Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
50ba205d
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
50ba205d
编写于
5月 21, 2018
作者:
L
Liu Yiqun
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into core_fix_openblas_threads
上级
39eb871d
7ae03ec0
变更
64
隐藏空白更改
内联
并排
Showing
64 changed file
with
850 addition
and
4622 deletion
+850
-4622
Dockerfile
Dockerfile
+1
-1
benchmark/fluid/mnist.py
benchmark/fluid/mnist.py
+10
-6
benchmark/fluid/resnet.py
benchmark/fluid/resnet.py
+8
-4
benchmark/fluid/vgg.py
benchmark/fluid/vgg.py
+8
-4
cmake/external/boost.cmake
cmake/external/boost.cmake
+1
-1
cmake/external/eigen.cmake
cmake/external/eigen.cmake
+2
-1
cmake/external/mkldnn.cmake
cmake/external/mkldnn.cmake
+1
-3
cmake/external/mklml.cmake
cmake/external/mklml.cmake
+1
-1
cmake/external/snappy.cmake
cmake/external/snappy.cmake
+0
-2
cmake/external/snappystream.cmake
cmake/external/snappystream.cmake
+0
-2
cmake/inference_lib.cmake
cmake/inference_lib.cmake
+14
-0
doc/fluid/design/concepts/functions_operators_layers.md
doc/fluid/design/concepts/functions_operators_layers.md
+1
-1
paddle/CMakeLists.txt
paddle/CMakeLists.txt
+1
-1
paddle/fluid/framework/data_device_transform.cc
paddle/fluid/framework/data_device_transform.cc
+4
-2
paddle/fluid/framework/data_type.cc
paddle/fluid/framework/data_type.cc
+1
-0
paddle/fluid/framework/data_type.h
paddle/fluid/framework/data_type.h
+7
-1
paddle/fluid/framework/details/fetch_op_handle.cc
paddle/fluid/framework/details/fetch_op_handle.cc
+8
-7
paddle/fluid/framework/details/multi_devices_graph_builder.cc
...le/fluid/framework/details/multi_devices_graph_builder.cc
+1
-1
paddle/fluid/framework/details/op_handle_base.h
paddle/fluid/framework/details/op_handle_base.h
+8
-0
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
...le/fluid/framework/details/threaded_ssa_graph_executor.cc
+1
-1
paddle/fluid/framework/executor.cc
paddle/fluid/framework/executor.cc
+9
-6
paddle/fluid/framework/executor.h
paddle/fluid/framework/executor.h
+2
-1
paddle/fluid/framework/framework.proto
paddle/fluid/framework/framework.proto
+1
-0
paddle/fluid/framework/lod_tensor_test.cc
paddle/fluid/framework/lod_tensor_test.cc
+13
-4
paddle/fluid/inference/tensorrt/convert/op_converter.h
paddle/fluid/inference/tensorrt/convert/op_converter.h
+1
-1
paddle/fluid/inference/tests/test_helper.h
paddle/fluid/inference/tests/test_helper.h
+5
-6
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+8
-6
paddle/fluid/operators/beam_search_op.h
paddle/fluid/operators/beam_search_op.h
+0
-4
paddle/fluid/operators/detail/grpc_server.cc
paddle/fluid/operators/detail/grpc_server.cc
+1
-1
paddle/fluid/operators/listen_and_serv_op.cc
paddle/fluid/operators/listen_and_serv_op.cc
+3
-4
paddle/fluid/operators/math/math_function.cc
paddle/fluid/operators/math/math_function.cc
+3
-1
paddle/fluid/operators/roi_pool_op.cu
paddle/fluid/operators/roi_pool_op.cu
+23
-17
paddle/fluid/operators/send_recv_op_test.cc
paddle/fluid/operators/send_recv_op_test.cc
+7
-2
paddle/fluid/operators/smooth_l1_loss_op.cc
paddle/fluid/operators/smooth_l1_loss_op.cc
+23
-2
paddle/fluid/platform/CMakeLists.txt
paddle/fluid/platform/CMakeLists.txt
+2
-2
paddle/fluid/platform/profiler.cc
paddle/fluid/platform/profiler.cc
+7
-4
paddle/fluid/platform/profiler.h
paddle/fluid/platform/profiler.h
+2
-0
paddle/scripts/docker/build.sh
paddle/scripts/docker/build.sh
+1
-1
paddle/scripts/paddle_build.sh
paddle/scripts/paddle_build.sh
+41
-12
paddle/scripts/paddle_docker_build.sh
paddle/scripts/paddle_docker_build.sh
+1
-0
patches/mkldnn.hpp
patches/mkldnn.hpp
+0
-4252
python/paddle/fluid/data_feeder.py
python/paddle/fluid/data_feeder.py
+2
-2
python/paddle/fluid/inferencer.py
python/paddle/fluid/inferencer.py
+27
-11
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+96
-45
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+21
-17
python/paddle/fluid/tests/book/high-level-api/CMakeLists.txt
python/paddle/fluid/tests/book/high-level-api/CMakeLists.txt
+1
-0
python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py
...d/tests/book/high-level-api/fit_a_line/test_fit_a_line.py
+13
-15
python/paddle/fluid/tests/book/high-level-api/image_classification/CMakeLists.txt
...s/book/high-level-api/image_classification/CMakeLists.txt
+7
-0
python/paddle/fluid/tests/book/high-level-api/image_classification/cifar10_small_test_set.py
...-level-api/image_classification/cifar10_small_test_set.py
+82
-0
python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_resnet.py
.../image_classification/test_image_classification_resnet.py
+31
-20
python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_vgg.py
...api/image_classification/test_image_classification_vgg.py
+31
-22
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_conv.py
...-level-api/recognize_digits/test_recognize_digits_conv.py
+13
-13
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_mlp.py
...h-level-api/recognize_digits/test_recognize_digits_mlp.py
+5
-11
python/paddle/fluid/tests/book/high-level-api/word2vec/test_word2vec_new_api.py
...sts/book/high-level-api/word2vec/test_word2vec_new_api.py
+30
-13
python/paddle/fluid/tests/book/test_label_semantic_roles.py
python/paddle/fluid/tests/book/test_label_semantic_roles.py
+6
-21
python/paddle/fluid/tests/test_data_feeder.py
python/paddle/fluid/tests/test_data_feeder.py
+54
-7
python/paddle/fluid/tests/test_detection.py
python/paddle/fluid/tests/test_detection.py
+18
-0
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+2
-2
python/paddle/fluid/tests/unittests/test_dist_train.py
python/paddle/fluid/tests/unittests/test_dist_train.py
+6
-3
python/paddle/fluid/tests/unittests/test_network_with_dtype.py
...n/paddle/fluid/tests/unittests/test_network_with_dtype.py
+15
-20
python/paddle/fluid/tests/unittests/test_parallel_executor.py
...on/paddle/fluid/tests/unittests/test_parallel_executor.py
+2
-3
python/paddle/fluid/trainer.py
python/paddle/fluid/trainer.py
+108
-31
tools/test_runner.py
tools/test_runner.py
+48
-0
tools/timeline.py
tools/timeline.py
+1
-1
未找到文件。
Dockerfile
浏览文件 @
50ba205d
...
@@ -70,7 +70,7 @@ RUN localedef -i en_US -f UTF-8 en_US.UTF-8
...
@@ -70,7 +70,7 @@ RUN localedef -i en_US -f UTF-8 en_US.UTF-8
# specify sphinx version as 1.5.6 and remove -U option for [pip install -U
# specify sphinx version as 1.5.6 and remove -U option for [pip install -U
# sphinx-rtd-theme] since -U option will cause sphinx being updated to newest
# sphinx-rtd-theme] since -U option will cause sphinx being updated to newest
# version(1.7.1 for now), which causes building documentation failed.
# version(1.7.1 for now), which causes building documentation failed.
RUN
pip
install
--upgrade
pip
==
9.0.3
&&
\
RUN
easy_install
-U
pip
&&
\
pip
install
-U
wheel
&&
\
pip
install
-U
wheel
&&
\
pip
install
-U
docopt PyYAML
sphinx
==
1.5.6
&&
\
pip
install
-U
docopt PyYAML
sphinx
==
1.5.6
&&
\
pip
install
sphinx-rtd-theme
==
0.1.9 recommonmark
pip
install
sphinx-rtd-theme
==
0.1.9 recommonmark
...
...
benchmark/fluid/mnist.py
浏览文件 @
50ba205d
...
@@ -159,6 +159,7 @@ def run_benchmark(model, args):
...
@@ -159,6 +159,7 @@ def run_benchmark(model, args):
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
args
.
batch_size
)
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
args
.
batch_size
)
accuracy
=
fluid
.
metrics
.
Accuracy
()
accuracy
=
fluid
.
metrics
.
Accuracy
()
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
loss_name
=
avg_cost
.
name
)
iters
,
num_samples
,
start_time
=
0
,
0
,
time
.
time
()
iters
,
num_samples
,
start_time
=
0
,
0
,
time
.
time
()
for
pass_id
in
range
(
args
.
pass_num
):
for
pass_id
in
range
(
args
.
pass_num
):
accuracy
.
reset
()
accuracy
.
reset
()
...
@@ -175,17 +176,20 @@ def run_benchmark(model, args):
...
@@ -175,17 +176,20 @@ def run_benchmark(model, args):
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
y_data
=
y_data
.
reshape
([
len
(
y_data
),
1
])
y_data
=
y_data
.
reshape
([
len
(
y_data
),
1
])
outs
=
exe
.
run
(
outs
=
train_exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"pixel"
:
img_data
,
feed
=
{
"pixel"
:
img_data
,
"label"
:
y_data
},
"label"
:
y_data
},
fetch_list
=
[
avg_cost
,
batch_acc
,
batch_size_tensor
]
fetch_list
=
[
avg_cost
.
name
,
batch_acc
.
name
,
batch_size_tensor
.
name
]
)
# The accuracy is the accumulation of batches, but not the current batch.
)
# The accuracy is the accumulation of batches, but not the current batch.
accuracy
.
update
(
value
=
outs
[
1
],
weight
=
outs
[
2
])
accuracy
.
update
(
value
=
np
.
array
(
np
.
mean
(
outs
[
1
])),
weight
=
np
.
mean
(
np
.
array
(
outs
[
2
])))
iters
+=
1
iters
+=
1
num_samples
+=
len
(
y_data
)
num_samples
+=
len
(
y_data
)
loss
=
np
.
array
(
outs
[
0
]
)
loss
=
np
.
mean
(
np
.
array
(
outs
[
0
])
)
acc
=
np
.
array
(
outs
[
1
]
)
acc
=
np
.
mean
(
np
.
array
(
outs
[
1
])
)
train_losses
.
append
(
loss
)
train_losses
.
append
(
loss
)
train_accs
.
append
(
acc
)
train_accs
.
append
(
acc
)
print
(
"Pass: %d, Iter: %d, Loss: %f, Accuracy: %f"
%
print
(
"Pass: %d, Iter: %d, Loss: %f, Accuracy: %f"
%
...
...
benchmark/fluid/resnet.py
浏览文件 @
50ba205d
...
@@ -241,6 +241,7 @@ def run_benchmark(model, args):
...
@@ -241,6 +241,7 @@ def run_benchmark(model, args):
exe
=
fluid
.
Executor
(
place
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
exe
.
run
(
fluid
.
default_startup_program
())
accuracy
=
fluid
.
average
.
WeightedAverage
()
accuracy
=
fluid
.
average
.
WeightedAverage
()
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
loss_name
=
avg_cost
.
name
)
if
args
.
use_fake_data
:
if
args
.
use_fake_data
:
data
=
train_reader
().
next
()
data
=
train_reader
().
next
()
image
=
np
.
array
(
map
(
lambda
x
:
x
[
0
].
reshape
(
dshape
),
data
)).
astype
(
image
=
np
.
array
(
map
(
lambda
x
:
x
[
0
].
reshape
(
dshape
),
data
)).
astype
(
...
@@ -264,14 +265,17 @@ def run_benchmark(model, args):
...
@@ -264,14 +265,17 @@ def run_benchmark(model, args):
data
)).
astype
(
'float32'
)
data
)).
astype
(
'float32'
)
label
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
'int64'
)
label
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
'int64'
)
label
=
label
.
reshape
([
-
1
,
1
])
label
=
label
.
reshape
([
-
1
,
1
])
loss
,
acc
,
weight
=
exe
.
run
(
loss
,
acc
,
weight
=
train_exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'data'
:
image
,
feed
=
{
'data'
:
image
,
'label'
:
label
},
'label'
:
label
},
fetch_list
=
[
avg_cost
,
batch_acc
,
batch_size_tensor
])
fetch_list
=
[
avg_cost
.
name
,
batch_acc
.
name
,
batch_size_tensor
.
name
])
iters
+=
1
iters
+=
1
num_samples
+=
len
(
label
)
num_samples
+=
len
(
label
)
accuracy
.
add
(
value
=
acc
,
weight
=
weight
)
accuracy
.
add
(
value
=
np
.
array
(
np
.
mean
(
acc
)),
weight
=
np
.
mean
(
weight
))
loss
=
np
.
mean
(
np
.
array
(
loss
))
acc
=
np
.
mean
(
np
.
array
(
acc
))
train_losses
.
append
(
loss
)
train_losses
.
append
(
loss
)
train_accs
.
append
(
acc
)
train_accs
.
append
(
acc
)
print
(
"Pass: %d, Iter: %d, Loss: %f, Accuracy: %f"
%
print
(
"Pass: %d, Iter: %d, Loss: %f, Accuracy: %f"
%
...
...
benchmark/fluid/vgg.py
浏览文件 @
50ba205d
...
@@ -169,6 +169,7 @@ def main():
...
@@ -169,6 +169,7 @@ def main():
iters
,
num_samples
,
start_time
=
0
,
0
,
time
.
time
()
iters
,
num_samples
,
start_time
=
0
,
0
,
time
.
time
()
accuracy
=
fluid
.
average
.
WeightedAverage
()
accuracy
=
fluid
.
average
.
WeightedAverage
()
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
loss_name
=
avg_cost
.
name
)
for
pass_id
in
range
(
args
.
pass_num
):
for
pass_id
in
range
(
args
.
pass_num
):
accuracy
.
reset
()
accuracy
.
reset
()
train_accs
=
[]
train_accs
=
[]
...
@@ -184,14 +185,17 @@ def main():
...
@@ -184,14 +185,17 @@ def main():
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
y_data
=
y_data
.
reshape
([
-
1
,
1
])
y_data
=
y_data
.
reshape
([
-
1
,
1
])
loss
,
acc
,
weight
=
exe
.
run
(
loss
,
acc
,
weight
=
train_exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"pixel"
:
img_data
,
feed
=
{
"pixel"
:
img_data
,
"label"
:
y_data
},
"label"
:
y_data
},
fetch_list
=
[
avg_cost
,
batch_acc
,
batch_size_tensor
])
fetch_list
=
[
accuracy
.
add
(
value
=
acc
,
weight
=
weight
)
avg_cost
.
name
,
batch_acc
.
name
,
batch_size_tensor
.
name
])
accuracy
.
add
(
value
=
np
.
array
(
np
.
mean
(
acc
)),
weight
=
np
.
mean
(
weight
))
iters
+=
1
iters
+=
1
num_samples
+=
len
(
y_data
)
num_samples
+=
len
(
y_data
)
loss
=
np
.
mean
(
np
.
array
(
loss
))
acc
=
np
.
mean
(
np
.
array
(
acc
))
print
(
print
(
"Pass = %d, Iter = %d, Loss = %f, Accuracy = %f"
%
"Pass = %d, Iter = %d, Loss = %f, Accuracy = %f"
%
(
pass_id
,
iters
,
loss
,
acc
)
(
pass_id
,
iters
,
loss
,
acc
)
...
...
cmake/external/boost.cmake
浏览文件 @
50ba205d
...
@@ -24,7 +24,7 @@ set(BOOST_PROJECT "extern_boost")
...
@@ -24,7 +24,7 @@ set(BOOST_PROJECT "extern_boost")
# So we use 1.41.0 here.
# So we use 1.41.0 here.
set
(
BOOST_VER
"1.41.0"
)
set
(
BOOST_VER
"1.41.0"
)
set
(
BOOST_TAR
"boost_1_41_0"
)
set
(
BOOST_TAR
"boost_1_41_0"
)
set
(
BOOST_URL
"http://paddlepaddledeps.
bj
.bcebos.com/
${
BOOST_TAR
}
.tar.gz"
)
set
(
BOOST_URL
"http://paddlepaddledeps.
cdn
.bcebos.com/
${
BOOST_TAR
}
.tar.gz"
)
set
(
BOOST_SOURCES_DIR
${
THIRD_PARTY_PATH
}
/boost
)
set
(
BOOST_SOURCES_DIR
${
THIRD_PARTY_PATH
}
/boost
)
set
(
BOOST_DOWNLOAD_DIR
"
${
BOOST_SOURCES_DIR
}
/src/
${
BOOST_PROJECT
}
"
)
set
(
BOOST_DOWNLOAD_DIR
"
${
BOOST_SOURCES_DIR
}
/src/
${
BOOST_PROJECT
}
"
)
set
(
BOOST_INCLUDE_DIR
"
${
BOOST_DOWNLOAD_DIR
}
/
${
BOOST_TAR
}
"
CACHE PATH
"boost include directory."
FORCE
)
set
(
BOOST_INCLUDE_DIR
"
${
BOOST_DOWNLOAD_DIR
}
/
${
BOOST_TAR
}
"
CACHE PATH
"boost include directory."
FORCE
)
...
...
cmake/external/eigen.cmake
浏览文件 @
50ba205d
...
@@ -21,11 +21,12 @@ else()
...
@@ -21,11 +21,12 @@ else()
ExternalProject_Add
(
ExternalProject_Add
(
extern_eigen3
extern_eigen3
${
EXTERNAL_PROJECT_LOG_ARGS
}
${
EXTERNAL_PROJECT_LOG_ARGS
}
GIT_REPOSITORY
"https://github.com/
RLovelett/eigen.git
"
GIT_REPOSITORY
"https://github.com/
eigenteam/eigen-git-mirror
"
# eigen on cuda9.1 missing header of math_funtions.hpp
# eigen on cuda9.1 missing header of math_funtions.hpp
# https://stackoverflow.com/questions/43113508/math-functions-hpp-not-found-when-using-cuda-with-eigen
# https://stackoverflow.com/questions/43113508/math-functions-hpp-not-found-when-using-cuda-with-eigen
GIT_TAG 917060c364181f33a735dc023818d5a54f60e54c
GIT_TAG 917060c364181f33a735dc023818d5a54f60e54c
PREFIX
${
EIGEN_SOURCE_DIR
}
PREFIX
${
EIGEN_SOURCE_DIR
}
DOWNLOAD_NAME
"eigen"
UPDATE_COMMAND
""
UPDATE_COMMAND
""
CONFIGURE_COMMAND
""
CONFIGURE_COMMAND
""
BUILD_COMMAND
""
BUILD_COMMAND
""
...
...
cmake/external/mkldnn.cmake
浏览文件 @
50ba205d
...
@@ -53,11 +53,9 @@ ExternalProject_Add(
...
@@ -53,11 +53,9 @@ ExternalProject_Add(
${
EXTERNAL_PROJECT_LOG_ARGS
}
${
EXTERNAL_PROJECT_LOG_ARGS
}
DEPENDS
${
MKLDNN_DEPENDS
}
DEPENDS
${
MKLDNN_DEPENDS
}
GIT_REPOSITORY
"https://github.com/01org/mkl-dnn.git"
GIT_REPOSITORY
"https://github.com/01org/mkl-dnn.git"
GIT_TAG
"
v0.14
"
GIT_TAG
"
db3424ad44901513c03a1ea31ccaacdf633fbe9f
"
PREFIX
${
MKLDNN_SOURCES_DIR
}
PREFIX
${
MKLDNN_SOURCES_DIR
}
UPDATE_COMMAND
""
UPDATE_COMMAND
""
# Patch MKLDNN to compile with gcc 4.8, the related issue is in intel/mkl-dnn#237.
PATCH_COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
CMAKE_CURRENT_SOURCE_DIR
}
/patches/mkldnn.hpp
${
MKLDNN_SOURCES_DIR
}
/src/extern_mkldnn/include/mkldnn.hpp
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=
${
MKLDNN_INSTALL_DIR
}
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=
${
MKLDNN_INSTALL_DIR
}
CMAKE_ARGS -DCMAKE_BUILD_TYPE=
${
CMAKE_BUILD_TYPE
}
CMAKE_ARGS -DCMAKE_BUILD_TYPE=
${
CMAKE_BUILD_TYPE
}
CMAKE_ARGS -DMKLROOT=
${
MKLML_ROOT
}
CMAKE_ARGS -DMKLROOT=
${
MKLML_ROOT
}
...
...
cmake/external/mklml.cmake
浏览文件 @
50ba205d
...
@@ -28,7 +28,7 @@ INCLUDE(ExternalProject)
...
