_tensor(indices),
paddle.to_tensor(values),
shape=[3, 4, 2],
......@@ -256,13 +253,13 @@ class TestSparseConvert(unittest.TestCase):
values = paddle.to_tensor(values,
dtype='float32',
stop_gradient=False)
sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
sparse_x = paddle.sparse.sparse_coo_tensor(
indices, values, shape=[2, 2], stop_gradient=False)
grad_indices = [[0, 1], [1, 1]]
grad_values = [2, 3]
grad_indices = paddle.to_tensor(grad_indices, dtype='int32')
grad_values = paddle.to_tensor(grad_values, dtype='float32')
sparse_out_grad = paddle.incubate.sparse.sparse_coo_tensor(
sparse_out_grad = paddle.sparse.sparse_coo_tensor(
grad_indices, grad_values, shape=[2, 2])
sparse_x.backward(sparse_out_grad)
correct_values_grad = [0, 3]
......@@ -274,11 +271,11 @@ class TestSparseConvert(unittest.TestCase):
values = paddle.to_tensor(values,
dtype='float32',
stop_gradient=False)
sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
sparse_x = paddle.sparse.sparse_coo_tensor(
indices, values, shape=[2, 2, 2], stop_gradient=False)
grad_values = [[2, 2], [3, 3]]
grad_values = paddle.to_tensor(grad_values, dtype='float32')
sparse_out_grad = paddle.incubate.sparse.sparse_coo_tensor(
sparse_out_grad = paddle.sparse.sparse_coo_tensor(
grad_indices, grad_values, shape=[2, 2, 2])
sparse_x.backward(sparse_out_grad)
correct_values_grad = [[0, 0], [3, 3]]
......@@ -296,9 +293,8 @@ class TestSparseConvert(unittest.TestCase):
values = [1.0, 2.0, 3.0]
indices = paddle.to_tensor(indices, dtype='int32')
values = paddle.to_tensor(values, dtype='float32')
sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
indices, values)
sparse_x = paddle.incubate.sparse.coalesce(sparse_x)
sparse_x = paddle.sparse.sparse_coo_tensor(indices, values)
sparse_x = paddle.sparse.coalesce(sparse_x)
indices_sorted = [[0, 1], [1, 0]]
values_sorted = [5.0, 1.0]
assert np.array_equal(indices_sorted,
......@@ -309,9 +305,8 @@ class TestSparseConvert(unittest.TestCase):
# test the non-zero values is a vector
values = [[1.0, 1.0], [2.0, 2.0], [3.0, 3.0]]
values = paddle.to_tensor(values, dtype='float32')
sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
indices, values)
sparse_x = paddle.incubate.sparse.coalesce(sparse_x)
sparse_x = paddle.sparse.sparse_coo_tensor(indices, values)
sparse_x = paddle.sparse.coalesce(sparse_x)
values_sorted = [[5.0, 5.0], [1.0, 1.0]]
assert np.array_equal(indices_sorted,
sparse_x.indices().numpy())
......@@ -365,8 +360,9 @@ class TestCooError(unittest.TestCase):
values = [1, 2]
# 1. the shape too small
dense_shape = [2, 2]
sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
indices, values, shape=dense_shape)
sparse_x = paddle.sparse.sparse_coo_tensor(indices,
values,
shape=dense_shape)
def test_same_nnz(self):
with _test_eager_guard():
......@@ -374,8 +370,7 @@ class TestCooError(unittest.TestCase):
# 2. test the nnz of indices must same as nnz of values
indices = [[1, 2], [1, 0]]
values = [1, 2, 3]
sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
indices, values)
sparse_x = paddle.sparse.sparse_coo_tensor(indices, values)
def test_same_dimensions(self):
with _test_eager_guard():
......@@ -383,7 +378,7 @@ class TestCooError(unittest.TestCase):
indices = [[1, 2], [1, 0]]
values = [1, 2, 3]
shape = [2, 3, 4]
sparse_x = paddle.incubate.sparse.sparse_coo_tensor(indices,
sparse_x = paddle.sparse.sparse_coo_tensor(indices,
values,
shape=shape)
......@@ -392,8 +387,7 @@ class TestCooError(unittest.TestCase):
with self.assertRaises(TypeError):
indices = [[1.0, 2.0], [0, 1]]
values = [1, 2]
sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
indices, values)
sparse_x = paddle.sparse.sparse_coo_tensor(indices, values)
class TestCsrError(unittest.TestCase):
......@@ -405,7 +399,7 @@ class TestCsrError(unittest.TestCase):
cols = [0, 1, 2]
values = [1, 2, 3]
shape = [3]
sparse_x = paddle.incubate.sparse.sparse_csr_tensor(
sparse_x = paddle.sparse.sparse_csr_tensor(
crows, cols, values, shape)
def test_dimension2(self):
......@@ -415,7 +409,7 @@ class TestCsrError(unittest.TestCase):
cols = [0, 1, 2]
values = [1, 2, 3]
shape = [3, 3, 3, 3]
sparse_x = paddle.incubate.sparse.sparse_csr_tensor(
sparse_x = paddle.sparse.sparse_csr_tensor(
crows, cols, values, shape)
def test_same_shape1(self):
......@@ -425,7 +419,7 @@ class TestCsrError(unittest.TestCase):
cols = [0, 1, 2, 3]
values = [1, 2, 3]
shape = [3, 4]
sparse_x = paddle.incubate.sparse.sparse_csr_tensor(
sparse_x = paddle.sparse.sparse_csr_tensor(
crows, cols, values, shape)
def test_same_shape2(self):
......@@ -435,7 +429,7 @@ class TestCsrError(unittest.TestCase):
cols = [0, 1, 2, 3]
values = [1, 2, 3, 4]
shape = [3, 4]
sparse_x = paddle.incubate.sparse.sparse_csr_tensor(
sparse_x = paddle.sparse.sparse_csr_tensor(
crows, cols, values, shape)
def test_same_shape3(self):
......@@ -445,7 +439,7 @@ class TestCsrError(unittest.TestCase):
cols = [0, 1, 2, 3, 0, 1, 2]
values = [1, 2, 3, 4, 0, 1, 2]
shape = [2, 3, 4]
sparse_x = paddle.incubate.sparse.sparse_csr_tensor(
sparse_x = paddle.sparse.sparse_csr_tensor(
crows, cols, values, shape)
def test_crows_first_value(self):
......@@ -455,7 +449,7 @@ class TestCsrError(unittest.TestCase):
cols = [0, 1, 2]
values = [1, 2, 3]
shape = [3, 4]
sparse_x = paddle.incubate.sparse.sparse_csr_tensor(
sparse_x = paddle.sparse.sparse_csr_tensor(
crows, cols, values, shape)
def test_dtype(self):
......@@ -465,7 +459,7 @@ class TestCsrError(unittest.TestCase):
cols = [0, 1, 2]
values = [1, 2, 3]
shape = [3]
sparse_x = paddle.incubate.sparse.sparse_csr_tensor(
sparse_x = paddle.sparse.sparse_csr_tensor(
crows, cols, values, shape)
......
......@@ -31,7 +31,6 @@ from .passes import fuse_resnet_unit_pass
from . import autograd #noqa: F401
from . import autotune #noqa: F401
from . import sparse #noqa: F401
from . import nn #noqa: F401
from . import asp #noqa: F401
......
......@@ -51,9 +51,36 @@ from .multiary import addmm
from . import nn
__all__ = [
'sparse_coo_tensor', 'sparse_csr_tensor', 'sin', 'tan', 'asin', 'atan',
'sinh', 'tanh', 'asinh', 'atanh', 'sqrt', 'square', 'log1p', 'abs', 'pow',
'cast', 'neg', 'deg2rad', 'rad2deg', 'expm1', 'mv', 'matmul',
'masked_matmul', 'addmm', 'add', 'subtract', 'transpose', 'multiply',
'divide', 'coalesce', 'is_same_shape', 'reshape'
'sparse_coo_tensor',
'sparse_csr_tensor',
'sin',
'tan',
'asin',
'atan',
'sinh',
'tanh',
'asinh',
'atanh',
'sqrt',
'square',
'log1p',
'abs',
'pow',
'cast',
'neg',
'deg2rad',
'rad2deg',
'expm1',
'mv',
'matmul',
'masked_matmul',
'addmm',
'add',
'subtract',
'transpose',
'multiply',
'divide',
'coalesce',
'is_same_shape',
'reshape',
]
......@@ -64,19 +64,20 @@ def matmul(x, y, name=None):
.. code-block:: python
# required: gpu
import paddle
# csr @ dense -> dense
crows = [0, 1, 2, 3]
cols = [1, 2, 0]
values = [1., 2., 3.]
csr = paddle.incubate.sparse.sparse_csr_tensor(crows, cols, values, [3, 3])
csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, [3, 3])
# Tensor(shape=[3, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
# crows=[0, 1, 2, 3],
# cols=[1, 2, 0],
# values=[1., 2., 3.])
dense = paddle.ones([3, 2])
out = paddle.incubate.sparse.matmul(csr, dense)
out = paddle.sparse.matmul(csr, dense)
# Tensor(shape=[3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
# [[1., 1.],
# [2., 2.],
......@@ -85,13 +86,13 @@ def matmul(x, y, name=None):
# coo @ dense -> dense
indices = [[0, 1, 2], [1, 2, 0]]
values = [1., 2., 3.]