@@ -28,7 +28,7 @@ INCLUDE(ExternalProject)
SET
(
MKLML_PROJECT
"extern_mklml"
)
SET
(
MKLML_PROJECT
"extern_mklml"
)
SET
(
MKLML_VER
"mklml_lnx_2018.0.3.20180406"
)
SET
(
MKLML_VER
"mklml_lnx_2018.0.3.20180406"
)
SET
(
MKLML_URL
"http://paddlepaddledeps.
bj
.bcebos.com/
${
MKLML_VER
}
.tgz"
)
SET
(
MKLML_URL
"http://paddlepaddledeps.
cdn
.bcebos.com/
${
MKLML_VER
}
.tgz"
)
SET
(
MKLML_SOURCE_DIR
"
${
THIRD_PARTY_PATH
}
/mklml"
)
SET
(
MKLML_SOURCE_DIR
"
${
THIRD_PARTY_PATH
}
/mklml"
)
SET
(
MKLML_DOWNLOAD_DIR
"
${
MKLML_SOURCE_DIR
}
/src/
${
MKLML_PROJECT
}
"
)
SET
(
MKLML_DOWNLOAD_DIR
"
${
MKLML_SOURCE_DIR
}
/src/
${
MKLML_PROJECT
}
"
)
SET
(
MKLML_DST_DIR
"mklml"
)
SET
(
MKLML_DST_DIR
"mklml"
)
...
...
cmake/external/snappy.cmake
浏览文件 @
50ba205d
...
@@ -47,8 +47,6 @@ ExternalProject_Add(
...
@@ -47,8 +47,6 @@ ExternalProject_Add(
-DCMAKE_INSTALL_LIBDIR:PATH=
${
SNAPPY_INSTALL_DIR
}
/lib
-DCMAKE_INSTALL_LIBDIR:PATH=
${
SNAPPY_INSTALL_DIR
}
/lib
-DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON
-DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON
-DCMAKE_BUILD_TYPE:STRING=
${
THIRD_PARTY_BUILD_TYPE
}
-DCMAKE_BUILD_TYPE:STRING=
${
THIRD_PARTY_BUILD_TYPE
}
BUILD_COMMAND make -j8
INSTALL_COMMAND make install
)
)
add_library
(
snappy STATIC IMPORTED GLOBAL
)
add_library
(
snappy STATIC IMPORTED GLOBAL
)
...
...
cmake/external/snappystream.cmake
浏览文件 @
50ba205d
...
@@ -46,8 +46,6 @@ ExternalProject_Add(
...
@@ -46,8 +46,6 @@ ExternalProject_Add(
-DCMAKE_INSTALL_PREFIX:PATH=
${
SNAPPYSTREAM_INSTALL_DIR
}
-DCMAKE_INSTALL_PREFIX:PATH=
${
SNAPPYSTREAM_INSTALL_DIR
}
-DCMAKE_INSTALL_LIBDIR:PATH=
${
SNAPPYSTREAM_INSTALL_DIR
}
/lib
-DCMAKE_INSTALL_LIBDIR:PATH=
${
SNAPPYSTREAM_INSTALL_DIR
}
/lib
-DCMAKE_BUILD_TYPE:STRING=
${
THIRD_PARTY_BUILD_TYPE
}
-DCMAKE_BUILD_TYPE:STRING=
${
THIRD_PARTY_BUILD_TYPE
}
BUILD_COMMAND make -j8
INSTALL_COMMAND make install
DEPENDS snappy
DEPENDS snappy
)
)
...
...
cmake/inference_lib.cmake
浏览文件 @
50ba205d
...
@@ -98,6 +98,14 @@ elseif (WITH_MKLML)
...
@@ -98,6 +98,14 @@ elseif (WITH_MKLML)
)
)
endif
()
endif
()
if
(
WITH_MKLDNN
)
set
(
dst_dir
"
${
CMAKE_INSTALL_PREFIX
}
/third_party/install/mkldnn"
)
copy
(
mkldnn_lib
SRCS
${
MKLDNN_INC_DIR
}
${
MKLDNN_SHARED_LIB
}
DSTS
${
dst_dir
}
${
dst_dir
}
/lib
)
endif
()
if
(
NOT MOBILE_INFERENCE AND NOT RPI
)
if
(
NOT MOBILE_INFERENCE AND NOT RPI
)
set
(
dst_dir
"
${
CMAKE_INSTALL_PREFIX
}
/third_party/install/snappy"
)
set
(
dst_dir
"
${
CMAKE_INSTALL_PREFIX
}
/third_party/install/snappy"
)
copy
(
snappy_lib
copy
(
snappy_lib
...
@@ -148,4 +156,10 @@ copy(string_lib
...
@@ -148,4 +156,10 @@ copy(string_lib
DSTS
${
dst_dir
}
/
${
module
}
${
dst_dir
}
/
${
module
}
/tinyformat
DSTS
${
dst_dir
}
/
${
module
}
${
dst_dir
}
/
${
module
}
/tinyformat
)
)
set
(
module
"pybind"
)
copy
(
pybind_lib
SRCS
${
CMAKE_CURRENT_BINARY_DIR
}
/paddle/fluid/
${
module
}
/pybind.h
DSTS
${
dst_dir
}
/
${
module
}
)
add_custom_target
(
inference_lib_dist DEPENDS
${
inference_lib_dist_dep
}
)
add_custom_target
(
inference_lib_dist DEPENDS
${
inference_lib_dist_dep
}
)
doc/fluid/design/concepts/functions_operators_layers.md
浏览文件 @
50ba205d
...
@@ -40,7 +40,7 @@ template <typename T>
...
@@ -40,7 +40,7 @@ template <typename T>
class
FCOp
:
public
OperatorBase
{
class
FCOp
:
public
OperatorBase
{
public:
public:
void
Run
(...)
{
void
Run
(...)
{
add
(
mul
(
Input
<
T
>
(
"X"
),
Input
<
T
>
(
"W"
)),
Input
<
T
>
(
"b"
);
add
(
mul
(
Input
<
T
>
(
"X"
),
Input
<
T
>
(
"W"
)),
Input
<
T
>
(
"b"
)
)
;
}
}
};
};
REGISTER_OP
(
FCOp
,
"fc"
);
REGISTER_OP
(
FCOp
,
"fc"
);
...
...
paddle/CMakeLists.txt
浏览文件 @
50ba205d
...
@@ -24,6 +24,6 @@ if(NOT WITH_FLUID_ONLY)
...
@@ -24,6 +24,6 @@ if(NOT WITH_FLUID_ONLY)
endif
()
endif
()
add_subdirectory
(
testing
)
add_subdirectory
(
testing
)
if
(
NOT MOBILE_INFERENCE AND NOT RPI
)
if
(
NOT MOBILE_INFERENCE AND NOT RPI
AND NOT WITH_C_API
)
add_subdirectory
(
fluid
)
add_subdirectory
(
fluid
)
endif
()
endif
()
paddle/fluid/framework/data_device_transform.cc
浏览文件 @
50ba205d
...
@@ -36,9 +36,11 @@ void TransDataDevice(const Tensor& in, const platform::Place& dst_place,
...
@@ -36,9 +36,11 @@ void TransDataDevice(const Tensor& in, const platform::Place& dst_place,
VLOG
(
3
)
<<
"DeviceTransform in, src_place "
<<
in
.
place
()
VLOG
(
3
)
<<
"DeviceTransform in, src_place "
<<
in
.
place
()
<<
" dst_place: "
<<
dst_place
;
<<
" dst_place: "
<<
dst_place
;
auto
*
dev_ctx
=
GetDeviceContext
(
in
.
place
(),
dst_place
);
auto
*
dev_ctx
=
GetDeviceContext
(
in
.
place
(),
dst_place
);
dev_ctx
->
Wait
();
TensorCopy
(
in
,
dst_place
,
*
dev_ctx
,
out
);
TensorCopy
(
in
,
dst_place
,
*
dev_ctx
,
out
);
dev_ctx
->
Wait
();
if
(
platform
::
is_gpu_place
(
in
.
place
())
&&
platform
::
is_cpu_place
(
dst_place
))
{
dev_ctx
->
Wait
();
}
}
}
}
// namespace framework
}
// namespace framework
...
...
paddle/fluid/framework/data_type.cc
浏览文件 @
50ba205d
...
@@ -58,6 +58,7 @@ static DataTypeMap* InitDataTypeMap() {
...
@@ -58,6 +58,7 @@ static DataTypeMap* InitDataTypeMap() {
RegType
(
bool
,
proto
::
VarType
::
BOOL
);
RegType
(
bool
,
proto
::
VarType
::
BOOL
);
RegType
(
size_t
,
proto
::
VarType
::
SIZE_T
);
RegType
(
size_t
,
proto
::
VarType
::
SIZE_T
);
RegType
(
int16_t
,
proto
::
VarType
::
INT16
);
RegType
(
int16_t
,
proto
::
VarType
::
INT16
);
RegType
(
uint8_t
,
proto
::
VarType
::
UINT8
);
#undef RegType
#undef RegType
return
retv
;
return
retv
;
...
...
paddle/fluid/framework/data_type.h
浏览文件 @
50ba205d
...
@@ -47,8 +47,14 @@ inline void VisitDataType(proto::VarType::Type type, Visitor visitor) {
...
@@ -47,8 +47,14 @@ inline void VisitDataType(proto::VarType::Type type, Visitor visitor) {
case
proto
::
VarType
::
BOOL
:
case
proto
::
VarType
::
BOOL
:
visitor
.
template
operator
()
<
bool
>();
visitor
.
template
operator
()
<
bool
>();
break
;
break
;
case
proto
::
VarType
::
UINT8
:
visitor
.
template
operator
()
<
uint8_t
>();
break
;
case
proto
::
VarType
::
INT16
:
visitor
.
template
operator
()
<
int16_t
>();
break
;
default:
default:
PADDLE_THROW
(
"Not supported
"
);
PADDLE_THROW
(
"Not supported
%d"
,
type
);
}
}
}
}
...
...
paddle/fluid/framework/details/fetch_op_handle.cc
浏览文件 @
50ba205d
...
@@ -48,17 +48,18 @@ void FetchOpHandle::RunImpl() {
...
@@ -48,17 +48,18 @@ void FetchOpHandle::RunImpl() {
WaitInputVarGenerated
(
platform
::
CPUPlace
());
WaitInputVarGenerated
(
platform
::
CPUPlace
());
tensors_
.
resize
(
inputs_
.
size
());
tensors_
.
resize
(
inputs_
.
size
());
auto
*
var_handle
=
static_cast
<
VarHandle
*>
(
inputs_
[
0
]);
auto
&
var_name
=
var_handle
->
name_
;
platform
::
CPUPlace
cpu
;
platform
::
CPUPlace
cpu
;
auto
&
scopes
=
*
local_scopes_
;
auto
&
scopes
=
*
local_scopes_
;
for
(
size_t
i
=
0
;
i
<
scopes
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
inputs_
.
size
();
++
i
)
{
auto
&
scope
=
scopes
[
i
];
auto
*
var_handle
=
static_cast
<
VarHandle
*>
(
inputs_
[
i
]);
auto
*
var
=
auto
&
scope
=
scopes
.
at
(
var_handle
->
scope_idx_
);
scope
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
()
->
FindVar
(
var_name
);
auto
*
var
=
scope
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
()
->
FindVar
(
var_handle
->
name_
);
PADDLE_ENFORCE_NOT_NULL
(
var
,
"Cannot find variable %s in execution scope"
,
PADDLE_ENFORCE_NOT_NULL
(
var
,
"Cannot find variable %s in execution scope"
,
var_name
);
var_handle
->
name_
);
auto
&
t
=
var
->
Get
<
framework
::
LoDTensor
>
();
auto
&
t
=
var
->
Get
<
framework
::
LoDTensor
>
();
if
(
platform
::
is_gpu_place
(
t
.
place
()))
{
if
(
platform
::
is_gpu_place
(
t
.
place
()))
{
#ifdef PADDLE_WITH_CUDA
#ifdef PADDLE_WITH_CUDA
...
...
paddle/fluid/framework/details/multi_devices_graph_builder.cc
浏览文件 @
50ba205d
...
@@ -98,7 +98,7 @@ bool MultiDevSSAGraphBuilder::IsDistTrainOp(const OpDesc &op,
...
@@ -98,7 +98,7 @@ bool MultiDevSSAGraphBuilder::IsDistTrainOp(const OpDesc &op,
return
false
;
return
false
;
};
};
if
(
op
.
Type
()
==
"split"
)
{
if
(
op
.
Type
()
==
"split"
||
op
.
Type
()
==
"split_byref"
)
{
return
checker
(
op
.
OutputArgumentNames
(),
send_op
->
InputArgumentNames
());
return
checker
(
op
.
OutputArgumentNames
(),
send_op
->
InputArgumentNames
());
}
else
if
(
op
.
Type
()
==
"concat"
)
{
}
else
if
(
op
.
Type
()
==
"concat"
)
{
return
checker
(
op
.
InputArgumentNames
(),
send_op
->
OutputArgumentNames
());
return
checker
(
op
.
InputArgumentNames
(),
send_op
->
OutputArgumentNames
());
...
...
paddle/fluid/framework/details/op_handle_base.h
浏览文件 @
50ba205d
...
@@ -70,6 +70,14 @@ class OpHandleBase {
...
@@ -70,6 +70,14 @@ class OpHandleBase {
const
std
::
vector
<
VarHandleBase
*>
&
Inputs
()
const
{
return
inputs_
;
}
const
std
::
vector
<
VarHandleBase
*>
&
Inputs
()
const
{
return
inputs_
;
}
size_t
NoDupInputSize
()
const
{
std
::
unordered_set
<
VarHandleBase
*>
res
;
for
(
auto
*
var
:
inputs_
)
{
res
.
emplace
(
var
);
}
return
res
.
size
();
}
const
std
::
vector
<
VarHandleBase
*>
&
Outputs
()
const
{
return
outputs_
;
}
const
std
::
vector
<
VarHandleBase
*>
&
Outputs
()
const
{
return
outputs_
;
}
protected:
protected:
...
...
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
浏览文件 @
50ba205d
...
@@ -174,7 +174,7 @@ void ThreadedSSAGraphExecutor::InsertFetchOps(
...
@@ -174,7 +174,7 @@ void ThreadedSSAGraphExecutor::InsertFetchOps(
void
ThreadedSSAGraphExecutor
::
InsertPendingOp
(
void
ThreadedSSAGraphExecutor
::
InsertPendingOp
(
std
::
unordered_map
<
OpHandleBase
*
,
size_t
>
*
pending_ops
,
std
::
unordered_map
<
OpHandleBase
*
,
size_t
>
*
pending_ops
,
OpHandleBase
*
op_instance
)
const
{
OpHandleBase
*
op_instance
)
const
{
pending_ops
->
insert
({
op_instance
,
op_instance
->
Inputs
().
s
ize
()});
pending_ops
->
insert
({
op_instance
,
op_instance
->
NoDupInputS
ize
()});
}
}
void
ThreadedSSAGraphExecutor
::
InsertPendingVar
(
void
ThreadedSSAGraphExecutor
::
InsertPendingVar
(
...
...
paddle/fluid/framework/executor.cc
浏览文件 @
50ba205d
...
@@ -228,7 +228,8 @@ static bool has_fetch_operators(
...
@@ -228,7 +228,8 @@ static bool has_fetch_operators(
void
Executor
::
Run
(
const
ProgramDesc
&
program
,
Scope
*
scope
,
void
Executor
::
Run
(
const
ProgramDesc
&
program
,
Scope
*
scope
,
std
::
map
<
std
::
string
,
const
LoDTensor
*>*
feed_targets
,
std
::
map
<
std
::
string
,
const
LoDTensor
*>*
feed_targets
,
std
::
map
<
std
::
string
,
LoDTensor
*>*
fetch_targets
,
std
::
map
<
std
::
string
,
LoDTensor
*>*
fetch_targets
,
bool
create_vars
,
const
std
::
string
&
feed_holder_name
,
bool
create_local_scope
,
bool
create_vars
,
const
std
::
string
&
feed_holder_name
,
const
std
::
string
&
fetch_holder_name
)
{
const
std
::
string
&
fetch_holder_name
)
{
platform
::
RecordBlock
b
(
kProgramId
);
platform
::
RecordBlock
b
(
kProgramId
);
bool
has_feed_ops
=
bool
has_feed_ops
=
...
@@ -290,8 +291,9 @@ void Executor::Run(const ProgramDesc& program, Scope* scope,
...
@@ -290,8 +291,9 @@ void Executor::Run(const ProgramDesc& program, Scope* scope,
}
}
auto
ctx
=
Prepare
(
*
copy_program
,
0
);
auto
ctx
=
Prepare
(
*
copy_program
,
0
);
RunPreparedContext
(
ctx
.
get
(),
scope
,
feed_targets
,
fetch_targets
,
create_vars
,
RunPreparedContext
(
ctx
.
get
(),
scope
,
feed_targets
,
fetch_targets
,
feed_holder_name
,
fetch_holder_name
);
create_local_scope
,
create_vars
,
feed_holder_name
,
fetch_holder_name
);
}
}
std
::
unique_ptr
<
ExecutorPrepareContext
>
Executor
::
Prepare
(
std
::
unique_ptr
<
ExecutorPrepareContext
>
Executor
::
Prepare
(
...
@@ -366,8 +368,9 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
...
@@ -366,8 +368,9 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
void
Executor
::
RunPreparedContext
(
void
Executor
::
RunPreparedContext
(
ExecutorPrepareContext
*
ctx
,
Scope
*
scope
,
ExecutorPrepareContext
*
ctx
,
Scope
*
scope
,
std
::
map
<
std
::
string
,
const
LoDTensor
*>*
feed_targets
,
std
::
map
<
std
::
string
,
const
LoDTensor
*>*
feed_targets
,
std
::
map
<
std
::
string
,
LoDTensor
*>*
fetch_targets
,
bool
create_vars
,
std
::
map
<
std
::
string
,
LoDTensor
*>*
fetch_targets
,
bool
create_local_scope
,
const
std
::
string
&
feed_holder_name
,
const
std
::
string
&
fetch_holder_name
)
{
bool
create_vars
,
const
std
::
string
&
feed_holder_name
,
const
std
::
string
&
fetch_holder_name
)
{
auto
&
global_block
=
ctx
->
prog_
.
Block
(
ctx
->
block_id_
);
auto
&
global_block
=
ctx
->
prog_
.
Block
(
ctx
->
block_id_
);
PADDLE_ENFORCE
(
PADDLE_ENFORCE
(
...
@@ -387,7 +390,7 @@ void Executor::RunPreparedContext(
...
@@ -387,7 +390,7 @@ void Executor::RunPreparedContext(
}
}
}
}
RunPreparedContext
(
ctx
,
scope
,
create_
vars
,
create_vars
);
RunPreparedContext
(
ctx
,
scope
,
create_
local_scope
,
create_vars
);
// obtain the data of fetch_targets from fetch_holder
// obtain the data of fetch_targets from fetch_holder
for
(
auto
*
op
:
global_block
.
AllOps
())
{
for
(
auto
*
op
:
global_block
.
AllOps
())
{
...
...
paddle/fluid/framework/executor.h
浏览文件 @
50ba205d
...
@@ -57,7 +57,7 @@ class Executor {
...
@@ -57,7 +57,7 @@ class Executor {
void
Run
(
const
ProgramDesc
&
program
,
Scope
*
scope
,
void
Run
(
const
ProgramDesc
&
program
,
Scope
*
scope
,
std
::
map
<
std
::
string
,
const
LoDTensor
*>*
feed_targets
,
std
::
map
<
std
::
string
,
const
LoDTensor
*>*
feed_targets
,
std
::
map
<
std
::
string
,
LoDTensor
*>*
fetch_targets
,
std
::
map
<
std
::
string
,
LoDTensor
*>*
fetch_targets
,
bool
create_vars
=
true
,
bool
create_
local_scope
=
true
,
bool
create_
vars
=
true
,
const
std
::
string
&
feed_holder_name
=
"feed"
,
const
std
::
string
&
feed_holder_name
=
"feed"
,
const
std
::
string
&
fetch_holder_name
=
"fetch"
);
const
std
::
string
&
fetch_holder_name
=
"fetch"
);
...
@@ -76,6 +76,7 @@ class Executor {
...
@@ -76,6 +76,7 @@ class Executor {
void
RunPreparedContext
(
ExecutorPrepareContext
*
ctx
,
Scope
*
scope
,
void
RunPreparedContext
(
ExecutorPrepareContext
*
ctx
,
Scope
*
scope
,
std
::
map
<
std
::
string
,
const
LoDTensor
*>*
feed_targets
,
std
::
map
<
std
::
string
,
const
LoDTensor
*>*
feed_targets
,
std
::
map
<
std
::
string
,
LoDTensor
*>*
fetch_targets
,
std
::
map
<
std
::
string
,
LoDTensor
*>*
fetch_targets
,
bool
create_local_scope
=
true
,
bool
create_vars
=
true
,
bool
create_vars
=
true
,
const
std
::
string
&
feed_holder_name
=
"feed"
,
const
std
::
string
&
feed_holder_name
=
"feed"
,
const
std
::
string
&
fetch_holder_name
=
"fetch"
);
const
std
::
string
&
fetch_holder_name
=
"fetch"
);
...
...
paddle/fluid/framework/framework.proto
浏览文件 @
50ba205d
...
@@ -103,6 +103,7 @@ message VarType {
...
@@ -103,6 +103,7 @@ message VarType {
FP64
=
6
;
FP64
=
6
;
// Tensor<size_t> is used in C++.
// Tensor<size_t> is used in C++.
SIZE_T
=
19
;
SIZE_T
=
19
;
UINT8
=
20
;
// Other types that may need additional descriptions
// Other types that may need additional descriptions
LOD_TENSOR
=
7
;
LOD_TENSOR
=
7
;
...
...
paddle/fluid/framework/lod_tensor_test.cc
浏览文件 @
50ba205d
...