coo = paddle.incubate.sparse.sparse_coo_tensor(indices, values, [3, 3])
coo = paddle.sparse.sparse_coo_tensor(indices, values, [3, 3])
# Tensor(shape=[3, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
# indices=[[0, 1, 2],
# [1, 2, 0]],
# values=[1., 2., 3.])
dense = paddle.ones([3, 2])
out = paddle.incubate.sparse.matmul(coo, dense)
out = paddle.sparse.matmul(coo, dense)
# Tensor(shape=[3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
# [[1., 1.],
# [2., 2.],
......@@ -133,6 +134,7 @@ def masked_matmul(x, y, mask, name=None):
.. code-block:: python
# required: gpu
import paddle
paddle.seed(100)
......@@ -141,7 +143,7 @@ def masked_matmul(x, y, mask, name=None):
cols = [1, 3, 2, 0, 1]
values = [1., 2., 3., 4., 5.]
dense_shape = [3, 4]
mask = paddle.incubate.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
mask = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
# Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
# crows=[0, 2, 3, 5],
# cols=[1, 3, 2, 0, 1],
......@@ -150,7 +152,7 @@ def masked_matmul(x, y, mask, name=None):
x = paddle.rand([3, 5])
y = paddle.rand([5, 4])
out = paddle.incubate.sparse.masked_matmul(x, y, mask)
out = paddle.sparse.masked_matmul(x, y, mask)
# Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
# crows=[0, 2, 3, 5],
# cols=[1, 3, 2, 0, 1],
......@@ -191,6 +193,7 @@ def mv(x, vec, name=None):
.. code-block:: python
# required: gpu
import paddle
from paddle.fluid.framework import _test_eager_guard
paddle.seed(100)
......@@ -201,14 +204,14 @@ def mv(x, vec, name=None):
cols = [1, 3, 2, 0, 1]
values = [1., 2., 3., 4., 5.]
dense_shape = [3, 4]
csr = paddle.incubate.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
# Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
# crows=[0, 2, 3, 5],
# cols=[1, 3, 2, 0, 1],
# values=[1., 2., 3., 4., 5.])
vec = paddle.randn([4])
out = paddle.incubate.sparse.mv(csr, vec)
out = paddle.sparse.mv(csr, vec)
# Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
# [-3.85499096, -2.42975140, -1.75087738])
......@@ -247,7 +250,7 @@ def add(x, y, name=None):
y = paddle.to_tensor([[0, 0, 0, -2], [0, 2, -3, 0], [2, 3, 4, 8]], 'float32')
sparse_x = x.to_sparse_csr()
sparse_y = y.to_sparse_csr()
sparse_z = paddle.incubate.sparse.add(sparse_x, sparse_y)
sparse_z = paddle.sparse.add(sparse_x, sparse_y)
print(sparse_z.to_dense())
# [[ 0., -1., 0., 0.],
......@@ -304,7 +307,7 @@ def subtract(x, y, name=None):
y = paddle.to_tensor([[0, 0, 0, -2], [0, 2, -3, 0], [2, 3, 4, 8]], 'float32')
sparse_x = x.to_sparse_csr()
sparse_y = y.to_sparse_csr()
sparse_z = paddle.incubate.sparse.subtract(sparse_x, sparse_y)
sparse_z = paddle.sparse.subtract(sparse_x, sparse_y)
print(sparse_z.to_dense())
# [[ 0., -1., 0., 4.],
......@@ -349,7 +352,7 @@ def multiply(x, y, name=None):
y = paddle.to_tensor([[0, 0, 0, -2], [0, 2, -3, 0], [2, 3, 4, 8]], 'float32')
sparse_x = x.to_sparse_csr()
sparse_y = y.to_sparse_csr()
sparse_z = paddle.incubate.sparse.multiply(sparse_x, sparse_y)
sparse_z = paddle.sparse.multiply(sparse_x, sparse_y)
print(sparse_z.to_dense())
# [[ 0., 0., 0., -4.],
......@@ -397,7 +400,7 @@ def divide(x, y, name=None):
y = paddle.to_tensor([[0, 0, 0, -2], [0, 2, -3, 0], [2, 3, 4, 8]], 'float32')
sparse_x = x.to_sparse_csr()
sparse_y = y.to_sparse_csr()
sparse_z = paddle.incubate.sparse.divide(sparse_x, sparse_y)
sparse_z = paddle.sparse.divide(sparse_x, sparse_y)
print(sparse_z.to_dense())
# [[ nan , -inf. , nan , -1. ],
......@@ -440,9 +443,9 @@ def is_same_shape(x, y):
y = y.to_sparse_csr()
z = paddle.rand([2, 5])
paddle.incubate.sparse.is_same_shape(x, y)
paddle.sparse.is_same_shape(x, y)
# True
paddle.incubate.sparse.is_same_shape(x, z)
paddle.sparse.is_same_shape(x, z)
# False
"""
......