@@ -228,11 +228,12 @@ TEST(LoD, CheckAbsLoD) {
...
@@ -228,11 +228,12 @@ TEST(LoD, CheckAbsLoD) {
ASSERT_FALSE
(
CheckAbsLoD
(
abs_lod0
));
ASSERT_FALSE
(
CheckAbsLoD
(
abs_lod0
));
}
}
TEST
(
LoDTensor
,
RecordIO
)
{
template
<
typename
T
>
static
void
TestRecordIO
()
{
LoDTensor
tensor
;
LoDTensor
tensor
;
int
*
tmp
=
tensor
.
mutable_data
<
int
>
(
make_ddim
({
4
,
5
}),
platform
::
CPUPlace
());
T
*
tmp
=
tensor
.
mutable_data
<
T
>
(
make_ddim
({
4
,
5
}),
platform
::
CPUPlace
());
for
(
int
i
=
0
;
i
<
20
;
++
i
)
{
for
(
int
i
=
0
;
i
<
20
;
++
i
)
{
tmp
[
i
]
=
i
;
tmp
[
i
]
=
static_cast
<
T
>
(
i
)
;
}
}
std
::
stringstream
*
stream
=
new
std
::
stringstream
();
std
::
stringstream
*
stream
=
new
std
::
stringstream
();
...
@@ -247,7 +248,7 @@ TEST(LoDTensor, RecordIO) {
...
@@ -247,7 +248,7 @@ TEST(LoDTensor, RecordIO) {
auto
assert_tensor_ok
=
[](
const
LoDTensor
&
tensor
)
{
auto
assert_tensor_ok
=
[](
const
LoDTensor
&
tensor
)
{
for
(
int
i
=
0
;
i
<
20
;
++
i
)
{
for
(
int
i
=
0
;
i
<
20
;
++
i
)
{
ASSERT_EQ
(
tensor
.
data
<
int
>
()[
i
],
i
);
ASSERT_EQ
(
tensor
.
data
<
T
>
()[
i
],
static_cast
<
T
>
(
i
)
);
}
}
};
};
...
@@ -265,5 +266,13 @@ TEST(LoDTensor, RecordIO) {
...
@@ -265,5 +266,13 @@ TEST(LoDTensor, RecordIO) {
}
}
}
}
TEST
(
LoDTensor
,
RecordIO
)
{
TestRecordIO
<
int
>
();
TestRecordIO
<
int16_t
>
();
TestRecordIO
<
uint8_t
>
();
TestRecordIO
<
float
>
();
TestRecordIO
<
double
>
();
}
}
// namespace framework
}
// namespace framework
}
// namespace paddle
}
// namespace paddle
paddle/fluid/inference/tensorrt/convert/op_converter.h
浏览文件 @
50ba205d
...
@@ -49,7 +49,7 @@ class OpConverter {
...
@@ -49,7 +49,7 @@ class OpConverter {
// convert fluid block to tensorrt network
// convert fluid block to tensorrt network
void
ConvertBlock
(
const
framework
::
proto
::
BlockDesc
&
block
,
void
ConvertBlock
(
const
framework
::
proto
::
BlockDesc
&
block
,
TensorRTEngine
*
engine
)
{
TensorRTEngine
*
engine
)
{
for
(
size_
t
i
=
0
;
i
<
block
.
ops_size
();
i
++
)
{
for
(
in
t
i
=
0
;
i
<
block
.
ops_size
();
i
++
)
{
const
auto
&
op
=
block
.
ops
(
i
);
const
auto
&
op
=
block
.
ops
(
i
);
OpConverter
::
Run
(
op
,
engine
);
OpConverter
::
Run
(
op
,
engine
);
}
}
...
...
paddle/fluid/inference/tests/test_helper.h
浏览文件 @
50ba205d
...
@@ -149,7 +149,7 @@ void TestInference(const std::string& dirname,
...
@@ -149,7 +149,7 @@ void TestInference(const std::string& dirname,
state
=
paddle
::
platform
::
ProfilerState
::
kCPU
;
state
=
paddle
::
platform
::
ProfilerState
::
kCPU
;
}
else
{
}
else
{
#ifdef PADDLE_WITH_CUDA
#ifdef PADDLE_WITH_CUDA
state
=
paddle
::
platform
::
ProfilerState
::
k
CUDA
;
state
=
paddle
::
platform
::
ProfilerState
::
k
All
;
// The default device_id of paddle::platform::CUDAPlace is 0.
// The default device_id of paddle::platform::CUDAPlace is 0.
// Users can get the device_id using:
// Users can get the device_id using:
// int device_id = place.GetDeviceId();
// int device_id = place.GetDeviceId();
...
@@ -172,7 +172,7 @@ void TestInference(const std::string& dirname,
...
@@ -172,7 +172,7 @@ void TestInference(const std::string& dirname,
}
}
// Disable the profiler and print the timing information
// Disable the profiler and print the timing information
paddle
::
platform
::
DisableProfiler
(
paddle
::
platform
::
EventSortingKey
::
kDefault
,
paddle
::
platform
::
DisableProfiler
(
paddle
::
platform
::
EventSortingKey
::
kDefault
,
"load_program_profiler
.txt
"
);
"load_program_profiler"
);
paddle
::
platform
::
ResetProfiler
();
paddle
::
platform
::
ResetProfiler
();
// 3. Get the feed_target_names and fetch_target_names
// 3. Get the feed_target_names and fetch_target_names
...
@@ -208,10 +208,10 @@ void TestInference(const std::string& dirname,
...
@@ -208,10 +208,10 @@ void TestInference(const std::string& dirname,
if
(
PrepareContext
)
{
if
(
PrepareContext
)
{
ctx
=
executor
.
Prepare
(
*
inference_program
,
0
);
ctx
=
executor
.
Prepare
(
*
inference_program
,
0
);
executor
.
RunPreparedContext
(
ctx
.
get
(),
scope
,
&
feed_targets
,
executor
.
RunPreparedContext
(
ctx
.
get
(),
scope
,
&
feed_targets
,
&
fetch_targets
,
CreateVars
);
&
fetch_targets
,
true
,
CreateVars
);
}
else
{
}
else
{
executor
.
Run
(
*
inference_program
,
scope
,
&
feed_targets
,
&
fetch_targets
,
executor
.
Run
(
*
inference_program
,
scope
,
&
feed_targets
,
&
fetch_targets
,
CreateVars
);
true
,
CreateVars
);
}
}
// Enable the profiler
// Enable the profiler
...
@@ -236,8 +236,7 @@ void TestInference(const std::string& dirname,
...
@@ -236,8 +236,7 @@ void TestInference(const std::string& dirname,
// Disable the profiler and print the timing information
// Disable the profiler and print the timing information
paddle
::
platform
::
DisableProfiler
(
paddle
::
platform
::
DisableProfiler
(
paddle
::
platform
::
EventSortingKey
::
kDefault
,
paddle
::
platform
::
EventSortingKey
::
kDefault
,
"run_inference_profiler"
);
"run_inference_profiler.txt"
);
paddle
::
platform
::
ResetProfiler
();
paddle
::
platform
::
ResetProfiler
();
}
}
...
...
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
50ba205d
...
@@ -186,11 +186,7 @@ endif()
...
@@ -186,11 +186,7 @@ endif()
add_subdirectory
(
detail
)
add_subdirectory
(
detail
)
if
(
WITH_DISTRIBUTE
)
if
(
WITH_DISTRIBUTE
)
if
(
WITH_GPU
)
op_library
(
gen_nccl_id_op DEPS nccl_common
)
else
()
set
(
DEPS_OPS
${
DEPS_OPS
}
gen_nccl_id_op
)
endif
()
set
(
DISTRIBUTE_DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib protobuf
)
set
(
DISTRIBUTE_DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib protobuf
)
set
(
DISTRIBUTE_COMPILE_FLAGS
"-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor"
)
set
(
DISTRIBUTE_COMPILE_FLAGS
"-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor"
)
op_library
(
send_op DEPS
${
DISTRIBUTE_DEPS
}
)
op_library
(
send_op DEPS
${
DISTRIBUTE_DEPS
}
)
...
@@ -207,7 +203,13 @@ if(WITH_DISTRIBUTE)
...
@@ -207,7 +203,13 @@ if(WITH_DISTRIBUTE)
set_source_files_properties
(
send_barrier_op.cc PROPERTIES COMPILE_FLAGS
${
DISTRIBUTE_COMPILE_FLAGS
}
)
set_source_files_properties
(
send_barrier_op.cc PROPERTIES COMPILE_FLAGS
${
DISTRIBUTE_COMPILE_FLAGS
}
)
set_source_files_properties
(
send_recv_op_test.cc PROPERTIES COMPILE_FLAGS
${
DISTRIBUTE_COMPILE_FLAGS
}
)
set_source_files_properties
(
send_recv_op_test.cc PROPERTIES COMPILE_FLAGS
${
DISTRIBUTE_COMPILE_FLAGS
}
)
cc_test
(
test_send_recv SRCS send_recv_op_test.cc DEPS prefetch_op send_op listen_and_serv_op sum_op executor
)
cc_test
(
test_send_recv SRCS send_recv_op_test.cc DEPS prefetch_op send_op listen_and_serv_op sum_op executor
)
cc_test
(
test_send_nccl_id SRCS test_send_nccl_id.cc DEPS send_op listen_and_serv_op executor
)
if
(
WITH_GPU
)
cc_test
(
test_send_nccl_id SRCS test_send_nccl_id.cc DEPS send_op listen_and_serv_op executor
)
op_library
(
gen_nccl_id_op DEPS nccl_common sendrecvop_grpc
)
set_source_files_properties
(
gen_nccl_id_op.cc PROPERTIES COMPILE_FLAGS
${
DISTRIBUTE_COMPILE_FLAGS
}
)
else
()
set
(
DEPS_OPS
${
DEPS_OPS
}
gen_nccl_id_op
)
endif
()
else
()
else
()
set
(
DEPS_OPS
${
DEPS_OPS
}
send_op prefetch_op recv_op listen_and_serv_op send_vars_op send_barrier_op gen_nccl_id_op
)
set
(
DEPS_OPS
${
DEPS_OPS
}
send_op prefetch_op recv_op listen_and_serv_op send_vars_op send_barrier_op gen_nccl_id_op
)
endif
()
endif
()
...
...
paddle/fluid/operators/beam_search_op.h
浏览文件 @
50ba205d
...
@@ -14,10 +14,6 @@ limitations under the License. */
...
@@ -14,10 +14,6 @@ limitations under the License. */
#pragma once
#pragma once
#ifdef PADDLE_WITH_TESTING
#include "gtest/gtest.h"
#endif
#include <string>
#include <string>
#include <vector>
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor.h"
...
...
paddle/fluid/operators/detail/grpc_server.cc
浏览文件 @
50ba205d
...
@@ -184,7 +184,7 @@ class RequestPrefetch final : public RequestBase {
...
@@ -184,7 +184,7 @@ class RequestPrefetch final : public RequestBase {
framework
::
Scope
*
local_scope
=
&
scope_
->
NewScope
();
framework
::
Scope
*
local_scope
=
&
scope_
->
NewScope
();
auto
*
var
=
local_scope
->
FindVar
(
var_name
);
auto
*
var
=
local_scope
->
FindVar
(
var_name
);
InitializeVariable
(
var
,
var_desc
->
GetType
());
InitializeVariable
(
var
,
var_desc
->
GetType
());
executor_
->
RunPreparedContext
(
prefetch_ctx_
,
scope_
,
false
,
false
);
executor_
->
RunPreparedContext
(
prefetch_ctx_
,
scope_
);
SerializeToByteBuffer
(
var_name
,
var
,
*
dev_ctx_
,
&
reply
);
SerializeToByteBuffer
(
var_name
,
var
,
*
dev_ctx_
,
&
reply
);
...
...
paddle/fluid/operators/listen_and_serv_op.cc
浏览文件 @
50ba205d
...
@@ -57,8 +57,7 @@ static void ParallelExecuteBlocks(
...
@@ -57,8 +57,7 @@ static void ParallelExecuteBlocks(
framework
::
Async
([
&
executor
,
&
prepared
,
&
program
,
&
scope
,
idx
]()
{
framework
::
Async
([
&
executor
,
&
prepared
,
&
program
,
&
scope
,
idx
]()
{
int
run_block
=
idx
;
// thread local
int
run_block
=
idx
;
// thread local
try
{
try
{
executor
->
RunPreparedContext
(
prepared
[
run_block
].
get
(),
scope
,
executor
->
RunPreparedContext
(
prepared
[
run_block
].
get
(),
scope
);
false
,
false
);
}
catch
(
std
::
exception
&
e
)
{
}
catch
(
std
::
exception
&
e
)
{
LOG
(
ERROR
)
<<
"run sub program error "
<<
e
.
what
();
LOG
(
ERROR
)
<<
"run sub program error "
<<
e
.
what
();
}
}
...
@@ -211,8 +210,8 @@ static void AsyncUpdateThread(
...
@@ -211,8 +210,8 @@ static void AsyncUpdateThread(
}
}
auto
fs
=
framework
::
Async
([
var_name
,
&
executor
,
&
v
,
prepared
]
{
auto
fs
=
framework
::
Async
([
var_name
,
&
executor
,
&
v
,
prepared
]
{
try
{
try
{
executor
->
RunPreparedContext
(
prepared
,
v
.
second
->
GetMutableLocalScope
(),
executor
->
RunPreparedContext
(
prepared
,
false
,
false
);
v
.
second
->
GetMutableLocalScope
()
);
}
catch
(
std
::
exception
&
e
)
{
}
catch
(
std
::
exception
&
e
)
{
LOG
(
ERROR
)
<<
"run sub program error "
<<
e
.
what
();
LOG
(
ERROR
)
<<
"run sub program error "
<<
e
.
what
();
}
}
...
...
paddle/fluid/operators/math/math_function.cc
浏览文件 @
50ba205d
...
@@ -38,7 +38,9 @@ template struct SetConstant<platform::CPUDeviceContext, bool>;
...
@@ -38,7 +38,9 @@ template struct SetConstant<platform::CPUDeviceContext, bool>;
template struct Transpose<platform::CPUDeviceContext, double, RANK>; \
template struct Transpose<platform::CPUDeviceContext, double, RANK>; \
template struct Transpose<platform::CPUDeviceContext, int, RANK>; \
template struct Transpose<platform::CPUDeviceContext, int, RANK>; \
template struct Transpose<platform::CPUDeviceContext, int64_t, RANK>; \
template struct Transpose<platform::CPUDeviceContext, int64_t, RANK>; \
template struct Transpose<platform::CPUDeviceContext, bool, RANK>;
template struct Transpose<platform::CPUDeviceContext, bool, RANK>; \
template struct Transpose<platform::CPUDeviceContext, int16_t, RANK>; \
template struct Transpose<platform::CPUDeviceContext, uint8_t, RANK>;
DEFINE_CPU_TRANS
(
1
);
DEFINE_CPU_TRANS
(
1
);
DEFINE_CPU_TRANS
(
2
);
DEFINE_CPU_TRANS
(
2
);
...
...
paddle/fluid/operators/roi_pool_op.cu
浏览文件 @
50ba205d
...
@@ -38,10 +38,10 @@ __global__ void GPUROIPoolForward(
...
@@ -38,10 +38,10 @@ __global__ void GPUROIPoolForward(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
offset
=
blockDim
.
x
*
gridDim
.
x
;
int
offset
=
blockDim
.
x
*
gridDim
.
x
;
for
(
size_t
i
=
index
;
i
<
nthreads
;
i
+=
offset
)
{
for
(
size_t
i
=
index
;
i
<
nthreads
;
i
+=
offset
)
{
int
pw
=
i
ndex
%
pooled_width
;
int
pw
=
i
%
pooled_width
;
int
ph
=
(
i
ndex
/
pooled_width
)
%
pooled_height
;
int
ph
=
(
i
/
pooled_width
)
%
pooled_height
;
int
c
=
(
i
ndex
/
pooled_width
/
pooled_height
)
%
channels
;
int
c
=
(
i
/
pooled_width
/
pooled_height
)
%
channels
;
int
n
=
i
ndex
/
pooled_width
/
pooled_height
/
channels
;
int
n
=
i
/
pooled_width
/
pooled_height
/
channels
;
const
int64_t
*
offset_input_rois
=
input_rois
+
n
*
kROISize
;
const
int64_t
*
offset_input_rois
=
input_rois
+
n
*
kROISize
;
int
roi_batch_ind
=
roi_batch_id_data
[
n
];
int
roi_batch_ind
=
roi_batch_id_data
[
n
];
...
@@ -52,14 +52,19 @@ __global__ void GPUROIPoolForward(
...
@@ -52,14 +52,19 @@ __global__ void GPUROIPoolForward(
int
roi_width
=
max
(
roi_end_w
-
roi_start_w
+
1
,
1
);
int
roi_width
=
max
(
roi_end_w
-
roi_start_w
+
1
,
1
);
int
roi_height
=
max
(
roi_end_h
-
roi_start_h
+
1
,
1
);
int
roi_height
=
max
(
roi_end_h
-
roi_start_h
+
1
,
1
);
T
bin_size_h
=
static_cast
<
T
>
(
roi_height
)
/
static_cast
<
T
>
(
pooled_height
);
T
bin_size_w
=
static_cast
<
T
>
(
roi_width
)
/
static_cast
<
T
>
(
pooled_width
);
int
hstart
=
static_cast
<
int
>
(
floor
(
static_cast
<
T
>
(
ph
)
*
bin_size_h
));
int
wstart
=
static_cast
<
int
>
(
floor
(
static_cast
<
T
>
(
pw
)
*
bin_size_w
));
int
hend
=
static_cast
<
int
>
(
ceil
(
static_cast
<
T
>
(
ph
+
1
)
*
bin_size_h
));
int
wend
=
static_cast
<
int
>
(
ceil
(
static_cast
<
T
>
(
pw
+
1
)
*
bin_size_w
));
int
hstart
=
static_cast
<
int
>
(
floor
(
static_cast
<
double
>
(
ph
)
*
static_cast
<
double
>
(
roi_height
)
/
static_cast
<
double
>
(
pooled_height
)));
int
wstart
=
static_cast
<
int
>
(
floor
(
static_cast
<
double
>
(
pw
)
*
static_cast
<
double
>
(
roi_width
)
/
static_cast
<
double
>
(
pooled_width
)));
int
hend
=
static_cast
<
int
>
(
ceil
(
static_cast
<
double
>
(
ph
+
1
)
*
static_cast
<
double
>
(
roi_height
)
/
static_cast
<
double
>
(
pooled_height
)));
int
wend
=
static_cast
<
int
>
(
ceil
(
static_cast
<
double
>
(
pw
+
1
)
*
static_cast
<
double
>
(
roi_width
)
/
static_cast
<
double
>
(
pooled_width
)));
hstart
=
min
(
max
(
hstart
+
roi_start_h
,
0
),
height
);
hstart
=
min
(
max
(
hstart
+
roi_start_h
,
0
),
height
);
hend
=
min
(
max
(
hend
+
roi_start_h
,
0
),
height
);
hend
=
min
(
max
(
hend
+
roi_start_h
,
0
),
height
);
wstart
=
min
(
max
(
wstart
+
roi_start_w
,
0
),
width
);
wstart
=
min
(
max
(
wstart
+
roi_start_w
,
0
),
width
);
...
@@ -79,9 +84,9 @@ __global__ void GPUROIPoolForward(
...
@@ -79,9 +84,9 @@ __global__ void GPUROIPoolForward(
}
}
}
}
}
}
output_data
[
i
ndex
]
=
maxval
;
output_data
[
i
]
=
maxval
;
if
(
argmax_data
)
{
if
(
argmax_data
)
{
argmax_data
[
i
ndex
]
=
maxidx
;
argmax_data
[
i
]
=
maxidx
;
}
}
}
}
}
}
...
@@ -96,10 +101,10 @@ __global__ void GPUROIPoolBackward(
...
@@ -96,10 +101,10 @@ __global__ void GPUROIPoolBackward(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
offset
=
blockDim
.
x
*
gridDim
.
x
;
int
offset
=
blockDim
.
x
*
gridDim
.
x
;
for
(
int
i
=
index
;
i
<
nthreads
;
i
+=
offset
)
{
for
(
int
i
=
index
;
i
<
nthreads
;
i
+=
offset
)
{
int
pw
=
i
ndex
%
pooled_width
;
int
pw
=
i
%
pooled_width
;
int
ph
=
(
i
ndex
/
pooled_width
)
%
pooled_height
;
int
ph
=
(
i
/
pooled_width
)
%
pooled_height
;
int
c
=
(
i
ndex
/
pooled_width
/
pooled_height
)
%
channels
;
int
c
=
(
i
/
pooled_width
/
pooled_height
)
%
channels
;
int
n
=
i
ndex
/
pooled_width
/
pooled_height
/
channels
;
int
n
=
i
/
pooled_width
/
pooled_height
/
channels
;
int
roi_batch_ind
=
roi_batch_id_data
[
n
];
int
roi_batch_ind
=
roi_batch_id_data
[
n
];
int
input_offset
=
(
roi_batch_ind
*
channels
+
c
)
*
height
*
width
;
int
input_offset
=
(
roi_batch_ind
*
channels
+
c
)
*
height
*
width
;
...
@@ -138,6 +143,7 @@ class GPUROIPoolOpKernel : public framework::OpKernel<T> {
...