......@@ -113,7 +113,7 @@ def sparse_coo_tensor(indices,
indices = [[0, 1, 2], [1, 2, 0]]
values = [1.0, 2.0, 3.0]
dense_shape = [3, 3]
coo = paddle.incubate.sparse.sparse_coo_tensor(indices, values, dense_shape)
coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
# print(coo)
# Tensor(shape=[2, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
# indices=[[0, 1, 2],
......@@ -240,7 +240,7 @@ def sparse_csr_tensor(crows,
cols = [1, 3, 2, 0, 1]
values = [1, 2, 3, 4, 5]
dense_shape = [3, 4]
csr = paddle.incubate.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
# print(csr)
# Tensor(shape=[3, 4], dtype=paddle.int64, place=Place(gpu:0), stop_gradient=True,
# crows=[0, 2, 3, 5],
......
......@@ -58,6 +58,7 @@ def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
.. code-block:: python
# required: gpu
import paddle
# dense + csr @ dense -> dense
......@@ -65,17 +66,17 @@ def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
crows = [0, 1, 2, 3]
cols = [1, 2, 0]
values = [1., 2., 3.]
x = paddle.incubate.sparse.sparse_csr_tensor(crows, cols, values, [3, 3])
x = paddle.sparse.sparse_csr_tensor(crows, cols, values, [3, 3])
y = paddle.rand([3, 2])
out = paddle.incubate.sparse.addmm(input, x, y, 3.0, 2.0)
out = paddle.sparse.addmm(input, x, y, 3.0, 2.0)
# dense + coo @ dense -> dense
input = paddle.rand([3, 2])
indices = [[0, 1, 2], [1, 2, 0]]
values = [1., 2., 3.]
x = paddle.incubate.sparse.sparse_coo_tensor(indices, values, [3, 3])
x = paddle.sparse.sparse_coo_tensor(indices, values, [3, 3])
y = paddle.rand([3, 2])
out = paddle.incubate.sparse.addmm(input, x, y, 3.0, 2.0)
out = paddle.sparse.addmm(input, x, y, 3.0, 2.0)
"""
return _C_ops.sparse_addmm(input, x, y, alpha, beta)
......@@ -43,7 +43,7 @@ def relu(x, name=None):
dense_x = paddle.to_tensor([-2., 0., 1.])
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.nn.functional.relu(sparse_x)
out = paddle.sparse.nn.functional.relu(sparse_x)
# [0., 0., 1.]
"""
if in_dynamic_mode():
......@@ -104,7 +104,7 @@ def softmax(x, axis=-1, name=None):
# values=[0.96823406, 0.19722934, 0.94373937, 0.02060066, 0.71456372,
# 0.98275049])
out = paddle.incubate.sparse.nn.functional.softmax(csr)
out = paddle.sparse.nn.functional.softmax(csr)
# Tensor(shape=[3, 4], dtype=paddle.float64, place=Place(gpu:0), stop_gradient=True,
# crows=[0, 2, 5, 6],
# cols=[2, 3, 0, 2, 3, 3],
......@@ -139,7 +139,7 @@ def relu6(x, name=None):
dense_x = paddle.to_tensor([-2., 0., 8.])
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.nn.functional.relu6(sparse_x)
out = paddle.sparse.nn.functional.relu6(sparse_x)
"""
return _C_ops.sparse_relu6(x, 6.0)
......@@ -175,6 +175,6 @@ def leaky_relu(x, negative_slope=0.01, name=None):
dense_x = paddle.to_tensor([-2., 0., 5.])
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.nn.functional.leaky_relu(sparse_x, 0.5)
out = paddle.sparse.nn.functional.leaky_relu(sparse_x, 0.5)
"""
return _C_ops.sparse_leaky_relu(x, negative_slope)
......@@ -203,9 +203,9 @@ def conv3d(x,
indices = paddle.to_tensor(indices, dtype='int32')
values = paddle.to_tensor(values, dtype='float32')
dense_shape = [1, 1, 3, 4, 1]
sparse_x = paddle.incubate.sparse.sparse_coo_tensor(indices, values, dense_shape, stop_gradient=True)
sparse_x = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape, stop_gradient=True)
weight = paddle.randn((1, 3, 3, 1, 1), dtype='float32')
y = paddle.incubate.sparse.nn.functional.conv3d(sparse_x, weight)
y = paddle.sparse.nn.functional.conv3d(sparse_x, weight)
print(y.shape)
# (1, 1, 1, 2, 1)
"""
......@@ -323,9 +323,9 @@ def subm_conv3d(x,
indices = paddle.to_tensor(indices, dtype='int32')
values = paddle.to_tensor(values, dtype='float32')
dense_shape = [1, 1, 3, 4, 1]
sparse_x = paddle.incubate.sparse.sparse_coo_tensor(indices, values, dense_shape, stop_gradient=True)
sparse_x = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape, stop_gradient=True)
weight = paddle.randn((1, 3, 3, 1, 1), dtype='float32')
y = paddle.incubate.sparse.nn.functional.subm_conv3d(sparse_x, weight)
y = paddle.sparse.nn.functional.subm_conv3d(sparse_x, weight)
print(y.shape)
#(1, 1, 3, 4, 1)
"""
......
......@@ -70,7 +70,7 @@ def max_pool3d(x,
kernel_sizes = [3, 3, 3]
paddings = [0, 0, 0]
strides = [1, 1, 1]
out = paddle.incubate.sparse.nn.functional.max_pool3d(sparse_x, kernel_sizes, stride=strides, padding=paddings)
out = paddle.sparse.nn.functional.max_pool3d(sparse_x, kernel_sizes, stride=strides, padding=paddings)
#[1, 2, 2, 2, 3]
"""
......
......@@ -64,6 +64,7 @@ def attention(query,
Examples:
.. code-block:: python
# required: gpu
import paddle
batch_size = 16
......@@ -85,7 +86,7 @@ def attention(query,
kp_mask = paddle.randint(0, 2, [batch_size, seq_len])
attn_mask = paddle.randint(0, 2, [seq_len, seq_len])
output = paddle.incubate.sparse.nn.functional.attention(query, key, value, sp_mask, kp_mask, attn_mask)
output = paddle.sparse.nn.functional.attention(query, key, value, sp_mask, kp_mask, attn_mask)
output.backward()
"""
return _C_ops.sparse_fused_attention(query, key, value, sparse_mask,
......
......@@ -41,7 +41,7 @@ class ReLU(Layer):
dense_x = paddle.to_tensor([-2., 0., 1.])
sparse_x = dense_x.to_sparse_coo(1)
relu = paddle.incubate.sparse.nn.ReLU()
relu = paddle.sparse.nn.ReLU()
out = relu(sparse_x)
# [0., 0., 1.]
"""
......@@ -102,7 +102,7 @@ class Softmax(Layer):
# values=[0.96823406, 0.19722934, 0.94373937, 0.02060066, 0.71456372,
# 0.98275049])
softmax = paddle.incubate.sparse.nn.Softmax()
softmax = paddle.sparse.nn.Softmax()
out = softmax(csr)
# Tensor(shape=[3, 4], dtype=paddle.float64, place=Place(gpu:0), stop_gradient=True,
# crows=[0, 2, 5, 6],
......@@ -147,7 +147,7 @@ class ReLU6(Layer):
dense_x = paddle.to_tensor([-2., 0., 8.])
sparse_x = dense_x.to_sparse_coo(1)
relu6 = paddle.incubate.sparse.nn.ReLU6()
relu6 = paddle.sparse.nn.ReLU6()
out = relu6(sparse_x)
"""
......@@ -194,7 +194,7 @@ class LeakyReLU(Layer):
dense_x = paddle.to_tensor([-2., 0., 5.])
sparse_x = dense_x.to_sparse_coo(1)
leaky_relu = paddle.incubate.sparse.nn.LeakyReLU(0.5)
leaky_relu = paddle.sparse.nn.LeakyReLU(0.5)
out = leaky_relu(sparse_x)
"""
......