@@ -138,6 +143,7 @@ class GPUROIPoolOpKernel : public framework::OpKernel<T> {
int
width
=
in_dims
[
3
];
int
width
=
in_dims
[
3
];
int
rois_num
=
rois
->
dims
()[
0
];
int
rois_num
=
rois
->
dims
()[
0
];
if
(
rois_num
==
0
)
return
;
if
(
rois_num
==
0
)
return
;
int
output_size
=
out
->
numel
();
int
output_size
=
out
->
numel
();
...
...
paddle/fluid/operators/send_recv_op_test.cc
浏览文件 @
50ba205d
...
@@ -92,12 +92,16 @@ void InitSelectedRowsInScope(const p::CPUPlace &place, f::Scope *scope) {
...
@@ -92,12 +92,16 @@ void InitSelectedRowsInScope(const p::CPUPlace &place, f::Scope *scope) {
void
AddOp
(
const
std
::
string
&
type
,
const
f
::
VariableNameMap
&
inputs
,
void
AddOp
(
const
std
::
string
&
type
,
const
f
::
VariableNameMap
&
inputs
,
const
f
::
VariableNameMap
&
outputs
,
f
::
AttributeMap
attrs
,
const
f
::
VariableNameMap
&
outputs
,
f
::
AttributeMap
attrs
,
f
::
BlockDesc
*
block
)
{
f
::
BlockDesc
*
block
,
bool
is_sparse
)
{
// insert output
// insert output
for
(
auto
kv
:
outputs
)
{
for
(
auto
kv
:
outputs
)
{
for
(
auto
v
:
kv
.
second
)
{
for
(
auto
v
:
kv
.
second
)
{
auto
var
=
block
->
Var
(
v
);
auto
var
=
block
->
Var
(
v
);
var
->
SetDataType
(
f
::
proto
::
VarType
::
FP32
);
var
->
SetDataType
(
f
::
proto
::
VarType
::
FP32
);
var
->
SetPersistable
(
true
);
if
(
is_sparse
)
{
var
->
SetType
(
f
::
proto
::
VarType
::
SELECTED_ROWS
);
}
}
}
}
}
...
@@ -128,7 +132,8 @@ void StartServerNet(bool is_sparse, std::atomic<bool> *initialized) {
...
@@ -128,7 +132,8 @@ void StartServerNet(bool is_sparse, std::atomic<bool> *initialized) {
auto
*
optimize_block
=
program
.
AppendBlock
(
root_block
);
auto
*
optimize_block
=
program
.
AppendBlock
(
root_block
);
auto
*
prefetch_block
=
program
.
AppendBlock
(
root_block
);
auto
*
prefetch_block
=
program
.
AppendBlock
(
root_block
);
// X for server side tensors, RX for received tensors, must be of same shape.
// X for server side tensors, RX for received tensors, must be of same shape.
AddOp
(
"sum"
,
{{
"X"
,
{
"x0"
,
"x1"
}}},
{{
"Out"
,
{
"Out"
}}},
{},
optimize_block
);
AddOp
(
"sum"
,
{{
"X"
,
{
"x0"
,
"x1"
}}},
{{
"Out"
,
{
"Out"
}}},
{},
optimize_block
,
is_sparse
);
f
::
AttributeMap
attrs
;
f
::
AttributeMap
attrs
;
attrs
.
insert
({
"endpoint"
,
std
::
string
(
"127.0.0.1:0"
)});
attrs
.
insert
({
"endpoint"
,
std
::
string
(
"127.0.0.1:0"
)});
attrs
.
insert
({
"Fanin"
,
1
});
attrs
.
insert
({
"Fanin"
,
1
});
...
...
paddle/fluid/operators/smooth_l1_loss_op.cc
浏览文件 @
50ba205d
...
@@ -105,7 +105,7 @@ class SmoothL1LossGradOp : public framework::OperatorWithKernel {
...
@@ -105,7 +105,7 @@ class SmoothL1LossGradOp : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
auto
in_dims
=
ctx
->
GetInputDim
(
"
X
"
);
auto
in_dims
=
ctx
->
GetInputDim
(
"
Diff
"
);
auto
out_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Out"
));
auto
out_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Out"
));
PADDLE_ENFORCE_GE
(
out_dims
.
size
(),
2
,
PADDLE_ENFORCE_GE
(
out_dims
.
size
(),
2
,
...
@@ -127,12 +127,33 @@ class SmoothL1LossGradOp : public framework::OperatorWithKernel {
...
@@ -127,12 +127,33 @@ class SmoothL1LossGradOp : public framework::OperatorWithKernel {
}
}
};
};
class
SmoothL1LossGradMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
op
=
new
framework
::
OpDesc
();
op
->
SetType
(
"smooth_l1_loss_grad"
);
op
->
SetInput
(
"InsideWeight"
,
Input
(
"InsideWeight"
));
op
->
SetInput
(
"OutsideWeight"
,
Input
(
"OutsideWeight"
));
op
->
SetInput
(
"Diff"
,
Output
(
"Diff"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
op
->
SetAttrMap
(
Attrs
());
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"Y"
),
InputGrad
(
"Y"
));
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
op
);
}
};
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
smooth_l1_loss
,
ops
::
SmoothL1LossOp
,
ops
::
SmoothL1LossOpMaker
,
REGISTER_OPERATOR
(
smooth_l1_loss
,
ops
::
SmoothL1LossOp
,
ops
::
SmoothL1LossOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
ops
::
SmoothL1LossGradMaker
);
REGISTER_OPERATOR
(
smooth_l1_loss_grad
,
ops
::
SmoothL1LossGradOp
);
REGISTER_OPERATOR
(
smooth_l1_loss_grad
,
ops
::
SmoothL1LossGradOp
);
REGISTER_OP_CPU_KERNEL
(
REGISTER_OP_CPU_KERNEL
(
smooth_l1_loss
,
smooth_l1_loss
,
...
...
paddle/fluid/platform/CMakeLists.txt
浏览文件 @
50ba205d
proto_library
(
profiler_proto SRCS profiler.proto
)
proto_library
(
profiler_proto SRCS profiler.proto
DEPS framework_proto
)
py_proto_compile
(
profiler_py_proto SRCS profiler.proto
)
py_proto_compile
(
profiler_py_proto SRCS profiler.proto
)
add_custom_target
(
profiler_py_proto_init ALL COMMAND
${
CMAKE_COMMAND
}
-E touch __init__.py
)
add_custom_target
(
profiler_py_proto_init ALL COMMAND
${
CMAKE_COMMAND
}
-E touch __init__.py
)
...
@@ -49,7 +49,7 @@ nv_test(device_context_test SRCS device_context_test.cu DEPS device_context gpu_
...
@@ -49,7 +49,7 @@ nv_test(device_context_test SRCS device_context_test.cu DEPS device_context gpu_
nv_test
(
cudnn_helper_test SRCS cudnn_helper_test.cc DEPS dynload_cuda
)
nv_test
(
cudnn_helper_test SRCS cudnn_helper_test.cc DEPS dynload_cuda
)
nv_test
(
transform_test SRCS transform_test.cu DEPS memory place device_context
)
nv_test
(
transform_test SRCS transform_test.cu DEPS memory place device_context
)
cc_library
(
device_tracer SRCS device_tracer.cc DEPS boost profiler_proto
${
GPU_CTX_DEPS
}
)
cc_library
(
device_tracer SRCS device_tracer.cc DEPS boost profiler_proto
framework_proto
${
GPU_CTX_DEPS
}
)
cc_library
(
profiler SRCS profiler.cc DEPS device_context device_tracer
)
cc_library
(
profiler SRCS profiler.cc DEPS device_context device_tracer
)
cc_test
(
profiler_test SRCS profiler_test.cc DEPS profiler
)
cc_test
(
profiler_test SRCS profiler_test.cc DEPS profiler
)
...
...
paddle/fluid/platform/profiler.cc
浏览文件 @
50ba205d
...
@@ -173,8 +173,9 @@ void PopEvent(const std::string& name, const DeviceContext* dev_ctx) {
...
@@ -173,8 +173,9 @@ void PopEvent(const std::string& name, const DeviceContext* dev_ctx) {
}
}
RecordEvent
::
RecordEvent
(
const
std
::
string
&
name
,
const
DeviceContext
*
dev_ctx
)
RecordEvent
::
RecordEvent
(
const
std
::
string
&
name
,
const
DeviceContext
*
dev_ctx
)
:
start_ns_
(
PosixInNsec
())
{
:
is_enabled_
(
false
),
start_ns_
(
PosixInNsec
())
{
if
(
g_state
==
ProfilerState
::
kDisabled
)
return
;
if
(
g_state
==
ProfilerState
::
kDisabled
)
return
;
is_enabled_
=
true
;
dev_ctx_
=
dev_ctx
;
dev_ctx_
=
dev_ctx
;
name_
=
name
;
name_
=
name
;
PushEvent
(
name_
,
dev_ctx_
);
PushEvent
(
name_
,
dev_ctx_
);
...
@@ -183,7 +184,7 @@ RecordEvent::RecordEvent(const std::string& name, const DeviceContext* dev_ctx)
...
@@ -183,7 +184,7 @@ RecordEvent::RecordEvent(const std::string& name, const DeviceContext* dev_ctx)
}
}
RecordEvent
::~
RecordEvent
()
{
RecordEvent
::~
RecordEvent
()
{
if
(
g_state
==
ProfilerState
::
kDisabled
)
return
;
if
(
g_state
==
ProfilerState
::
kDisabled
||
!
is_enabled_
)
return
;
DeviceTracer
*
tracer
=
GetDeviceTracer
();
DeviceTracer
*
tracer
=
GetDeviceTracer
();
if
(
tracer
)
{
if
(
tracer
)
{
tracer
->
AddCPURecords
(
CurAnnotation
(),
start_ns_
,
PosixInNsec
(),
tracer
->
AddCPURecords
(
CurAnnotation
(),
start_ns_
,
PosixInNsec
(),
...
@@ -193,14 +194,16 @@ RecordEvent::~RecordEvent() {
...
@@ -193,14 +194,16 @@ RecordEvent::~RecordEvent() {
PopEvent
(
name_
,
dev_ctx_
);
PopEvent
(
name_
,
dev_ctx_
);
}
}
RecordBlock
::
RecordBlock
(
int
block_id
)
:
start_ns_
(
PosixInNsec
())
{
RecordBlock
::
RecordBlock
(
int
block_id
)
:
is_enabled_
(
false
),
start_ns_
(
PosixInNsec
())
{
if
(
g_state
==
ProfilerState
::
kDisabled
)
return
;
if
(
g_state
==
ProfilerState
::
kDisabled
)
return
;
is_enabled_
=
true
;
SetCurBlock
(
block_id
);
SetCurBlock
(
block_id
);
name_
=
string
::
Sprintf
(
"block_%d"
,
block_id
);
name_
=
string
::
Sprintf
(
"block_%d"
,
block_id
);
}
}
RecordBlock
::~
RecordBlock
()
{
RecordBlock
::~
RecordBlock
()
{
if
(
g_state
==
ProfilerState
::
kDisabled
)
return
;
if
(
g_state
==
ProfilerState
::
kDisabled
||
!
is_enabled_
)
return
;
DeviceTracer
*
tracer
=
GetDeviceTracer
();
DeviceTracer
*
tracer
=
GetDeviceTracer
();
if
(
tracer
)
{
if
(
tracer
)
{
// We try to put all blocks at the same nested depth in the
// We try to put all blocks at the same nested depth in the
...
...
paddle/fluid/platform/profiler.h
浏览文件 @
50ba205d
...
@@ -74,6 +74,7 @@ struct RecordEvent {
...
@@ -74,6 +74,7 @@ struct RecordEvent {
~
RecordEvent
();
~
RecordEvent
();
bool
is_enabled_
;
uint64_t
start_ns_
;
uint64_t
start_ns_
;
// The device context is used by Event to get the current cuda stream.
// The device context is used by Event to get the current cuda stream.
const
DeviceContext
*
dev_ctx_
;
const
DeviceContext
*
dev_ctx_
;
...
@@ -89,6 +90,7 @@ struct RecordBlock {
...
@@ -89,6 +90,7 @@ struct RecordBlock {
~
RecordBlock
();
~
RecordBlock
();
private:
private:
bool
is_enabled_
;
std
::
string
name_
;
std
::
string
name_
;
uint64_t
start_ns_
;
uint64_t
start_ns_
;
};
};
...
...
paddle/scripts/docker/build.sh
浏览文件 @
50ba205d
...
@@ -198,7 +198,7 @@ EOF
...
@@ -198,7 +198,7 @@ EOF
# run paddle version to install python packages first
# run paddle version to install python packages first
RUN apt-get update &&
\
RUN apt-get update &&
\
${
NCCL_DEPS
}
\
${
NCCL_DEPS
}
\
apt-get install -y wget python-pip dmidecode python-tk &&
pip install -U pip==9.0.3
&&
\
apt-get install -y wget python-pip dmidecode python-tk &&
easy_install -U pip
&&
\
pip install /*.whl; apt-get install -f -y &&
\
pip install /*.whl; apt-get install -f -y &&
\
apt-get clean -y &&
\
apt-get clean -y &&
\
rm -f /*.whl &&
\
rm -f /*.whl &&
\
...
...
paddle/scripts/paddle_build.sh
浏览文件 @
50ba205d
...
@@ -20,19 +20,15 @@
...
@@ -20,19 +20,15 @@
#=================================================
#=================================================
function
print_usage
()
{
function
print_usage
()
{
RED
=
'\033[0;31m'
BLUE
=
'\033[0;34m'
BOLD
=
'\033[1m'
NONE
=
'\033[0m'
echo
-e
"
\n
${
RED
}
Usage
${
NONE
}
:
echo
-e
"
\n
${
RED
}
Usage
${
NONE
}
:
${
BOLD
}
$
0
${
NONE
}
[OPTION]"
${
BOLD
}$
{
SCRIPT_NAME
}
${
NONE
}
[OPTION]"
echo
-e
"
\n
${
RED
}
Options
${
NONE
}
:
echo
-e
"
\n
${
RED
}
Options
${
NONE
}
:
${
BLUE
}
build
${
NONE
}
: run build for x86 platform
${
BLUE
}
build
${
NONE
}
: run build for x86 platform
${
BLUE
}
build_android
${
NONE
}
: run build for android platform
${
BLUE
}
build_android
${
NONE
}
: run build for android platform
${
BLUE
}
build_ios
${
NONE
}
: run build for ios platform
${
BLUE
}
build_ios
${
NONE
}
: run build for ios platform
${
BLUE
}
test
${
NONE
}
: run all unit tests
${
BLUE
}
test
${
NONE
}
: run all unit tests
${
BLUE
}
single_test
${
NONE
}
: run a single unit test
${
BLUE
}
bind_test
${
NONE
}
: parallel tests bind to different GPU
${
BLUE
}
bind_test
${
NONE
}
: parallel tests bind to different GPU
${
BLUE
}
doc
${
NONE
}
: generate paddle documents
${
BLUE
}
doc
${
NONE
}
: generate paddle documents
${
BLUE
}
html
${
NONE
}
: convert C++ source code into HTML
${
BLUE
}
html
${
NONE
}
: convert C++ source code into HTML
...
@@ -45,7 +41,15 @@ function print_usage() {
...
@@ -45,7 +41,15 @@ function print_usage() {
}
}
function
init
()
{
function
init
()
{
RED
=
'\033[0;31m'
BLUE
=
'\033[0;34m'
BOLD
=
'\033[1m'
NONE
=
'\033[0m'
PADDLE_ROOT
=
"
$(
cd
"
$(
dirname
"
${
BASH_SOURCE
[0]
}
"
)
/../../"
&&
pwd
)
"
PADDLE_ROOT
=
"
$(
cd
"
$(
dirname
"
${
BASH_SOURCE
[0]
}
"
)
/../../"
&&
pwd
)
"
if
[
-z
"
${
SCRIPT_NAME
}
"
]
;
then
SCRIPT_NAME
=
$0
fi
}
}
function
cmake_gen
()
{
function
cmake_gen
()
{
...
@@ -91,7 +95,6 @@ function cmake_gen() {
...
@@ -91,7 +95,6 @@ function cmake_gen() {
-DWITH_AVX=
${
WITH_AVX
:-
OFF
}
-DWITH_AVX=
${
WITH_AVX
:-
OFF
}
-DWITH_GOLANG=
${
WITH_GOLANG
:-
OFF
}
-DWITH_GOLANG=
${
WITH_GOLANG
:-
OFF
}
-DCUDA_ARCH_NAME=
${
CUDA_ARCH_NAME
:-
All
}
-DCUDA_ARCH_NAME=
${
CUDA_ARCH_NAME
:-
All
}
-DWITH_SWIG_PY=ON
-DWITH_C_API=
${
WITH_C_API
:-
OFF
}
-DWITH_C_API=
${
WITH_C_API
:-
OFF
}
-DWITH_PYTHON=
${
WITH_PYTHON
:-
ON
}
-DWITH_PYTHON=
${
WITH_PYTHON
:-
ON
}
-DWITH_SWIG_PY=
${
WITH_SWIG_PY
:-
ON
}
-DWITH_SWIG_PY=
${
WITH_SWIG_PY
:-
ON
}
...
@@ -309,6 +312,25 @@ EOF
...
@@ -309,6 +312,25 @@ EOF
fi
fi
}
}
function
single_test
()
{
TEST_NAME
=
$1
if
[
-z
"
${
TEST_NAME
}
"
]
;
then
echo
-e
"
${
RED
}
Usage:
${
NONE
}
"
echo
-e
"
${
BOLD
}${
SCRIPT_NAME
}${
NONE
}
${
BLUE
}
single_test
${
NONE
}
[test_name]"
exit
1
fi
mkdir
-p
${
PADDLE_ROOT
}
/build
cd
${
PADDLE_ROOT
}
/build
if
[
${
WITH_TESTING
:-
ON
}
==
"ON"
]
;
then
cat
<<
EOF
========================================
Running
${
TEST_NAME
}
...
========================================
EOF
ctest
--output-on-failure
-R
${
TEST_NAME
}
fi
}
function
bind_test
()
{
function
bind_test
()
{
# the number of process to run tests
# the number of process to run tests
NUM_PROC
=
6
NUM_PROC
=
6
...
@@ -383,17 +405,19 @@ EOF
...
@@ -383,17 +405,19 @@ EOF
function
gen_dockerfile
()
{
function
gen_dockerfile
()
{
# Set BASE_IMAGE according to env variables
# Set BASE_IMAGE according to env variables
CUDA_MAJOR
=
"
$(
echo
$CUDA_VERSION
|
cut
-d
'.'
-f
1
)
.
$(
echo
$CUDA_VERSION
|
cut
-d
'.'
-f
2
)
"
CUDNN_MAJOR
=
$(
echo
$CUDNN_VERSION
|
cut
-d
'.'
-f
1
)
if
[[
${
WITH_GPU
}
==
"ON"
]]
;
then
if
[[
${
WITH_GPU
}
==
"ON"
]]
;
then
BASE_IMAGE
=
"nvidia/cuda:8.0-cudnn5
-runtime-ubuntu16.04"
BASE_IMAGE
=
"nvidia/cuda:
${
CUDA_MAJOR
}
-cudnn
${
CUDNN_MAJOR
}
-runtime-ubuntu16.04"
else
else
BASE_IMAGE
=
"ubuntu:16.04"
BASE_IMAGE
=
"ubuntu:16.04"
fi
fi
DOCKERFILE_GPU_ENV
=
""
DOCKERFILE_GPU_ENV
=
""
DOCKERFILE_CUDNN_DSO
=
""
DOCKERFILE_CUDNN_DSO
=
""
if
[[
${
WITH_GPU
:-
OFF
}
==
'ON'
]]
;
then
if
[[
${
WITH_GPU
:-
OFF
}
==
'ON'
]]
;
then
DOCKERFILE_GPU_ENV
=
"ENV LD_LIBRARY_PATH /usr/lib/x86_64-linux-gnu:
\$
{LD_LIBRARY_PATH}"
DOCKERFILE_GPU_ENV
=
"ENV LD_LIBRARY_PATH /usr/lib/x86_64-linux-gnu:
\$
{LD_LIBRARY_PATH}"
DOCKERFILE_CUDNN_DSO
=
"RUN ln -s /usr/lib/x86_64-linux-gnu/libcudnn.so.
5
/usr/lib/x86_64-linux-gnu/libcudnn.so"
DOCKERFILE_CUDNN_DSO
=
"RUN ln -s /usr/lib/x86_64-linux-gnu/libcudnn.so.
${
CUDNN_MAJOR
}
/usr/lib/x86_64-linux-gnu/libcudnn.so"
fi
fi
cat
<<
EOF
cat
<<
EOF
...
@@ -427,7 +451,7 @@ EOF
...
@@ -427,7 +451,7 @@ EOF
# run paddle version to install python packages first
# run paddle version to install python packages first
RUN apt-get update &&
\
RUN apt-get update &&
\
${
NCCL_DEPS
}
\
${
NCCL_DEPS
}
\
apt-get install -y wget python-pip dmidecode python-tk &&
pip install -U pip==9.0.3
&&
\
apt-get install -y wget python-pip dmidecode python-tk &&
easy_install -U pip
&&
\
pip install /*.whl; apt-get install -f -y &&
\
pip install /*.whl; apt-get install -f -y &&
\
apt-get clean -y &&
\
apt-get clean -y &&
\
rm -f /*.whl &&
\
rm -f /*.whl &&
\
...
@@ -468,7 +492,7 @@ function gen_fluid_inference_lib() {
...
@@ -468,7 +492,7 @@ function gen_fluid_inference_lib() {
Deploying fluid inference library ...
Deploying fluid inference library ...
========================================
========================================
EOF
EOF
make inference_lib_dist
make
-j
`
nproc
`
inference_lib_dist
fi
fi
}
}
...
@@ -480,6 +504,7 @@ function main() {
...
@@ -480,6 +504,7 @@ function main() {
build
)
build
)
cmake_gen
${
PYTHON_ABI
:-
""
}
cmake_gen
${
PYTHON_ABI
:-
""
}
build
build
gen_dockerfile
;;
;;
build_android
)
build_android
)
build_android
build_android
...
@@ -490,6 +515,9 @@ function main() {
...
@@ -490,6 +515,9 @@ function main() {
test
)
test
)
run_test
run_test
;;
;;
single_test
)
single_test
$2
;;
bind_test
)
bind_test
)
bind_test
bind_test
;;
;;
...
@@ -504,6 +532,7 @@ function main() {
...
@@ -504,6 +532,7 @@ function main() {
;;
;;
capi
)
capi
)
cmake_gen
${
PYTHON_ABI
:-
""
}
cmake_gen
${
PYTHON_ABI
:-
""
}
build
gen_capi_package
gen_capi_package
;;
;;
fluid_inference_lib
)
fluid_inference_lib
)
...
...
paddle/scripts/paddle_docker_build.sh
浏览文件 @
50ba205d
...
@@ -63,6 +63,7 @@ EOL
...
@@ -63,6 +63,7 @@ EOL
${
DOCKER_CMD
}
run
-it
\
${
DOCKER_CMD
}
run
-it
\
--name
$CONTAINER_ID
\
--name
$CONTAINER_ID
\
${
DOCKER_ENV
}
\
${
DOCKER_ENV
}
\
-e
SCRIPT_NAME
=
$0
\
-v
$PADDLE_ROOT
:/paddle
\
-v
$PADDLE_ROOT
:/paddle
\
-v
${
HOME
}
/.ccache:/root/.ccache
\
-v
${
HOME
}
/.ccache:/root/.ccache
\
-w
/paddle
\
-w
/paddle
\
...
...
patches/mkldnn.hpp
已删除
100644 → 0
浏览文件 @
39eb871d
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* Copyright 2016-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#ifndef MKLDNN_HPP
#define MKLDNN_HPP
#ifndef DOXYGEN_SHOULD_SKIP_THIS
#include <stdlib.h>
#include <algorithm>
#include <iterator>
#include <memory>
#include <string>
#include <vector>
#include "mkldnn.h"
#endif
namespace
mkldnn
{
/// @addtogroup cpp_api C++ API
/// @{
/// @addtogroup cpp_api_utils Utils
/// @{
/// A class that provides the destructor for an Intel(R) MKL-DNN C handle
template
<
typename
T
>
class
handle_traits
{};
/// A class for wrapping an Intel(R) MKL-DNN handle. It is used as the base
/// class for primitive (#mkldnn_primitive_t), engine (#mkldnn_engine_t), and
/// stream (#mkldnn_stream_t) handles. An object of the #mkldnn::handle class
/// can be passed by value. This class enables wrapping:
/// - Newly constructed handles.
/// @n In this case, the constructed handle uses reference counting provided
/// by @p std::shared_ptr with a proper deleter function specified through
/// the @p handle_traits class.
/// - Pre-existing handles returned by the Intel(R) MKL-DNN C API (for
/// example, through #mkldnn_primitive_get_output()).
/// @n In this case, an Intel(R) MKL-DNN C API handle is wrapped without a
/// deleter because it is assumed that the handle wrapper for the original
/// object deletes the handle (this model is similar to @p std::weak_ptr).
template
<
typename
T
,
typename
traits
=
handle_traits
<
T
>
>
class
handle
{
private:
std
::
shared_ptr
<
typename
std
::
remove_pointer
<
T
>::
type
>
_data
;
handle
(
const
handle
&&
)
=
delete
;
handle
&
operator
=
(
const
handle
&&
other
)
=
delete
;
protected:
/// Constructs a C handle wrapper.
/// @param t The C handle to wrap.
/// @param weak A flag to specify whether to construct a weak wrapper.
handle
(
T
t
=
0
,
bool
weak
=
false
)
:
_data
(
0
)
{
reset
(
t
,
weak
);
}
bool
operator
==
(
const
T
other
)
const
{
return
other
==
_data
.
get
();
}
bool
operator
!=
(
const
T
other
)
const
{
return
!
(
*
this
==
other
);
}
public:
handle
(
const
handle
&
other
)
:
_data
(
other
.
_data
)
{}
handle
&
operator
=
(
const
handle
&
other
)
{
_data
=
other
.
_data
;
return
*
this
;
}
/// Resets the value of a C handle.
/// @param t The new value of the C handle.
/// @param weak A flag to specify whether the wrapper should be weak.
void
reset
(
T
t
,
bool
weak
=
false
)
{
auto
dummy_destructor
=
[](
T
)
{
return
decltype
(
traits
::
destructor
(
0
))(
0
);
};
_data
.
reset
(
t
,
weak
?
dummy_destructor
:
traits
::
destructor
);
}
/// Returns the value of the underlying C handle.
T
get
()
const
{
return
_data
.
get
();
}
bool
operator
==
(
const
handle
&
other
)
const
{
return
other
.
_data
.
get
()
==
_data
.
get
();
}
bool
operator
!=
(
const
handle
&
other
)
const
{
return
!
(
*
this
==
other
);
}
};
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
<
>
struct
handle_traits
<
mkldnn_primitive_desc_t
>
{
static
constexpr
auto
destructor
=
&
mkldnn_primitive_desc_destroy
;
};
template
<
>
struct
handle_traits
<
mkldnn_primitive_t
>
{
static
constexpr
auto
destructor
=
&
mkldnn_primitive_destroy
;
};
#endif
/// Base class for all computational primitives.
class
primitive
:
public
handle
<
mkldnn_primitive_t
>
{
friend
struct
error
;
friend
struct
stream
;
friend
class
primitive_at
;
using
handle
::
handle
;
public:
/// A proxy to C primitive kind enum
enum
class
kind
{
undefined_primitive
=
mkldnn_undefined_primitive
,
memory
=
mkldnn_memory
,
view
=
mkldnn_view
,
reorder
=
mkldnn_reorder
,
concat
=
mkldnn_concat
,
concat_inplace
=
mkldnn_concat_inplace
,
sum
=
mkldnn_sum
,
convolution
=
mkldnn_convolution
,
deconvolution
=
mkldnn_deconvolution
,
eltwise
=
mkldnn_eltwise
,
relu
=
mkldnn_relu
,
softmax
=
mkldnn_softmax
,
pooling
=
mkldnn_pooling
,
lrn
=
mkldnn_lrn
,
batch_normalization
=
mkldnn_batch_normalization
,
inner_product
=
mkldnn_inner_product
,
convolution_relu
=
mkldnn_convolution_relu
,
rnn
=
mkldnn_rnn
,
};
/// A wrapper structure to specify a particular output of a primitive.
struct
at
{
/// The underlying C API structure.
mkldnn_primitive_at_t
data
;
/// Constructs a wrapper specifying @p aprimitive output with index @p
/// at.
///
/// @param aprimitive The target primitive.
/// @param at The output index.
at
(
const
primitive
&
aprimitive
,
size_t
at
=
0
)
:
data
(
mkldnn_primitive_at
(
aprimitive
.
get
(),
at
))
{}
/// Returns the specified output.
inline
operator
primitive
()
const
;
};
/// Returns the descriptor of the underlying C API primitive
inline
const_mkldnn_primitive_desc_t
get_primitive_desc
()
const
;
// TODO: use the C++ API wrapper structure.
};
inline
mkldnn_primitive_kind_t
convert_to_c
(
primitive
::
kind
akind
)
{
return
static_cast
<
mkldnn_primitive_kind_t
>
(
akind
);
}
/// Intel(R) MKL-DNN exception class.
///
/// This class captures the status returned by the failed C API function, error
/// message, and, optionally, handle of the primitive that caused the error.
struct
error
:
public
std
::
exception
{
mkldnn_status_t
status
;
std
::
string
message
;
primitive
error_primitive
;
/// Constructs an error instance.
///
/// @param astatus The error status returned by the C API.
/// @param amessage The error message.
/// @param aerror_primitive (optional) A C handle of the primitive that
/// caused the error.
error
(
mkldnn_status_t
astatus
,
std
::
string
amessage
,
mkldnn_primitive_t
aerror_primitive
=
0
)
:
status
(
astatus
),
message
(
amessage
),
error_primitive
(
aerror_primitive
,
true
)
{}
/// A convenience function for wrapping calls to the C API. Checks the
/// return status and throws an #error in case of failure.
///
/// @param status The error status returned by the C API.
/// @param message The error message.
/// @param error_primitive (optional) A C handle of the primitive that
/// caused the error.
static
void
wrap_c_api
(
mkldnn_status_t
status
,
std
::
string
message
,
mkldnn_primitive_t
*
error_primitive
=
0
)
{
if
(
status
!=
mkldnn_success
)
{
if
(
nullptr
!=
error_primitive
)
throw
error
(
status
,
message
,
*
error_primitive
);
else
throw
error
(
status
,
message
,
nullptr
);
}
}
};
inline
primitive
::
at
::
operator
primitive
()
const
{
const_mkldnn_primitive_t
output
;
error
::
wrap_c_api
(
mkldnn_primitive_get_output
(
data
.
primitive
,
data
.
output_index
,
&
output
),
"could not get an output primitive"
);
return
primitive
(
const_cast
<
mkldnn_primitive_t
>
(
output
),
true
);
}
const_mkldnn_primitive_desc_t
primitive
::
get_primitive_desc
()
const
{
const_mkldnn_primitive_desc_t
pd
;
error
::
wrap_c_api
(
mkldnn_primitive_get_primitive_desc
(
get
(),
&
pd
),
"could not get primitive descriptor by primitive"
);
return
pd
;
}
/// @}
/// @addtogroup cpp_api_enums Common data types and enumerations
/// @{
enum
round_mode
{
round_nearest
=
mkldnn_round_nearest
,
round_down
=
mkldnn_round_down
,
};
inline
mkldnn_round_mode_t
convert_to_c
(
round_mode
mode
)
{
return
static_cast
<
mkldnn_round_mode_t
>
(
mode
);
}
enum
padding_kind
{
zero
=
mkldnn_padding_zero
};
inline
mkldnn_padding_kind_t
convert_to_c
(
padding_kind
kind
)
{
return
static_cast
<
mkldnn_padding_kind_t
>
(
kind
);
}
enum
prop_kind
{
forward_training
=
mkldnn_forward_training
,
forward_scoring
=
mkldnn_forward_scoring
,
forward_inference
=
mkldnn_forward_inference
,
forward
=
mkldnn_forward
,
backward
=
mkldnn_backward
,
backward_data
=
mkldnn_backward_data
,
backward_weights
=
mkldnn_backward_weights
,
backward_bias
=
mkldnn_backward_bias
};
inline
mkldnn_prop_kind_t
convert_to_c
(
prop_kind
kind
)
{
return
static_cast
<
mkldnn_prop_kind_t
>
(
kind
);
}
enum
algorithm
{
algorithm_undef
=
mkldnn_alg_kind_undef
,
convolution_direct
=
mkldnn_convolution_direct
,
convolution_winograd
=
mkldnn_convolution_winograd
,
deconvolution_direct
=
mkldnn_deconvolution_direct
,
deconvolution_winograd
=
mkldnn_deconvolution_winograd
,
eltwise_relu
=
mkldnn_eltwise_relu
,
eltwise_tanh
=
mkldnn_eltwise_tanh
,
eltwise_elu
=
mkldnn_eltwise_elu
,
eltwise_square
=
mkldnn_eltwise_square
,
eltwise_abs
=
mkldnn_eltwise_abs
,
eltwise_sqrt
=
mkldnn_eltwise_sqrt
,
eltwise_linear
=
mkldnn_eltwise_linear
,
eltwise_bounded_relu
=
mkldnn_eltwise_bounded_relu
,
eltwise_soft_relu
=
mkldnn_eltwise_soft_relu
,
eltwise_logistic
=
mkldnn_eltwise_logistic
,
lrn_across_channels
=
mkldnn_lrn_across_channels
,
lrn_within_channel
=
mkldnn_lrn_within_channel
,
pooling_max
=
mkldnn_pooling_max
,
pooling_avg
=
mkldnn_pooling_avg
,
pooling_avg_include_padding
=
mkldnn_pooling_avg_include_padding
,
pooling_avg_exclude_padding
=
mkldnn_pooling_avg_exclude_padding
,
vanilla_rnn
=
mkldnn_vanilla_rnn
,
vanilla_lstm
=
mkldnn_vanilla_lstm
,
vanilla_gru
=
mkldnn_vanilla_gru
,
};
inline
mkldnn_alg_kind_t
convert_to_c
(
algorithm
aalgorithm
)
{
return
static_cast
<
mkldnn_alg_kind_t
>
(
aalgorithm
);
}
enum
batch_normalization_flag
{
use_global_stats
=
mkldnn_use_global_stats
,
use_scale_shift
=
mkldnn_use_scaleshift
,
omit_stats
=
mkldnn_omit_stats
,
fuse_bn_relu
=
mkldnn_fuse_bn_relu
};
inline
mkldnn_batch_normalization_flag_t
convert_to_c
(
batch_normalization_flag
aflag
)
{
return
static_cast
<
mkldnn_batch_normalization_flag_t
>
(
aflag
);
}
enum
rnn_direction
{
unidirectional_left2right
=
mkldnn_unidirectional_left2right
,
unidirectional_right2left
=
mkldnn_unidirectional_right2left
,
unidirectional
=
mkldnn_unidirectional
,
bidirectional_concat
=
mkldnn_bidirectional_concat
,
bidirectional_sum
=
mkldnn_bidirectional_sum
,
};
inline
mkldnn_rnn_direction_t
convert_to_c
(
rnn_direction
adir
)
{
return
static_cast
<
mkldnn_rnn_direction_t
>
(
adir
);
}
enum
query
{
undef
=
mkldnn_query_undef
,
eengine
=
mkldnn_query_engine
,
primitive_kind
=
mkldnn_query_primitive_kind
,
num_of_inputs_s32
=
mkldnn_query_num_of_inputs_s32
,
num_of_outputs_s32
=
mkldnn_query_num_of_outputs_s32
,
time_estimate_f64
=
mkldnn_query_time_estimate_f64
,
memory_consumption_s64
=
mkldnn_query_memory_consumption_s64
,
impl_info_str
=
mkldnn_query_impl_info_str
,
memory_d
=
mkldnn_query_memory_d
,
convolution_d
=
mkldnn_query_convolution_d
,
deconvolution_d
=
mkldnn_query_deconvolution_d
,
eltwise_d
=
mkldnn_query_eltwise_d
,
relu_d
=
mkldnn_query_relu_d
,
softmax_d
=
mkldnn_query_softmax_d
,
pooling_d
=
mkldnn_query_pooling_d
,
lrn_d
=
mkldnn_query_lrn_d
,
batch_normalization_d
=
mkldnn_query_batch_normalization_d
,
inner_product_d
=
mkldnn_query_inner_product_d
,
convolution_relu_d
=
mkldnn_query_convolution_relu_d
,
rnn_d
=
mkldnn_query_rnn_d
,
input_pd
=
mkldnn_query_input_pd
,
output_pd
=
mkldnn_query_output_pd
,
src_pd
=
mkldnn_query_src_pd
,
diff_src_pd
=
mkldnn_query_diff_src_pd
,
weights_pd
=
mkldnn_query_weights_pd
,
diff_weights_pd
=
mkldnn_query_diff_weights_pd
,
dst_pd
=
mkldnn_query_dst_pd
,
diff_dst_pd
=
mkldnn_query_diff_dst_pd
,
workspace_pd
=
mkldnn_query_workspace_pd
,
};
inline
mkldnn_query_t
convert_to_c
(
query
aquery
)
{
return
static_cast
<
mkldnn_query_t
>
(
aquery
);
}
/// @}
/// @addtogroup cpp_api_attr Attributes
/// @{
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
<
>
struct
handle_traits
<
mkldnn_post_ops_t
>
{
static
constexpr
auto
destructor
=
&
mkldnn_post_ops_destroy
;
};
#endif
struct
post_ops
:
public
handle
<
mkldnn_post_ops_t
>
{
post_ops
()
{
mkldnn_post_ops_t
result
;
error
::
wrap_c_api
(
mkldnn_post_ops_create
(
&
result
),
"could not create post operation sequence"
);
reset
(
result
);
}
int
len
()
const
{
return
mkldnn_post_ops_len
(
get
());
}
primitive
::
kind
kind
(
int
index
)
const
{
error
::
wrap_c_api
(
index
<
len
()
?
mkldnn_success
:
mkldnn_invalid_arguments
,
"post_ops index is out of range"
);
return
static_cast
<
primitive
::
kind
>
(
mkldnn_post_ops_get_kind
(
get
(),
index
));
}
void
append_sum
(
float
scale
=
1.
)
{
error
::
wrap_c_api
(
mkldnn_post_ops_append_sum
(
get
(),
scale
),
"could not append sum"
);
}
void
get_params_sum
(
int
index
,
float
&
scale
)
const
{
error
::
wrap_c_api
(
mkldnn_post_ops_get_params_sum
(
get
(),
index
,
&
scale
),
"could not get sum params"
);
}
void
append_eltwise
(
float
scale
,
algorithm
alg
,
float
alpha
,
float
beta
)
{
error
::
wrap_c_api
(
mkldnn_post_ops_append_eltwise
(
get
(),
scale
,
convert_to_c
(
alg
),
alpha
,
beta
),
"could not append eltwise"
);
}
void
get_params_eltwise
(
int
index
,
float
&
scale
,
algorithm
&
alg
,
float
&
alpha
,
float
&
beta
)
const
{
mkldnn_alg_kind_t
c_alg
;
error
::
wrap_c_api
(
mkldnn_post_ops_get_params_eltwise
(
get
(),
index
,
&
scale
,
&
c_alg
,
&
alpha
,
&
beta
),
"could not get eltwise params"
);
alg
=
static_cast
<
algorithm
>
(
c_alg
);
}
};
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
<
>
struct
handle_traits
<
mkldnn_primitive_attr_t
>
{
static
constexpr
auto
destructor
=
&
mkldnn_primitive_attr_destroy
;
};
#endif
struct
primitive_attr
:
public
handle
<
mkldnn_primitive_attr_t
>
{
primitive_attr
()
{
mkldnn_primitive_attr_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_attr_create
(
&
result
),
"could not create a primitive attr"
);
reset
(
result
);
}
round_mode
get_int_output_round_mode
()
const
{
mkldnn_round_mode_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_attr_get_int_output_round_mode
(
get
(),
&
result
),
"could not get int output round mode"
);
return
round_mode
(
result
);
}
void
set_int_output_round_mode
(
round_mode
mode
)
{
error
::
wrap_c_api
(
mkldnn_primitive_attr_set_int_output_round_mode
(
get
(),
mkldnn
::
convert_to_c
(
mode
)),
"could not set int output round mode"
);
}
void
get_output_scales
(
int
&
mask
,
std
::
vector
<
float
>
&
scales
)
const
{
int
count
,
c_mask
;
const
float
*
c_scales
;
error
::
wrap_c_api
(
mkldnn_primitive_attr_get_output_scales
(
get
(),
&
count
,
&
c_mask
,
&
c_scales
),
"could not get int output scales"
);
scales
.
resize
(
count
);
mask
=
c_mask
;
for
(
int
c
=
0
;
c
<
count
;
++
c
)
scales
[
c
]
=
c_scales
[
c
];
}
void
set_output_scales
(
int
mask
,
const
std
::
vector
<
float
>
&
scales
)
{
error
::
wrap_c_api
(
mkldnn_primitive_attr_set_output_scales
(
get
(),
(
int
)
scales
.
size
(),
mask
,
&
scales
[
0
]),
"could not set int output scales"
);
}
const
post_ops
get_post_ops
()
const
{
post_ops
result
;
const_mkldnn_post_ops_t
c_result
;
error
::
wrap_c_api
(
mkldnn_primitive_attr_get_post_ops
(
get
(),
&
c_result
),
"could not get post operation sequence"
);
result
.
reset
(
const_cast
<
mkldnn_post_ops_t
>
(
c_result
),
true
);
return
result
;
}
void
set_post_ops
(
post_ops
ops
)
{
error
::
wrap_c_api
(
mkldnn_primitive_attr_set_post_ops
(
get
(),
ops
.
get
()),
"could not set post operation sequence"
);
}
};
/// @}
/// @addtogroup cpp_api_engine Engine
/// @{
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
<
>
struct
handle_traits
<
mkldnn_engine_t
>
{
static
constexpr
auto
destructor
=
&
mkldnn_engine_destroy
;
};
#endif
/// An execution engine.
struct
engine
:
public
handle
<
mkldnn_engine_t
>
{
friend
class
primitive
;
// gcc bug??? using handle::handle;
/// Kinds of engines
enum
kind
{
/// An unspecified engine
any
=
mkldnn_any_engine
,
/// CPU engine
cpu
=
mkldnn_cpu
,
};
/// Returns the number of engines of a certain kind.
///
/// @param akind The kind of engines to count.
static
size_t
get_count
(
kind
akind
)
{
return
mkldnn_engine_get_count
(
convert_to_c
(
akind
));
}
/// Constructs an engine.