......@@ -216,8 +216,8 @@ class Conv3D(_Conv3D):
indices = paddle.to_tensor(indices, dtype='int32')
values = paddle.to_tensor(values, dtype='float32')
dense_shape = [1, 1, 3, 4, 1]
sparse_x = paddle.incubate.sparse.sparse_coo_tensor(indices, values, dense_shape, stop_gradient=True)
conv = paddle.incubate.sparse.nn.Conv3D(1, 1, (1, 3, 3))
sparse_x = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape, stop_gradient=True)
conv = paddle.sparse.nn.Conv3D(1, 1, (1, 3, 3))
y = conv(sparse_x)
print(y.shape)
# (1, 1, 1, 2, 1)
......@@ -353,8 +353,8 @@ class SubmConv3D(_Conv3D):
dense_shape = [1, 1, 3, 4, 1]
indices = paddle.to_tensor(indices, dtype='int32')
values = paddle.to_tensor(values, dtype='float32')
sparse_x = paddle.incubate.sparse.sparse_coo_tensor(indices, values, dense_shape, stop_gradient=True)
subm_conv = paddle.incubate.sparse.nn.SubmConv3D(1, 1, (1, 3, 3))
sparse_x = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape, stop_gradient=True)
subm_conv = paddle.sparse.nn.SubmConv3D(1, 1, (1, 3, 3))
y = subm_conv(sparse_x)
print(y.shape)
# (1, 1, 3, 4, 1)
......
......@@ -102,7 +102,7 @@ class BatchNorm(paddle.nn.BatchNorm1D):
x_data = paddle.randn((1, 6, 6, 6, channels)).astype('float32')
dense_x = paddle.to_tensor(x_data)
sparse_x = dense_x.to_sparse_coo(4)
batch_norm = paddle.incubate.sparse.nn.BatchNorm(channels)
batch_norm = paddle.sparse.nn.BatchNorm(channels)
batch_norm_out = batch_norm(sparse_x)
print(batch_norm_out.shape)
# [1, 6, 6, 6, 3]
......@@ -154,7 +154,7 @@ class BatchNorm(paddle.nn.BatchNorm1D):
data_format='NC',
use_global_stats=self._use_global_stats)
return paddle.incubate.sparse.sparse_coo_tensor(
return paddle.sparse.sparse_coo_tensor(
input.indices(),
batch_norm_out,
shape=input.shape,
......@@ -237,7 +237,7 @@ class SyncBatchNorm(paddle.nn.SyncBatchNorm):
# required: gpu
import paddle
import paddle.incubate.sparse.nn as nn
import paddle.sparse.nn as nn
import numpy as np
x = np.array([[[[0.3, 0.4], [0.3, 0.07]], [[0.83, 0.37], [0.18, 0.93]]]]).astype('float32')
......@@ -274,13 +274,15 @@ class SyncBatchNorm(paddle.nn.SyncBatchNorm):
assert x.is_sparse_coo(
), "SyncBatchNorm only support SparseTensor in COO format."
out = super(SyncBatchNorm, self).forward(x.values())
return paddle.incubate.sparse.sparse_coo_tensor(
x.indices(), out, shape=x.shape, stop_gradient=x.stop_gradient)
return paddle.sparse.sparse_coo_tensor(x.indices(),
out,
shape=x.shape,
stop_gradient=x.stop_gradient)
@classmethod
def convert_sync_batchnorm(cls, layer):
r"""
Helper function to convert :class: `paddle.incubate.sparse.nn.BatchNorm` layers in the model to :class: `paddle.incubate.sparse.nn.SyncBatchNorm` layers.
Helper function to convert :class: `paddle.sparse.nn.BatchNorm` layers in the model to :class: `paddle.sparse.nn.SyncBatchNorm` layers.
Parameters:
layer(paddle.nn.Layer): model containing one or more `BatchNorm` layers.
......@@ -293,7 +295,7 @@ class SyncBatchNorm(paddle.nn.SyncBatchNorm):
.. code-block:: python
import paddle
import paddle.incubate.sparse.nn as nn
import paddle.sparse.nn as nn
model = paddle.nn.Sequential(nn.Conv3D(3, 5, 3), nn.BatchNorm(5))
sync_model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
......
......@@ -66,7 +66,7 @@ class MaxPool3D(Layer):
with _test_eager_guard():
dense_x = paddle.randn((2, 3, 6, 6, 3))
sparse_x = dense_x.to_sparse_coo(4)
max_pool3d = paddle.incubate.sparse.nn.MaxPool3D(
max_pool3d = paddle.sparse.nn.MaxPool3D(
kernel_size=3, data_format='NDHWC')
out = max_pool3d(sparse_x)
#shape=[2, 1, 2, 2, 3]
......
......@@ -53,7 +53,7 @@ def sin(x, name=None):
dense_x = paddle.to_tensor([-2., 0., 1.])
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.sin(sparse_x)
out = paddle.sparse.sin(sparse_x)
"""
return _C_ops.sparse_sin(x)
......@@ -83,7 +83,7 @@ def tan(x, name=None):
dense_x = paddle.to_tensor([-2., 0., 1.])