///
/// @param akind The kind of engine to construct.
/// @param index The index of the engine. Must be less than the value
/// returned by #get_count() for this particular kind of engine.
engine
(
kind
akind
,
size_t
index
)
{
mkldnn_engine_t
aengine
;
error
::
wrap_c_api
(
mkldnn_engine_create
(
&
aengine
,
convert_to_c
(
akind
),
index
),
"could not create an engine"
);
reset
(
aengine
);
}
explicit
engine
(
const
mkldnn_engine_t
&
aengine
)
:
handle
(
aengine
,
true
)
{}
engine
(
const
handle
<
mkldnn_primitive_desc_t
>
&
pd
)
{
mkldnn_engine_t
engine_q
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_query
(
pd
.
get
(),
mkldnn
::
convert_to_c
(
eengine
),
0
,
&
engine_q
),
"could not get engine from primitive_desc"
);
reset
(
engine_q
,
true
);
}
template
<
class
primitive_desc
>
static
engine
query
(
const
primitive_desc
&
pd
)
{
mkldnn_engine_t
engine_q
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_query
(
pd
.
get
(),
mkldnn
::
convert_to_c
(
eengine
),
0
,
&
engine_q
),
"could not get engine from primitive_desc"
);
return
engine
(
engine_q
);
}
private:
static
mkldnn_engine_kind_t
convert_to_c
(
kind
akind
)
{
return
static_cast
<
mkldnn_engine_kind_t
>
(
akind
);
}
};
/// @}
/// @addtogroup cpp_api_primitives Primitives
/// @{
/// @addtogroup cpp_api_memory Memory
/// @{
/// Memory primitive that describes the data.
struct
memory
:
public
primitive
{
private:
std
::
shared_ptr
<
char
>
_handle
;
public:
typedef
std
::
vector
<
std
::
remove_extent
<
mkldnn_dims_t
>::
type
>
dims
;
template
<
typename
T
>
static
void
validate_dims
(
std
::
vector
<
T
>
v
)
{
if
(
v
.
size
()
>
TENSOR_MAX_DIMS
)
throw
error
(
mkldnn_invalid_arguments
,
"invalid dimensions"
);
}
/// Data type specification. See #mkldnn_data_type_t for a detailed
/// description.
enum
data_type
{
data_undef
=
mkldnn_data_type_undef
,
f32
=
mkldnn_f32
,
s32
=
mkldnn_s32
,
s16
=
mkldnn_s16
,
s8
=
mkldnn_s8
,
u8
=
mkldnn_u8
,
};
/// Memory format specification. See #mkldnn_memory_format_t
/// for a detailed description.
enum
format
{
format_undef
=
mkldnn_format_undef
,
any
=
mkldnn_any
,
blocked
=
mkldnn_blocked
,
x
=
mkldnn_x
,
nc
=
mkldnn_nc
,
nchw
=
mkldnn_nchw
,
nhwc
=
mkldnn_nhwc
,
chwn
=
mkldnn_chwn
,
nChw8c
=
mkldnn_nChw8c
,
nChw16c
=
mkldnn_nChw16c
,
ncdhw
=
mkldnn_ncdhw
,
ndhwc
=
mkldnn_ndhwc
,
nCdhw16c
=
mkldnn_nCdhw16c
,
oi
=
mkldnn_oi
,
io
=
mkldnn_io
,
oihw
=
mkldnn_oihw
,
ihwo
=
mkldnn_ihwo
,
hwio
=
mkldnn_hwio
,
oidhw
=
mkldnn_oidhw
,
OIdhw16i16o
=
mkldnn_OIdhw16i16o
,
OIdhw16o16i
=
mkldnn_OIdhw16o16i
,
Oidhw16o
=
mkldnn_Oidhw16o
,
Odhwi16o
=
mkldnn_Odhwi16o
,
oIhw8i
=
mkldnn_oIhw8i
,
oIhw16i
=
mkldnn_oIhw16i
,
OIhw8i8o
=
mkldnn_OIhw8i8o
,
OIhw16i16o
=
mkldnn_OIhw16i16o
,
OIhw8o8i
=
mkldnn_OIhw8o8i
,
OIhw16o16i
=
mkldnn_OIhw16o16i
,
IOhw16o16i
=
mkldnn_IOhw16o16i
,
OIhw8i16o2i
=
mkldnn_OIhw8i16o2i
,
OIhw8o16i2o
=
mkldnn_OIhw8o16i2o
,
OIhw4i16o4i
=
mkldnn_OIhw4i16o4i
,
Oihw8o
=
mkldnn_Oihw8o
,
Oihw16o
=
mkldnn_Oihw16o
,
Ohwi8o
=
mkldnn_Ohwi8o
,
Ohwi16o
=
mkldnn_Ohwi16o
,
OhIw16o4i
=
mkldnn_OhIw16o4i
,
goihw
=
mkldnn_goihw
,
hwigo
=
mkldnn_hwigo
,
gOIhw8i8o
=
mkldnn_gOIhw8i8o
,
gOIhw16i16o
=
mkldnn_gOIhw16i16o
,
gOIhw8i16o2i
=
mkldnn_gOIhw8i16o2i
,
gOIhw8o16i2o
=
mkldnn_gOIhw8o16i2o
,
gOIhw4i16o4i
=
mkldnn_gOIhw4i16o4i
,
gOihw8o
=
mkldnn_gOihw8o
,
gOihw16o
=
mkldnn_gOihw16o
,
gOhwi8o
=
mkldnn_gOhwi8o
,
gOhwi16o
=
mkldnn_gOhwi16o
,
Goihw8g
=
mkldnn_Goihw8g
,
Goihw16g
=
mkldnn_Goihw16g
,
gOIhw8o8i
=
mkldnn_gOIhw8o8i
,
gOIhw16o16i
=
mkldnn_gOIhw16o16i
,
gIOhw16o16i
=
mkldnn_gIOhw16o16i
,
gOhIw16o4i
=
mkldnn_gOhIw16o4i
,
goidhw
=
mkldnn_goidhw
,
gOIdhw16i16o
=
mkldnn_gOIdhw16i16o
,
gOIdhw16o16i
=
mkldnn_gOIdhw16o16i
,
gOidhw16o
=
mkldnn_gOidhw16o
,
gOdhwi16o
=
mkldnn_gOdhwi16o
,
ntc
=
mkldnn_ntc
,
tnc
=
mkldnn_tnc
,
ldsnc
=
mkldnn_ldsnc
,
ldigo
=
mkldnn_ldigo
,
ldigo_p
=
mkldnn_ldigo_p
,
ldgoi
=
mkldnn_ldgoi
,
ldgoi_p
=
mkldnn_ldgoi_p
,
ldgo
=
mkldnn_ldgo
,
wino_fmt
=
mkldnn_wino_fmt
,
format_last
=
mkldnn_format_last
,
};
/// A memory descriptor.
struct
desc
{
friend
struct
memory
;
/// The underlying C API data structure.
mkldnn_memory_desc_t
data
;
/// Constructs a memory descriptor.
///
/// @param adims Data dimensions
/// @param adata_type Data precision/type.
/// @param aformat Data layout format.
desc
(
dims
adims
,
data_type
adata_type
,
format
aformat
)
{
validate_dims
(
adims
);
error
::
wrap_c_api
(
mkldnn_memory_desc_init
(
&
data
,
(
int
)
adims
.
size
(),
adims
.
size
()
==
0
?
nullptr
:
&
adims
[
0
],
convert_to_c
(
adata_type
),
convert_to_c
(
aformat
)),
"could not initialize a memory descriptor"
);
}
/// Constructs a memory descriptor from a C API data structure.
///
/// @param adata A C API #mkldnn_memory_desc_t structure.
desc
(
const
mkldnn_memory_desc_t
&
adata
)
:
data
(
adata
)
{}
};
/// A memory primitive descriptor.
struct
primitive_desc
:
public
handle
<
mkldnn_primitive_desc_t
>
{
friend
struct
memory
;
// TODO: make private
primitive_desc
()
{}
/// Constructs a memory primitive descriptor.
primitive_desc
(
const
desc
&
adesc
,
const
engine
&
aengine
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_memory_primitive_desc_create
(
&
result
,
&
adesc
.
data
,
aengine
.
get
()),
"could not initialize a memory primitive descriptor"
);
reset
(
result
);
}
/// Returns the memory primitive descriptor.
memory
::
desc
desc
()
{
auto
memory_d
=
mkldnn_primitive_desc_query_memory_d
(
get
());
return
memory
::
desc
(
*
memory_d
);
}
/// Returns the number of bytes required to allocate the memory described
/// including the padding area.
size_t
get_size
()
const
{
return
mkldnn_memory_primitive_desc_get_size
(
get
());
}
bool
operator
==
(
const
primitive_desc
&
other
)
const
{
return
mkldnn_memory_primitive_desc_equal
(
get
(),
other
.
get
());
}
bool
operator
!=
(
const
primitive_desc
&
other
)
const
{
return
!
operator
==
(
other
);
}
engine
get_engine
()
{
return
engine
::
query
(
*
this
);
}
};
/// Constructs a memory primitive from a generic primitive.
///
/// @param aprimitive The primitive to treat as memory.
memory
(
const
primitive
&
aprimitive
)
:
primitive
(
aprimitive
)
{}
/// Constructs a memory primitive.
///
/// @param adesc Memory primitive descriptor.
memory
(
const
primitive_desc
&
adesc
)
{
mkldnn_primitive_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
adesc
.
get
(),
nullptr
,
nullptr
),
"could not create a memory primitive"
);
reset
(
result
);
auto
_malloc
=
[](
size_t
size
,
int
alignment
)
{
void
*
ptr
;
#ifdef _WIN32
ptr
=
_aligned_malloc
(
size
,
alignment
);
int
rc
=
((
ptr
)
?
0
:
errno
);
#else
int
rc
=
::
posix_memalign
(
&
ptr
,
alignment
,
size
);
#endif
/* _WIN32 */
return
(
rc
==
0
)
?
(
char
*
)
ptr
:
nullptr
;
};
auto
_free
=
[](
char
*
p
)
{
#ifdef _WIN32
_aligned_free
((
void
*
)
p
);
#else
::
free
((
void
*
)
p
);
#endif
/* _WIN32 */
};
_handle
.
reset
(
_malloc
(
adesc
.
get_size
(),
4096
),
_free
);
set_data_handle
(
_handle
.
get
());
}
memory
(
const
primitive_desc
&
adesc
,
void
*
ahandle
)
{
mkldnn_primitive_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
adesc
.
get
(),
nullptr
,
nullptr
),
"could not create a memory primitive"
);
reset
(
result
);
set_data_handle
(
ahandle
);
}
/// Returns the descriptor of the memory primitive.
primitive_desc
get_primitive_desc
()
const
{
primitive_desc
adesc
;
const_mkldnn_primitive_desc_t
cdesc
;
error
::
wrap_c_api
(
mkldnn_primitive_get_primitive_desc
(
get
(),
&
cdesc
),
"could not get primitive descriptor from a memory primitive"
);
/* FIXME: no const_cast should be here */
adesc
.
reset
(
const_cast
<
mkldnn_primitive_desc_t
>
(
cdesc
),
true
);
return
adesc
;
}
/// Returns a handle of the data contained in the memory primitive. On
/// the CPU engine, this is a pointer to the allocated memory.
inline
void
*
get_data_handle
()
const
{
void
*
handle
;
error
::
wrap_c_api
(
mkldnn_memory_get_data_handle
(
get
(),
&
handle
),
"could not get native handle"
);
return
handle
;
}
inline
void
set_data_handle
(
void
*
handle
)
const
{
error
::
wrap_c_api
(
mkldnn_memory_set_data_handle
(
get
(),
handle
),
"could not set native handle"
);
}
// Must go away or be private:
static
mkldnn_data_type_t
convert_to_c
(
data_type
adata_type
)
{
return
static_cast
<
mkldnn_data_type_t
>
(
adata_type
);
}
static
mkldnn_memory_format_t
convert_to_c
(
format
aformat
)
{
return
static_cast
<
mkldnn_memory_format_t
>
(
aformat
);
}
};
inline
memory
::
desc
zero_md
()
{
mkldnn_memory_desc_t
zero
;
zero
.
primitive_kind
=
mkldnn_memory
;
return
memory
::
desc
(
zero
);
}
inline
memory
null_memory
(
engine
eng
)
{
mkldnn
::
memory
::
desc
zero
=
zero_md
();
return
memory
({
zero
,
eng
},
nullptr
);
}
inline
bool
is_null_memory
(
const
const_mkldnn_primitive_t
&
aprimitive
)
{
const_mkldnn_primitive_desc_t
aprimitive_pd
;
mkldnn_primitive_get_primitive_desc
(
aprimitive
,
&
aprimitive_pd
);
const
mkldnn_memory_desc_t
*
aprimitive_md
=
mkldnn_primitive_desc_query_memory_d
(
aprimitive_pd
);
return
((
aprimitive_md
!=
nullptr
)
&&
(
aprimitive_md
->
ndims
==
0
));
}
inline
bool
operator
==
(
mkldnn_data_type_t
a
,
memory
::
data_type
b
)
{
return
a
==
memory
::
convert_to_c
(
b
);
}
inline
bool
operator
!=
(
mkldnn_data_type_t
a
,
memory
::
data_type
b
)
{
return
!
(
a
==
b
);
}
inline
bool
operator
==
(
memory
::
data_type
a
,
mkldnn_data_type_t
b
)
{
return
b
==
a
;
}
inline
bool
operator
!=
(
memory
::
data_type
a
,
mkldnn_data_type_t
b
)
{
return
!
(
a
==
b
);
}
inline
bool
operator
==
(
mkldnn_memory_format_t
a
,
memory
::
format
b
)
{
return
a
==
memory
::
convert_to_c
(
b
);
}
inline
bool
operator
!=
(
mkldnn_memory_format_t
a
,
memory
::
format
b
)
{
return
!
(
a
==
b
);
}
inline
bool
operator
==
(
memory
::
format
a
,
mkldnn_memory_format_t
b
)
{
return
b
==
a
;
}
inline
bool
operator
!=
(
memory
::
format
a
,
mkldnn_memory_format_t
b
)
{
return
!
(
a
==
b
);
}
/// @}
/// @addtogroup cpp_api_reorder Reorder
/// @{
struct
reorder
:
public
primitive
{
struct
primitive_desc
:
public
handle
<
mkldnn_primitive_desc_t
>
{
primitive_desc
(
const
memory
::
primitive_desc
&
input
,
const
memory
::
primitive_desc
&
output
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_reorder_primitive_desc_create
(
&
result
,
input
.
get
(),
output
.
get
()),
"could not create a reorder primitive descriptor"
);
reset
(
result
);
}
primitive_desc
(
const
memory
::
primitive_desc
&
input
,
const
memory
::
primitive_desc
&
output
,
const
primitive_attr
&
aattr
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_reorder_primitive_desc_create_v2
(
&
result
,
input
.
get
(),
output
.
get
(),
aattr
.
get
()),
"could not create a reorder primitive descriptor"
);
reset
(
result
);
}
engine
get_engine
()
{
return
engine
::
query
(
*
this
);
}
};
reorder
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
input
,
const
memory
&
output
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
input
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
output
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a reorder primitive"
);
reset
(
result
);
}
reorder
(
const
primitive
::
at
&
input
,
const
memory
&
output
)
{
auto
input_mpd
=
memory
(
input
).
get_primitive_desc
();
auto
output_mpd
=
output
.
get_primitive_desc
();
auto
reorder_d
=
primitive_desc
(
input_mpd
,
output_mpd
);
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
input
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
output
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
reorder_d
.
get
(),
inputs
,
outputs
),
"could not create a reorder primitive"
);
reset
(
result
);
}
};
/// @}
/// @addtogroup cpp_api_view View
/// @{
struct
view
:
public
primitive
{
struct
primitive_desc
:
public
handle
<
mkldnn_primitive_desc_t
>
{
primitive_desc
(
const
memory
::
primitive_desc
&
input
,
memory
::
dims
dims
,
memory
::
dims
offsets
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_view_primitive_desc_create
(
&
result
,
input
.
get
(),
&
dims
[
0
],
&
offsets
[
0
]),
"could not create a view primitive descriptor"
);
reset
(
result
);
}
memory
::
primitive_desc
dst_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
dst_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a dst primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
engine
get_engine
()
{
return
engine
::
query
(
*
this
);
}
};
view
(
const
primitive_desc
&
view_pd
,
primitive
::
at
input
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
input
.
data
};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
view_pd
.
get
(),
inputs
,
nullptr
),
"could not create a view primitive"
);
reset
(
result
);
}
view
(
memory
input
,
memory
::
dims
dims
,
memory
::
dims
offsets
)
{
mkldnn_primitive_t
result
;
primitive_desc
view_pd
(
input
.
get_primitive_desc
(),
dims
,
offsets
);
mkldnn_primitive_at_t
inputs
[]
=
{
primitive
::
at
(
input
).
data
};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
view_pd
.
get
(),
inputs
,
nullptr
),
"could not create a view primitive"
);
reset
(
result
);
}
};
/// @}
/// @addtogroup cpp_api_concat Concat
/// @{
struct
concat
:
public
primitive
{
struct
primitive_desc
:
public
handle
<
mkldnn_primitive_desc_t
>
{
std
::
vector
<
const_mkldnn_primitive_desc_t
>
cpp_to_c
(
std
::
vector
<
memory
::
primitive_desc
>
inputs
)
{
std
::
vector
<
const_mkldnn_primitive_desc_t
>
c_api_inputs
;
c_api_inputs
.
reserve
(
inputs
.
size
());
auto
convert_to_c
=
[](
memory
::
primitive_desc
d
)
{
return
d
.
get
();
};
std
::
transform
(
inputs
.
begin
(),
inputs
.
end
(),
std
::
back_inserter
(
c_api_inputs
),
convert_to_c
);
return
c_api_inputs
;
}
primitive_desc
(
const
memory
::
desc
&
output
,
int
concat_dimension
,
std
::
vector
<
memory
::
primitive_desc
>
inputs
)
{
mkldnn_primitive_desc_t
result
;
auto
c_api_inputs
=
cpp_to_c
(
inputs
);
error
::
wrap_c_api
(
mkldnn_concat_primitive_desc_create
(
&
result
,
&
output
.
data
,
(
int
)
c_api_inputs
.
size
(),
concat_dimension
,
&
c_api_inputs
[
0
]),
"could not create a concat primitive descriptor"
);
reset
(
result
);
}
primitive_desc
(
int
concat_dimension
,
std
::
vector
<
memory
::
primitive_desc
>
inputs
)
{
mkldnn_primitive_desc_t
result
;
auto
c_api_inputs
=
cpp_to_c
(
inputs
);
error
::
wrap_c_api
(
mkldnn_concat_primitive_desc_create
(
&
result
,
nullptr
,
(
int
)
c_api_inputs
.
size
(),
concat_dimension
,
&
c_api_inputs
[
0
]),
"could not create a concat primitive descriptor"
);
reset
(
result
);
}
memory
::
primitive_desc
dst_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
dst_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a dst primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
engine
get_engine
()
{
return
engine
::
query
(
*
this
);
}
};
concat
(
const
primitive_desc
&
concat_pd
,
std
::
vector
<
primitive
::
at
>
&
inputs
,
const
memory
&
output
)
{
mkldnn_primitive_t
result
;
std
::
vector
<
mkldnn_primitive_at_t
>
p_inputs
;
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
p_inputs
.
push_back
(
inputs
[
i
].
data
);
const_mkldnn_primitive_t
outputs
[]
=
{
output
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
concat_pd
.
get
(),
&
p_inputs
[
0
],
outputs
),
"could not create a concat primitive"
);
reset
(
result
);
}
};
/// @}
/// @addtogroup cpp_api_sum Sum
/// @{
struct
sum
:
public
primitive
{
struct
primitive_desc
:
public
handle
<
mkldnn_primitive_desc_t
>
{
std
::
vector
<
const_mkldnn_primitive_desc_t
>
cpp_to_c
(
std
::
vector
<
memory
::
primitive_desc
>
inputs
)
{
std
::
vector
<
const_mkldnn_primitive_desc_t
>
c_api_inputs
;
c_api_inputs
.
reserve
(
inputs
.
size
());
auto
convert_to_c
=
[](
memory
::
primitive_desc
d
)
{
return
d
.
get
();
};
std
::
transform
(
inputs
.
begin
(),
inputs
.
end
(),
std
::
back_inserter
(
c_api_inputs
),
convert_to_c
);
return
c_api_inputs
;
}
primitive_desc
(
const
memory
::
desc
&
output
,
const
std
::
vector
<
float
>
&
scales
,
std
::
vector
<
memory
::
primitive_desc
>
inputs
)
{
mkldnn_primitive_desc_t
result
;
auto
c_api_inputs
=
cpp_to_c
(
inputs
);
error
::
wrap_c_api
(
mkldnn_sum_primitive_desc_create
(
&
result
,
&
output
.
data
,
(
int
)
c_api_inputs
.
size
(),
&
scales
[
0
],
&
c_api_inputs
[
0
]),
"could not create a sum primitive descriptor"
);
reset
(
result
);
}
primitive_desc
(
const
std
::
vector
<
float
>
&
scales
,
std
::
vector
<
memory
::
primitive_desc
>
inputs
)
{
mkldnn_primitive_desc_t
result
;
auto
c_api_inputs
=
cpp_to_c
(
inputs
);
error
::
wrap_c_api
(
mkldnn_sum_primitive_desc_create
(
&
result
,
nullptr
,
(
int
)
c_api_inputs
.
size
(),
&
scales
[
0
],
&
c_api_inputs
[
0
]),
"could not create a sum primitive descriptor"
);
reset
(
result
);
}
/** @deprecated: api backwards compatibility for double scales type */
MKLDNN_DEPRECATED
primitive_desc
(
const
memory
::
desc
&
output
,
std
::
vector
<
double
>
scale
,
std
::
vector
<
memory
::
primitive_desc
>
inputs
)
{
mkldnn_primitive_desc_t
result
;
auto
c_api_inputs
=
cpp_to_c
(
inputs
);
auto
scale_f
=
scale_to_float
(
scale
);
error
::
wrap_c_api
(
mkldnn_sum_primitive_desc_create
(
&
result
,
&
output
.
data
,
(
int
)
c_api_inputs
.
size
(),
&
scale_f
[
0
],
&
c_api_inputs
[
0
]),
"could not create a sum primitive descriptor"
);
reset
(
result
);
}
/** @deprecated: api backwards compatibility for double scales type */
MKLDNN_DEPRECATED
primitive_desc
(
std
::
vector
<
double
>
scale
,
std
::
vector
<
memory
::
primitive_desc
>
inputs
)
{
mkldnn_primitive_desc_t
result
;
auto
c_api_inputs
=
cpp_to_c
(
inputs
);
auto
scale_f
=
scale_to_float
(
scale
);
error
::
wrap_c_api
(
mkldnn_sum_primitive_desc_create
(
&
result
,
nullptr
,
(
int
)
c_api_inputs
.
size
(),
&
scale_f
[
0
],
&
c_api_inputs
[
0
]),
"could not create a sum primitive descriptor"
);
reset
(
result
);
}
memory
::
primitive_desc
dst_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
dst_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a dst primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
engine
get_engine
()
{
return
engine
::
query
(
*
this
);
}
};
sum
(
const
primitive_desc
&
sum_pd
,
std
::
vector
<
primitive
::
at
>
&
inputs
,
const
memory
&
output
)
{
mkldnn_primitive_t
result
;
std
::
vector
<
mkldnn_primitive_at_t
>
p_inputs
;
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
p_inputs
.
push_back
(
inputs
[
i
].
data
);
const_mkldnn_primitive_t
outputs
[]
=
{
output
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
sum_pd
.
get
(),
&
p_inputs
[
0
],
outputs
),
"could not create a sum primitive"
);
reset
(
result
);
}
private:
static
std
::
vector
<
float
>
scale_to_float
(
const
std
::
vector
<
double
>
&
vd
)
{
std
::
vector
<
float
>
vf
(
vd
.
size
());
std
::
transform
(
vd
.
begin
(),
vd
.
end
(),
vf
.
begin
(),
[
=
](
double
x
)
{
return
(
float
)
x
;
});
return
vf
;
}
};
/// @}
/// @addtogroup cpp_api_convolution Convolution
/// @{
struct
convolution_forward
:
public
primitive
{
struct
desc
{
mkldnn_convolution_desc_t
data
;
desc
(
prop_kind
aprop_kind
,
algorithm
aalgorithm
,
const
memory
::
desc
&
src_desc
,
const
memory
::
desc
&
weights_desc
,
const
memory
::
desc
&
bias_desc
,
const
memory
::
desc
&
dst_desc
,
const
memory
::
dims
strides
,
const
memory
::
dims
padding_l
,
const
memory
::
dims
padding_r
,
const
padding_kind
apadding_kind
)
{
memory
::
validate_dims
(
strides
);
memory
::
validate_dims
(
padding_l
);
memory
::
validate_dims
(
padding_r
);
error
::
wrap_c_api
(
mkldnn_convolution_forward_desc_init
(
&
data
,
mkldnn
::
convert_to_c
(
aprop_kind
),
convert_to_c
(
aalgorithm
),
&
src_desc
.
data
,
&
weights_desc
.
data
,
&
bias_desc
.
data
,
&
dst_desc
.
data
,
&
strides
[
0
],
&
padding_l
[
0
],
&
padding_r
[
0
],
mkldnn
::
convert_to_c
(
apadding_kind
)),
"could not create a convolution forward descriptor"
);
}
desc
(
prop_kind
aprop_kind
,
algorithm
aalgorithm
,
const
memory
::
desc
&
src_desc
,
const
memory
::
desc
&
weights_desc
,
const
memory
::
desc
&
dst_desc
,
const
memory
::
dims
strides
,
const
memory
::
dims
padding_l
,
const
memory
::
dims
padding_r
,
const
padding_kind
apadding_kind
)
{
memory
::
validate_dims
(
strides
);
memory
::
validate_dims
(
padding_l
);
memory
::
validate_dims
(
padding_r
);
error
::
wrap_c_api
(
mkldnn_convolution_forward_desc_init
(
&
data
,
mkldnn
::
convert_to_c
(
aprop_kind
),
convert_to_c
(
aalgorithm
),
&
src_desc
.
data
,
&
weights_desc
.
data
,
nullptr
,
&
dst_desc
.
data
,
&
strides
[
0
],
&
padding_l
[
0
],
&
padding_r
[
0
],
mkldnn
::
convert_to_c
(
apadding_kind
)),
"could not create a convolution forward descriptor"
);
}
desc
(
prop_kind
aprop_kind
,
algorithm
aalgorithm
,
const
memory
::
desc
&
src_desc
,
const
memory
::
desc
&
weights_desc
,
const
memory
::
desc
&
bias_desc
,
const
memory
::
desc
&
dst_desc
,
const
memory
::
dims
strides
,
const
memory
::
dims
dilates
,
const
memory
::
dims
padding_l
,
const
memory
::
dims
padding_r
,
const
padding_kind
apadding_kind
)
{
memory
::
validate_dims
(
strides
);
memory
::
validate_dims
(
dilates
);
memory
::
validate_dims
(
padding_l
);
memory
::
validate_dims
(
padding_r
);
error
::
wrap_c_api
(
mkldnn_dilated_convolution_forward_desc_init
(
&
data
,
mkldnn
::
convert_to_c
(
aprop_kind
),
convert_to_c
(
aalgorithm
),
&
src_desc
.
data
,
&
weights_desc
.
data
,
&
bias_desc
.
data
,
&
dst_desc
.
data
,
&
strides
[
0
],
&
dilates
[
0
],
&
padding_l
[
0
],
&
padding_r
[
0
],
mkldnn
::
convert_to_c
(
apadding_kind
)),
"could not create a dilated convolution forward descriptor"
);
}
desc
(
prop_kind
aprop_kind
,
algorithm
aalgorithm
,
const
memory
::
desc
&
src_desc
,
const
memory
::
desc
&
weights_desc
,
const
memory
::
desc
&
dst_desc
,
const
memory
::
dims
strides
,
const
memory
::
dims
dilates
,
const
memory
::
dims
padding_l
,
const
memory
::
dims
padding_r
,
const
padding_kind
apadding_kind
)
{
memory
::
validate_dims
(
strides
);
memory
::
validate_dims
(
dilates
);
memory
::
validate_dims
(
padding_l
);
memory
::
validate_dims
(
padding_r
);
error
::
wrap_c_api
(
mkldnn_dilated_convolution_forward_desc_init
(
&
data
,
mkldnn
::
convert_to_c
(
aprop_kind
),
convert_to_c
(
aalgorithm
),
&
src_desc
.
data
,
&
weights_desc
.
data
,
nullptr
,
&
dst_desc
.
data
,
&
strides
[
0
],
&
dilates
[
0
],
&
padding_l
[
0
],
&
padding_r
[
0
],
mkldnn
::
convert_to_c
(
apadding_kind
)),
"could not create a dilated convolution forward descriptor"
);
}
};
struct
primitive_desc
:
public
handle
<
mkldnn_primitive_desc_t
>
{
primitive_desc
(
const
desc
&
adesc
,
const
engine
&
aengine
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_create
(
&
result
,
&
adesc
.
data
,
aengine
.
get
(),
nullptr
),
"could not create a convolution forward primitive descriptor"
);
reset
(
result
);
}
primitive_desc
(
const
desc
&
adesc
,
const
primitive_attr
&
aattr
,
const
engine
&
aengine
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_create_v2
(
&
result
,
&
adesc
.
data
,
aattr
.
get
(),
aengine
.
get
(),
nullptr
),
"could not create a convolution forward primitive descriptor"
);
reset
(
result
);
}
memory
::
primitive_desc
src_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
src_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a src primititve descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
weights_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
weights_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a weights primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
bias_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
weights_pd
),
1
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a bias primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
dst_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
dst_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a dst primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
engine
get_engine
()
{
return
engine
::
query
(
*
this
);
}
};
convolution_forward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
primitive
::
at
&
weights
,
const
primitive
::
at
&
bias
,
const
memory
&
dst
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
,
weights
.
data
,
bias
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
dst
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a convolution forward bias primitive"
);
reset
(
result
);
}
convolution_forward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
primitive
::
at
&
weights
,
const
memory
&
dst
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
,
weights
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
dst
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a convolution forward primitive"
);
reset
(
result
);
}
};
struct
convolution_backward_data
:
public
primitive
{
struct
desc
{
mkldnn_convolution_desc_t
data
;
desc
(
algorithm
aalgorithm
,
const
memory
::
desc
&
diff_src_desc
,
const
memory
::
desc
&
weights_desc
,
const
memory
::
desc
&
diff_dst_desc
,
const
memory
::
dims
strides
,
const
memory
::
dims
padding_l
,
const
memory
::
dims
padding_r
,
const
padding_kind
apadding_kind
)
{
memory
::
validate_dims
(
strides
);
memory
::
validate_dims
(
padding_l
);
memory
::
validate_dims
(
padding_r
);
error
::
wrap_c_api
(
mkldnn_convolution_backward_data_desc_init
(
&
data
,
convert_to_c
(
aalgorithm
),
&
diff_src_desc
.
data
,
&
weights_desc
.
data
,
&
diff_dst_desc
.
data
,
&
strides
[
0
],
&
padding_l
[
0
],
&
padding_r
[
0
],
mkldnn
::
convert_to_c
(
apadding_kind
)),
"could not create a convolution backward data descriptor"
);
}
desc
(
algorithm
aalgorithm
,
const
memory
::
desc
&
diff_src_desc
,
const
memory
::
desc
&
weights_desc
,
const
memory
::
desc
&
diff_dst_desc
,
const
memory
::
dims
strides
,
const
memory
::
dims
dilates
,
const
memory
::
dims
padding_l
,
const
memory
::
dims
padding_r
,
const
padding_kind
apadding_kind
)
{
memory
::
validate_dims
(
strides
);
memory
::
validate_dims
(
dilates
);
memory
::
validate_dims
(
padding_l
);
memory
::
validate_dims
(
padding_r
);
error
::
wrap_c_api
(
mkldnn_dilated_convolution_backward_data_desc_init
(
&
data
,
convert_to_c
(
aalgorithm
),
&
diff_src_desc
.
data
,
&
weights_desc
.
data
,
&
diff_dst_desc
.
data
,
&
strides
[
0
],
&
dilates
[
0
],
&
padding_l
[
0
],
&
padding_r
[
0
],
mkldnn
::
convert_to_c
(
apadding_kind
)),
"could not create a convolution backward data descriptor"
);
}
};
struct
primitive_desc
:
public
handle
<
mkldnn_primitive_desc_t
>
{
primitive_desc
(
const
desc
&
adesc
,
const
engine
&
aengine
,
const
convolution_forward
::
primitive_desc
&
hint_fwd_primitive_desc
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_create
(
&
result
,
&
adesc
.
data
,
aengine
.
get
(),
hint_fwd_primitive_desc
.
get
()),
"could not create a convolution backward data primitive descriptor"
);
reset
(
result
);
}
memory
::
primitive_desc
diff_src_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
diff_src_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a diff_src primititve descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
weights_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
weights_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a weights primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
diff_dst_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
diff_dst_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a diff_dst primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
engine
get_engine
()
{
return
engine
::
query
(
*
this
);
}
};
convolution_backward_data
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
diff_dst
,
const
primitive
::
at
&
weights
,
const
memory
&
diff_src
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
diff_dst
.
data
,
weights
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
diff_src
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a convolution backward data primitive"
);
reset
(
result
);
}
};
struct
convolution_backward_weights
:
public
primitive
{
struct
desc
{
mkldnn_convolution_desc_t
data
;
desc
(
algorithm
aalgorithm
,
const
memory
::
desc
&
src_desc
,
const
memory
::
desc
&
diff_weights_desc
,
const
memory
::
desc
&
diff_bias_desc
,
const
memory
::
desc
&
diff_dst_desc
,
const
memory
::
dims
strides
,
const
memory
::
dims
padding_l
,
const
memory
::
dims
padding_r
,
const
padding_kind
apadding_kind
)
{
memory
::
validate_dims
(
strides
);
memory
::
validate_dims
(
padding_l
);
memory
::
validate_dims
(
padding_r
);
error
::
wrap_c_api
(
mkldnn_convolution_backward_weights_desc_init
(
&
data
,
convert_to_c
(
aalgorithm
),
&
src_desc
.
data
,
&
diff_weights_desc
.
data
,
&
diff_bias_desc
.
data
,
&
diff_dst_desc
.
data
,
&
strides
[
0
],
&
padding_l
[
0
],
&
padding_r
[
0
],
mkldnn
::
convert_to_c
(
apadding_kind
)),
"could not create a convolution backward weights descriptor"
);
}
desc
(
algorithm
aalgorithm
,
const
memory
::
desc
&
src_desc
,
const
memory
::
desc
&
diff_weights_desc
,
const
memory
::
desc
&
diff_dst_desc
,
const
memory
::
dims
strides
,
const
memory
::
dims
padding_l
,
const
memory
::
dims
padding_r
,
const
padding_kind
apadding_kind
)
{
memory
::
validate_dims
(
strides
);
memory
::
validate_dims
(
padding_l
);
memory
::
validate_dims
(
padding_r
);
error
::
wrap_c_api
(
mkldnn_convolution_backward_weights_desc_init
(
&
data
,
convert_to_c
(
aalgorithm
),
&
src_desc
.
data
,
&
diff_weights_desc
.
data
,
nullptr
,
&
diff_dst_desc
.
data
,
&
strides
[
0
],
&
padding_l
[
0
],
&
padding_r
[
0
],
mkldnn
::
convert_to_c
(
apadding_kind
)),
"could not create a convolution backward weights descriptor"
);
}
desc
(
algorithm
aalgorithm
,
const
memory
::
desc
&
src_desc
,
const
memory
::
desc
&
diff_weights_desc
,
const
memory
::
desc
&
diff_bias_desc
,
const
memory
::
desc
&
diff_dst_desc
,
const
memory
::
dims
strides
,
const
memory
::
dims
dilates
,
const
memory
::
dims
padding_l
,
const
memory
::
dims
padding_r
,
const
padding_kind
apadding_kind
)
{
memory
::
validate_dims
(
strides
);
memory
::
validate_dims
(
dilates
);
memory
::
validate_dims
(
padding_l
);
memory
::
validate_dims
(
padding_r
);
error
::
wrap_c_api
(
mkldnn_dilated_convolution_backward_weights_desc_init
(
&
data
,
convert_to_c
(
aalgorithm
),
&
src_desc
.
data
,
&
diff_weights_desc
.
data
,
&
diff_bias_desc
.
data
,
&
diff_dst_desc
.
data
,
&
strides
[
0
],
&
dilates
[
0
],
&
padding_l
[
0
],
&
padding_r
[
0
],
mkldnn
::
convert_to_c
(
apadding_kind
)),
"could not create a convolution backward weights descriptor"
);
}
desc
(
algorithm
aalgorithm
,
const
memory
::
desc
&
src_desc
,
const
memory
::
desc
&
diff_weights_desc
,
const
memory
::
desc
&
diff_dst_desc
,
const
memory
::
dims
strides
,
const
memory
::
dims
dilates
,
const
memory
::
dims
padding_l
,
const
memory
::
dims
padding_r
,
const
padding_kind
apadding_kind
)
{
memory
::
validate_dims
(
strides
);
memory
::
validate_dims
(
dilates
);
memory
::
validate_dims
(
padding_l
);
memory
::
validate_dims
(
padding_r
);
error
::
wrap_c_api
(
mkldnn_dilated_convolution_backward_weights_desc_init
(
&
data
,
convert_to_c
(
aalgorithm
),
&
src_desc
.
data
,
&
diff_weights_desc
.
data
,
nullptr
,
&
diff_dst_desc
.
data
,
&
strides
[
0
],
&
dilates
[
0
],
&
padding_l
[
0
],
&
padding_r
[
0
],
mkldnn
::
convert_to_c
(
apadding_kind
)),
"could not create a convolution backward weights descriptor"
);
}
};
struct
primitive_desc
:
public
handle
<
mkldnn_primitive_desc_t
>
{
primitive_desc
(
const
desc
&
adesc
,
const
engine
&
aengine
,
const
convolution_forward
::
primitive_desc
&
hint_fwd_primitive_desc
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_create
(
&
result
,
&
adesc
.
data
,
aengine
.
get
(),
hint_fwd_primitive_desc
.
get
()),
"could not create a convolution backward weights primitive "
"descriptor"
);
reset
(
result
);
}
memory
::
primitive_desc
src_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
src_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a src primititve descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
diff_weights_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
diff_weights_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a diff_weights primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
diff_bias_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
diff_weights_pd
),
1
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a diff_bias primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
diff_dst_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
diff_dst_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a diff_dst primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
engine
get_engine
()
{
return
engine
::
query
(
*
this
);
}
};
convolution_backward_weights
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
primitive
::
at
&
diff_dst
,
const
memory
&
diff_weights
,
const
memory
&
diff_bias
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
,
diff_dst
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
diff_weights
.
get
(),
diff_bias
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a convolution backward weights primitive"
);
reset
(
result
);
}
convolution_backward_weights
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
primitive
::
at
&
diff_dst
,
const
memory
&
diff_weights
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
,
diff_dst
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
diff_weights
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a convolution backward weights primitive"
);
reset
(
result
);
}
};
struct
convolution_relu_forward
:
public
primitive
{
struct
desc
{
mkldnn_convolution_relu_desc_t
data
;
desc
(
const
convolution_forward
::
desc
conv_desc
,
const
float
negative_slope
)
{
error
::
wrap_c_api
(
mkldnn_convolution_relu_desc_init
(
&
data
,
&
conv_desc
.
data
,
negative_slope
),
"could not create a convolution_relu_forward descriptor"
);
}
};
struct
primitive_desc
:
public
handle
<
mkldnn_primitive_desc_t
>
{
primitive_desc
(
const
desc
&
adesc
,
const
engine
&
aengine
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_create
(
&
result
,
&
adesc
.
data
,
aengine
.
get
(),
nullptr
),
"could not create a convolution relu forward descriptor"
);
reset
(
result
);
}
engine
get_engine
()
{
return
engine
::
query
(
*
this
);
}
};
convolution_relu_forward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
primitive
::
at
&
weights
,
const
primitive
::
at
&
bias
,
const
memory
&
dst
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
,
weights
.
data
,
bias
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
dst
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a convolution relu forward primitive"
);
reset
(
result
);
}
convolution_relu_forward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
primitive
::
at
&
weights
,
const
memory
&
dst
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
,
weights
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
dst
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a convolution relu forward primitive"
);
reset
(
result
);
}
};
/// @}
//
/// @addtogroup cpp_api_deconvolution Deconvolution
/// @{
struct
deconvolution_forward
:
public
primitive
{
struct
desc
{
mkldnn_deconvolution_desc_t
data
;
desc
(
prop_kind
aprop_kind
,
algorithm
aalgorithm
,
const
memory
::
desc
&
src_desc
,
const
memory
::
desc
&
weights_desc
,
const
memory
::
desc
&
bias_desc
,
const
memory
::
desc
&
dst_desc
,
const
memory
::
dims
strides
,
const
memory
::
dims
padding_l
,
const
memory
::
dims
padding_r
,
const
padding_kind
apadding_kind
)
{
memory
::
validate_dims
(
strides
);
memory
::
validate_dims
(
padding_l
);
memory
::
validate_dims
(
padding_r
);
error
::
wrap_c_api
(
mkldnn_deconvolution_forward_desc_init
(
&
data
,
mkldnn
::
convert_to_c
(
aprop_kind
),
convert_to_c
(
aalgorithm
),
&
src_desc
.
data
,
&
weights_desc
.
data
,
&
bias_desc
.
data
,
&
dst_desc
.
data
,
&
strides
[
0
],
&
padding_l
[
0
],
&
padding_r
[
0
],
mkldnn
::
convert_to_c
(
apadding_kind
)),
"could not create a deconvolution forward descriptor"
);
}
desc
(
prop_kind
aprop_kind
,
algorithm
aalgorithm
,
const
memory
::
desc
&
src_desc
,
const
memory
::
desc
&
weights_desc
,
const
memory
::
desc
&
dst_desc
,
const
memory
::
dims
strides
,
const
memory
::
dims
padding_l
,
const
memory
::
dims
padding_r
,
const
padding_kind
apadding_kind
)
{
memory
::
validate_dims
(
strides
);
memory
::
validate_dims
(
padding_l
);
memory
::
validate_dims
(
padding_r
);
error
::
wrap_c_api
(
mkldnn_deconvolution_forward_desc_init
(
&
data
,
mkldnn
::
convert_to_c
(
aprop_kind
),
convert_to_c
(
aalgorithm
),
&
src_desc
.