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.tan(sparse_x)
out = paddle.sparse.tan(sparse_x)
"""
return _C_ops.sparse_tan(x)
......@@ -113,7 +113,7 @@ def asin(x, name=None):
dense_x = paddle.to_tensor([-2., 0., 1.])
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.asin(sparse_x)
out = paddle.sparse.asin(sparse_x)
"""
return _C_ops.sparse_asin(x)
......@@ -144,7 +144,7 @@ def transpose(x, perm, name=None):
dense_x = paddle.to_tensor([[-2., 0.], [1., 2.]])
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.transpose(sparse_x, [1, 0])
out = paddle.sparse.transpose(sparse_x, [1, 0])
"""
return _C_ops.sparse_transpose(x, perm)
......@@ -174,7 +174,7 @@ def atan(x, name=None):
dense_x = paddle.to_tensor([-2., 0., 1.])
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.atan(sparse_x)
out = paddle.sparse.atan(sparse_x)
"""
return _C_ops.sparse_atan(x)
......@@ -204,7 +204,7 @@ def sinh(x, name=None):
dense_x = paddle.to_tensor([-2., 0., 1.])
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.sinh(sparse_x)
out = paddle.sparse.sinh(sparse_x)
"""
return _C_ops.sparse_sinh(x)
......@@ -234,7 +234,7 @@ def asinh(x, name=None):
dense_x = paddle.to_tensor([-2., 0., 1.])
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.asinh(sparse_x)
out = paddle.sparse.asinh(sparse_x)
"""
return _C_ops.sparse_asinh(x)
......@@ -264,7 +264,7 @@ def atanh(x, name=None):
dense_x = paddle.to_tensor([-2., 0., 1.])
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.atanh(sparse_x)
out = paddle.sparse.atanh(sparse_x)
"""
return _C_ops.sparse_atanh(x)
......@@ -294,7 +294,7 @@ def tanh(x, name=None):
dense_x = paddle.to_tensor([-2., 0., 1.])
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.tanh(sparse_x)
out = paddle.sparse.tanh(sparse_x)
"""
return _C_ops.sparse_tanh(x)
......@@ -324,7 +324,7 @@ def square(x, name=None):
dense_x = paddle.to_tensor([-2., 0., 1.])
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.square(sparse_x)
out = paddle.sparse.square(sparse_x)
"""
return _C_ops.sparse_square(x)
......@@ -354,7 +354,7 @@ def sqrt(x, name=None):
dense_x = paddle.to_tensor([-2., 0., 1.])
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.sqrt(sparse_x)
out = paddle.sparse.sqrt(sparse_x)
"""
return _C_ops.sparse_sqrt(x)
......@@ -384,7 +384,7 @@ def log1p(x, name=None):
dense_x = paddle.to_tensor([-2, 0, 1], dtype='float32')
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.log1p(sparse_x)
out = paddle.sparse.log1p(sparse_x)
"""
return _C_ops.sparse_log1p(x)
......@@ -415,7 +415,7 @@ def cast(x, index_dtype=None, value_dtype=None, name=None):
dense_x = paddle.to_tensor([-2, 0, 1])
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.cast(sparse_x, 'int32', 'float64')
out = paddle.sparse.cast(sparse_x, 'int32', 'float64')
"""
if index_dtype and not isinstance(index_dtype, core.VarDesc.VarType):
......@@ -450,7 +450,7 @@ def pow(x, factor, name=None):
dense_x = paddle.to_tensor([-2, 0, 3], dtype='float32')
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.pow(sparse_x, 2)
out = paddle.sparse.pow(sparse_x, 2)
"""
return _C_ops.sparse_pow(x, float(factor))
......@@ -480,7 +480,7 @@ def neg(x, name=None):
dense_x = paddle.to_tensor([-2, 0, 3], dtype='float32')
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.neg(sparse_x)
out = paddle.sparse.neg(sparse_x)
"""
return _C_ops.sparse_scale(x, -1.0, 0.0, True)
......@@ -510,7 +510,7 @@ def abs(x, name=None):
dense_x = paddle.to_tensor([-2, 0, 3], dtype='float32')
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.abs(sparse_x)
out = paddle.sparse.abs(sparse_x)
"""
return _C_ops.sparse_abs(x)
......@@ -532,12 +532,10 @@ def coalesce(x):
import paddle
from paddle.incubate import sparse
indices = [[0, 0, 1], [1, 1, 2]]
values = [1.0, 2.0, 3.0]
sp_x = sparse.sparse_coo_tensor(indices, values)
sp_x = sparse.coalesce(sp_x)
sp_x = paddle.sparse.sparse_coo_tensor(indices, values)
sp_x = paddle.sparse.coalesce(sp_x)
print(sp_x.indices())
#[[0, 1], [1, 2]]
print(sp_x.values())
......@@ -571,7 +569,7 @@ def rad2deg(x, name=None):
dense_x = paddle.to_tensor([3.142, 0., -3.142])
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.rad2deg(sparse_x)
out = paddle.sparse.rad2deg(sparse_x)
"""
if x.dtype in _int_dtype_:
......@@ -604,7 +602,7 @@ def deg2rad(x, name=None):
dense_x = paddle.to_tensor([-180, 0, 180])
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.deg2rad(sparse_x)
out = paddle.sparse.deg2rad(sparse_x)
"""
if x.dtype in _int_dtype_:
......@@ -636,7 +634,7 @@ def expm1(x, name=None):
dense_x = paddle.to_tensor([-2., 0., 1.])
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.expm1(sparse_x)
out = paddle.sparse.expm1(sparse_x)
"""
return _C_ops.sparse_expm1(x)
......@@ -689,7 +687,7 @@ def reshape(x, shape, name=None):
sp_x = dense_x.to_sparse_coo(len(x_shape))
else:
sp_x = dense_x.to_sparse_csr()
sp_out = paddle.incubate.sparse.reshape(sp_x, new_shape)
sp_out = paddle.sparse.reshape(sp_x, new_shape)
print(sp_out)
# the shape of sp_out is [1, 2, 2, 3, 3]
......
......@@ -283,7 +283,6 @@ packages=['paddle',
'paddle.incubate.tensor',
'paddle.incubate.multiprocessing',
'paddle.incubate.nn',
'paddle.incubate.sparse',
'paddle.incubate.asp',
'paddle.incubate.passes',
'paddle.distribution',
......@@ -385,10 +384,10 @@ packages=['paddle',
'paddle.incubate.distributed.models',
'paddle.incubate.distributed.models.moe',
'paddle.incubate.distributed.models.moe.gate',
'paddle.incubate.sparse',
'paddle.incubate.sparse.nn',
'paddle.incubate.sparse.nn.layer',
'paddle.incubate.sparse.nn.functional',
'paddle.sparse',
'paddle.sparse.nn',
'paddle.sparse.nn.layer',
'paddle.sparse.nn.functional',
'paddle.incubate.xpu',
'paddle.io',
'paddle.optimizer',
......
......@@ -224,17 +224,47 @@ def process_module(m, attr="__all__"):
def check_public_api():
import paddle
modulelist = [ #npqa
paddle, paddle.amp, paddle.nn, paddle.nn.functional,
paddle.nn.initializer, paddle.nn.utils, paddle.static, paddle.static.nn,
paddle.io, paddle.jit, paddle.metric, paddle.distribution,
paddle.optimizer, paddle.optimizer.lr, paddle.regularizer, paddle.text,
paddle.utils, paddle.utils.download, paddle.utils.profiler,
paddle.utils.cpp_extension, paddle.sysconfig, paddle.vision,
paddle.vision.datasets, paddle.vision.models, paddle.vision.transforms,
paddle.vision.ops, paddle.distributed, paddle.distributed.fleet,
paddle.distributed.fleet.utils, paddle.distributed.parallel,
paddle.distributed.utils, paddle.callbacks, paddle.hub, paddle.autograd,
paddle.incubate, paddle.inference, paddle.onnx, paddle.device
paddle,
paddle.amp,
paddle.nn,
paddle.nn.functional,
paddle.nn.initializer,
paddle.nn.utils,
paddle.static,
paddle.static.nn,
paddle.io,
paddle.jit,
paddle.metric,
paddle.distribution,
paddle.optimizer,
paddle.optimizer.lr,
paddle.regularizer,
paddle.text,
paddle.utils,
paddle.utils.download,
paddle.utils.profiler,
paddle.utils.cpp_extension,
paddle.sysconfig,
paddle.vision,
paddle.vision.datasets,
paddle.vision.models,
paddle.vision.transforms,
paddle.vision.ops,
paddle.distributed,
paddle.distributed.fleet,
paddle.distributed.fleet.utils,
paddle.distributed.parallel,
paddle.distributed.utils,
paddle.callbacks,
paddle.hub,
paddle.autograd,
paddle.incubate,
paddle.inference,
paddle.onnx,
paddle.device,
paddle.sparse,
paddle.sparse.nn,
paddle.sparse.nn.functional,
]
apinum = 0
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册