data
,
&
weights_desc
.
data
,
nullptr
,
&
dst_desc
.
data
,
&
strides
[
0
],
&
padding_l
[
0
],
&
padding_r
[
0
],
mkldnn
::
convert_to_c
(
apadding_kind
)),
"could not create a deconvolution forward descriptor"
);
}
};
struct
primitive_desc
:
public
handle
<
mkldnn_primitive_desc_t
>
{
primitive_desc
(
const
desc
&
adesc
,
const
engine
&
aengine
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_create
(
&
result
,
&
adesc
.
data
,
aengine
.
get
(),
nullptr
),
"could not create a deconvolution forward primitive descriptor"
);
reset
(
result
);
}
primitive_desc
(
const
desc
&
adesc
,
const
primitive_attr
&
aattr
,
const
engine
&
aengine
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_create_v2
(
&
result
,
&
adesc
.
data
,
aattr
.
get
(),
aengine
.
get
(),
nullptr
),
"could not create a deconvolution forward primitive descriptor"
);
reset
(
result
);
}
memory
::
primitive_desc
src_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
src_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a src primititve descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
weights_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
weights_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a weights primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
bias_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
weights_pd
),
1
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a bias primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
dst_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
dst_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a dst primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
engine
get_engine
()
{
return
engine
::
query
(
*
this
);
}
};
deconvolution_forward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
primitive
::
at
&
weights
,
const
primitive
::
at
&
bias
,
const
memory
&
dst
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
,
weights
.
data
,
bias
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
dst
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a deconvolution forward bias primitive"
);
reset
(
result
);
}
deconvolution_forward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
primitive
::
at
&
weights
,
const
memory
&
dst
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
,
weights
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
dst
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a deconvolution forward primitive"
);
reset
(
result
);
}
};
struct
deconvolution_backward_data
:
public
primitive
{
struct
desc
{
mkldnn_deconvolution_desc_t
data
;
desc
(
algorithm
aalgorithm
,
const
memory
::
desc
&
diff_src_desc
,
const
memory
::
desc
&
weights_desc
,
const
memory
::
desc
&
diff_dst_desc
,
const
memory
::
dims
strides
,
const
memory
::
dims
padding_l
,
const
memory
::
dims
padding_r
,
const
padding_kind
apadding_kind
)
{
memory
::
validate_dims
(
strides
);
memory
::
validate_dims
(
padding_l
);
memory
::
validate_dims
(
padding_r
);
error
::
wrap_c_api
(
mkldnn_deconvolution_backward_data_desc_init
(
&
data
,
convert_to_c
(
aalgorithm
),
&
diff_src_desc
.
data
,
&
weights_desc
.
data
,
&
diff_dst_desc
.
data
,
&
strides
[
0
],
&
padding_l
[
0
],
&
padding_r
[
0
],
mkldnn
::
convert_to_c
(
apadding_kind
)),
"could not create a deconvolution backward data descriptor"
);
}
};
struct
primitive_desc
:
public
handle
<
mkldnn_primitive_desc_t
>
{
primitive_desc
(
const
desc
&
adesc
,
const
engine
&
aengine
,
const
deconvolution_forward
::
primitive_desc
&
hint_fwd_primitive_desc
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_create
(
&
result
,
&
adesc
.
data
,
aengine
.
get
(),
hint_fwd_primitive_desc
.
get
()),
"could not create a deconvolution backward data primitive "
"descriptor"
);
reset
(
result
);
}
memory
::
primitive_desc
diff_src_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
diff_src_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a diff_src primititve descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
weights_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
weights_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a weights primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
diff_dst_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
diff_dst_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a diff_dst primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
engine
get_engine
()
{
return
engine
::
query
(
*
this
);
}
};
deconvolution_backward_data
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
diff_dst
,
const
primitive
::
at
&
weights
,
const
memory
&
diff_src
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
diff_dst
.
data
,
weights
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
diff_src
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a deconvolution backward data primitive"
);
reset
(
result
);
}
};
struct
deconvolution_backward_weights
:
public
primitive
{
struct
desc
{
mkldnn_deconvolution_desc_t
data
;
desc
(
algorithm
aalgorithm
,
const
memory
::
desc
&
src_desc
,
const
memory
::
desc
&
diff_weights_desc
,
const
memory
::
desc
&
diff_bias_desc
,
const
memory
::
desc
&
diff_dst_desc
,
const
memory
::
dims
strides
,
const
memory
::
dims
padding_l
,
const
memory
::
dims
padding_r
,
const
padding_kind
apadding_kind
)
{
memory
::
validate_dims
(
strides
);
memory
::
validate_dims
(
padding_l
);
memory
::
validate_dims
(
padding_r
);
error
::
wrap_c_api
(
mkldnn_deconvolution_backward_weights_desc_init
(
&
data
,
convert_to_c
(
aalgorithm
),
&
src_desc
.
data
,
&
diff_weights_desc
.
data
,
&
diff_bias_desc
.
data
,
&
diff_dst_desc
.
data
,
&
strides
[
0
],
&
padding_l
[
0
],
&
padding_r
[
0
],
mkldnn
::
convert_to_c
(
apadding_kind
)),
"could not create a deconvolution backward weights descriptor"
);
}
desc
(
algorithm
aalgorithm
,
const
memory
::
desc
&
src_desc
,
const
memory
::
desc
&
diff_weights_desc
,
const
memory
::
desc
&
diff_dst_desc
,
const
memory
::
dims
strides
,
const
memory
::
dims
padding_l
,
const
memory
::
dims
padding_r
,
const
padding_kind
apadding_kind
)
{
memory
::
validate_dims
(
strides
);
memory
::
validate_dims
(
padding_l
);
memory
::
validate_dims
(
padding_r
);
error
::
wrap_c_api
(
mkldnn_deconvolution_backward_weights_desc_init
(
&
data
,
convert_to_c
(
aalgorithm
),
&
src_desc
.
data
,
&
diff_weights_desc
.
data
,
nullptr
,
&
diff_dst_desc
.
data
,
&
strides
[
0
],
&
padding_l
[
0
],
&
padding_r
[
0
],
mkldnn
::
convert_to_c
(
apadding_kind
)),
"could not create a deconvolution backward weights descriptor"
);
}
};
struct
primitive_desc
:
public
handle
<
mkldnn_primitive_desc_t
>
{
primitive_desc
(
const
desc
&
adesc
,
const
engine
&
aengine
,
const
deconvolution_forward
::
primitive_desc
&
hint_fwd_primitive_desc
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_create
(
&
result
,
&
adesc
.
data
,
aengine
.
get
(),
hint_fwd_primitive_desc
.
get
()),
"could not create a deconvolution backward weights primitive "
"descriptor"
);
reset
(
result
);
}
memory
::
primitive_desc
src_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
src_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a src primititve descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
diff_weights_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
diff_weights_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a diff_weights primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
diff_bias_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
diff_weights_pd
),
1
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a diff_bias primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
diff_dst_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
diff_dst_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a diff_dst primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
engine
get_engine
()
{
return
engine
::
query
(
*
this
);
}
};
deconvolution_backward_weights
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
primitive
::
at
&
diff_dst
,
const
memory
&
diff_weights
,
const
memory
&
diff_bias
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
,
diff_dst
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
diff_weights
.
get
(),
diff_bias
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a deconvolution backward weights primitive"
);
reset
(
result
);
}
deconvolution_backward_weights
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
primitive
::
at
&
diff_dst
,
const
memory
&
diff_weights
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
,
diff_dst
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
diff_weights
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a deconvolution backward weights primitive"
);
reset
(
result
);
}
};
/// @}
/// @addtogroup cpp_api_lrn LRN
/// @{
struct
lrn_forward
:
public
primitive
{
struct
desc
{
mkldnn_lrn_desc_t
data
;
desc
(
prop_kind
aprop_kind
,
algorithm
aalgorithm
,
const
memory
::
desc
&
src_desc
,
int
local_size
,
float
alpha
,
float
beta
,
float
k
)
{
error
::
wrap_c_api
(
mkldnn_lrn_forward_desc_init
(
&
data
,
mkldnn
::
convert_to_c
(
aprop_kind
),
convert_to_c
(
aalgorithm
),
&
src_desc
.
data
,
local_size
,
alpha
,
beta
,
k
),
"could not create a lrn forward descriptor"
);
}
desc
(
prop_kind
aprop_kind
,
algorithm
aalgorithm
,
const
memory
::
desc
&
src_desc
,
int
local_size
,
float
alpha
,
float
beta
)
{
error
::
wrap_c_api
(
mkldnn_lrn_forward_desc_init
(
&
data
,
mkldnn
::
convert_to_c
(
aprop_kind
),
convert_to_c
(
aalgorithm
),
&
src_desc
.
data
,
local_size
,
alpha
,
beta
,
float
(
1.0
)),
"could not create a lrn forward descriptor"
);
}
};
struct
primitive_desc
:
public
handle
<
mkldnn_primitive_desc_t
>
{
primitive_desc
(
const
desc
&
adesc
,
const
engine
&
aengine
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_create
(
&
result
,
&
adesc
.
data
,
aengine
.
get
(),
nullptr
),
"could not create a lrn forward primitive descriptor"
);
reset
(
result
);
}
memory
::
primitive_desc
src_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
src_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a src primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
workspace_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
ldesc
;
const_mkldnn_primitive_desc_t
const_ldesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
workspace_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
ldesc
,
const_ldesc
),
"could not clone a workspace primitive descriptor"
);
adesc
.
reset
(
ldesc
);
return
adesc
;
}
memory
::
primitive_desc
dst_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
dst_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a dst primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
engine
get_engine
()
{
return
engine
::
query
(
*
this
);
}
};
lrn_forward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
memory
&
workspace
,
const
memory
&
dst
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
dst
.
get
(),
workspace
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a lrn forward primitive"
);
reset
(
result
);
}
lrn_forward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
memory
&
dst
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
dst
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a lrn forward primitive"
);
reset
(
result
);
}
};
struct
lrn_backward
:
public
primitive
{
struct
desc
{
mkldnn_lrn_desc_t
data
;
desc
(
algorithm
aalgorithm
,
const
memory
::
desc
&
data_desc
,
const
memory
::
desc
&
diff_data_desc
,
int
local_size
,
float
alpha
,
float
beta
,
float
k
)
{
error
::
wrap_c_api
(
mkldnn_lrn_backward_desc_init
(
&
data
,
convert_to_c
(
aalgorithm
),
&
diff_data_desc
.
data
,
&
data_desc
.
data
,
local_size
,
alpha
,
beta
,
k
),
"could not create a lrn backward descriptor"
);
}
desc
(
algorithm
aalgorithm
,
const
memory
::
desc
&
data_desc
,
const
memory
::
desc
&
diff_data_desc
,
int
local_size
,
float
alpha
,
float
beta
)
{
error
::
wrap_c_api
(
mkldnn_lrn_backward_desc_init
(
&
data
,
convert_to_c
(
aalgorithm
),
&
diff_data_desc
.
data
,
&
data_desc
.
data
,
local_size
,
alpha
,
beta
,
float
(
1.0
)),
"could not create a lrn backward descriptor"
);
}
};
struct
primitive_desc
:
public
handle
<
mkldnn_primitive_desc_t
>
{
primitive_desc
(
const
desc
&
adesc
,
const
engine
&
aengine
,
const
lrn_forward
::
primitive_desc
&
hint_fwd_primitive_desc
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_create
(
&
result
,
&
adesc
.
data
,
aengine
.
get
(),
hint_fwd_primitive_desc
.
get
()),
"could not create a backward lrn primitive descriptor"
);
reset
(
result
);
}
memory
::
primitive_desc
diff_src_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
diff_src_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a diff_src primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
workspace_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
ldesc
;
const_mkldnn_primitive_desc_t
const_ldesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
workspace_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
ldesc
,
const_ldesc
),
"could not clone a workspace primitive descriptor"
);
adesc
.
reset
(
ldesc
);
return
adesc
;
}
memory
::
primitive_desc
diff_dst_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
diff_dst_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a diff_dst primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
engine
get_engine
()
{
return
engine
::
query
(
*
this
);
}
};
lrn_backward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
primitive
::
at
&
diff_dst
,
const
primitive
::
at
&
workspace
,
const
memory
&
diff_src
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
,
diff_dst
.
data
,
workspace
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
diff_src
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a lrn backward primitive"
);
reset
(
result
);
}
lrn_backward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
primitive
::
at
&
diff_dst
,
const
memory
&
diff_src
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
,
diff_dst
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
diff_src
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a lrn backward primitive"
);
reset
(
result
);
}
};
/// @}
/// @addtogroup cpp_api_pooling Pooling
/// @{
struct
pooling_forward
:
public
primitive
{
struct
desc
{
mkldnn_pooling_desc_t
data
;
desc
(
prop_kind
aprop_kind
,
algorithm
aalgorithm
,
const
memory
::
desc
&
src_desc
,
const
memory
::
desc
&
dst_desc
,
const
memory
::
dims
strides
,
const
memory
::
dims
kernel
,
const
memory
::
dims
padding_l
,
const
memory
::
dims
padding_r
,
const
padding_kind
apadding_kind
)
{
memory
::
validate_dims
(
strides
);
memory
::
validate_dims
(
kernel
);
memory
::
validate_dims
(
padding_l
);
memory
::
validate_dims
(
padding_r
);
error
::
wrap_c_api
(
mkldnn_pooling_forward_desc_init
(
&
data
,
mkldnn
::
convert_to_c
(
aprop_kind
),
convert_to_c
(
aalgorithm
),
&
src_desc
.
data
,
&
dst_desc
.
data
,
&
strides
[
0
],
&
kernel
[
0
],
&
padding_l
[
0
],
&
padding_r
[
0
],
mkldnn
::
convert_to_c
(
apadding_kind
)),
"could not init a forward pooling descriptor"
);
}
};
struct
primitive_desc
:
public
handle
<
mkldnn_primitive_desc_t
>
{
primitive_desc
(
const
desc
&
adesc
,
const
engine
&
aengine
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_create
(
&
result
,
&
adesc
.
data
,
aengine
.
get
(),
nullptr
),
"could not create a forward pooling primitive descriptor"
);
reset
(
result
);
}
memory
::
primitive_desc
workspace_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
workspace_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a workspace primititve descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
dst_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
dst_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a dst primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
engine
get_engine
()
{
return
engine
::
query
(
*
this
);
}
};
pooling_forward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
memory
&
dst
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
dst
.
get
(),
nullptr
};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a pooling forward primitive"
);
reset
(
result
);
}
pooling_forward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
memory
&
dst
,
const
memory
&
workspace
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
dst
.
get
(),
workspace
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a pooling forward primitive"
);
reset
(
result
);
}
};
struct
pooling_backward
:
public
primitive
{
struct
desc
{
mkldnn_pooling_desc_t
data
;
desc
(
algorithm
aalgorithm
,
const
memory
::
desc
&
diff_src_desc
,
const
memory
::
desc
&
diff_dst_desc
,
const
memory
::
dims
&
strides
,
const
memory
::
dims
&
kernel
,
const
memory
::
dims
&
padding_l
,
const
memory
::
dims
&
padding_r
,
const
padding_kind
apadding_kind
)
{
memory
::
validate_dims
(
strides
);
memory
::
validate_dims
(
kernel
);
memory
::
validate_dims
(
padding_l
);
memory
::
validate_dims
(
padding_r
);
error
::
wrap_c_api
(
mkldnn_pooling_backward_desc_init
(
&
data
,
convert_to_c
(
aalgorithm
),
&
diff_src_desc
.
data
,
&
diff_dst_desc
.
data
,
&
strides
[
0
],
&
kernel
[
0
],
&
padding_l
[
0
],
&
padding_r
[
0
],
mkldnn
::
convert_to_c
(
apadding_kind
)),
"could not init a backward pooling descriptor"
);
}
};
struct
primitive_desc
:
public
handle
<
mkldnn_primitive_desc_t
>
{
primitive_desc
(
const
desc
&
adesc
,
const
engine
&
aengine
,
const
pooling_forward
::
primitive_desc
&
hint_fwd_primitive_desc
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_create
(
&
result
,
&
adesc
.
data
,
aengine
.
get
(),
hint_fwd_primitive_desc
.
get
()),
"could not create a backward pooling primitive descriptor"
);
reset
(
result
);
}
memory
::
primitive_desc
diff_src_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
diff_src_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a diff src primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
engine
get_engine
()
{
return
engine
::
query
(
*
this
);
}
};
pooling_backward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
diff_dst
,
const
memory
&
diff_src
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
diff_dst
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
diff_src
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a pooling backward primitive"
);
reset
(
result
);
}
pooling_backward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
diff_dst
,
const
primitive
::
at
&
workspace
,
const
memory
&
diff_src
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
diff_dst
.
data
,
workspace
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
diff_src
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a pooling backward primitive"
);
reset
(
result
);
}
};
/// @}
/// @addtogroup cpp_api_eltwise Eltwise
/// @{
struct
eltwise_forward
:
public
primitive
{
struct
desc
{
mkldnn_eltwise_desc_t
data
;
template
<
typename
T
>
desc
(
prop_kind
aprop_kind
,
algorithm
alg_kind
,
const
memory
::
desc
&
src_desc
,
T
alpha
=
0
,
T
beta
=
0
)
{
error
::
wrap_c_api
(
mkldnn_eltwise_forward_desc_init
(
&
data
,
mkldnn
::
convert_to_c
(
aprop_kind
),
mkldnn
::
convert_to_c
(
alg_kind
),
&
src_desc
.
data
,
static_cast
<
float
>
(
alpha
),
static_cast
<
float
>
(
beta
)),
"could not create a eltwise forward descriptor"
);
}
/** @deprecated: api backward compatibility for relu */
template
<
typename
T
>
MKLDNN_DEPRECATED
desc
(
prop_kind
aprop_kind
,
const
memory
::
desc
&
src_desc
,
T
negative_slope
)
:
desc
(
aprop_kind
,
eltwise_relu
,
src_desc
,
negative_slope
)
{}
};
struct
primitive_desc
:
public
handle
<
mkldnn_primitive_desc_t
>
{
primitive_desc
(
const
desc
&
adesc
,
const
engine
&
aengine
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_create
(
&
result
,
&
adesc
.
data
,
aengine
.
get
(),
nullptr
),
"could not create a eltwise forward primitive descriptor"
);
reset
(
result
);
}
memory
::
primitive_desc
dst_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
dst_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a dst primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
engine
get_engine
()
{
return
engine
::
query
(
*
this
);
}
};
eltwise_forward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
memory
&
dst
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
dst
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a eltwise forward primitive"
);
reset
(
result
);
}
};
typedef
eltwise_forward
relu_forward
;
struct
eltwise_backward
:
public
primitive
{
struct
desc
{
mkldnn_eltwise_desc_t
data
;
template
<
typename
T
>
desc
(
algorithm
alg_kind
,
const
memory
::
desc
&
diff_data_desc
,
const
memory
::
desc
&
data_desc
,
T
alpha
=
0
,
T
beta
=
0
)
{
error
::
wrap_c_api
(
mkldnn_eltwise_backward_desc_init
(
&
data
,
mkldnn
::
convert_to_c
(
alg_kind
),
&
diff_data_desc
.
data
,
&
data_desc
.
data
,
static_cast
<
float
>
(
alpha
),
static_cast
<
float
>
(
beta
)),
"could not create a eltwise backward descriptor"
);
}
/** @deprecated: api backward compatibility for relu */
template
<
typename
T
>
MKLDNN_DEPRECATED
desc
(
const
memory
::
desc
&
diff_data_desc
,
const
memory
::
desc
&
data_desc
,
T
negative_slope
)
:
desc
(
eltwise_relu
,
diff_data_desc
,
data_desc
,
negative_slope
)
{}
};
struct
primitive_desc
:
public
handle
<
mkldnn_primitive_desc_t
>
{
primitive_desc
(
const
desc
&
adesc
,
const
engine
&
aengine
,
const
eltwise_forward
::
primitive_desc
&
hint_fwd_primitive_desc
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_create
(
&
result
,
&
adesc
.
data
,
aengine
.
get
(),
hint_fwd_primitive_desc
.
get
()),
"could not create a eltwise backward primitive descriptor"
);
reset
(
result
);
}
memory
::
primitive_desc
diff_src_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
diff_src_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a diff src primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
engine
get_engine
()
{
return
engine
::
query
(
*
this
);
}
};
eltwise_backward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
primitive
::
at
&
diff_dst
,
const
memory
&
diff_src
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
,
diff_dst
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
diff_src
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a eltwise backward primitive"
);
reset
(
result
);
}
};
typedef
eltwise_backward
relu_backward
;
/// @}
/// @addtogroup cpp_api_softmax Softmax
/// @{
struct
softmax_forward
:
public
primitive
{
struct
desc
{
mkldnn_softmax_desc_t
data
;
desc
(
prop_kind
aprop_kind
,
const
memory
::
desc
&
data_desc
,
int
softmax_axis
)
{
error
::
wrap_c_api
(
mkldnn_softmax_forward_desc_init
(
&
data
,
mkldnn
::
convert_to_c
(
aprop_kind
),
&
data_desc
.
data
,
softmax_axis
),
"could not create a softmax forward descriptor"
);
}
};
struct
primitive_desc
:
public
handle
<
mkldnn_primitive_desc_t
>
{
primitive_desc
(
const
desc
&
adesc
,
const
engine
&
aengine
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_create
(
&
result
,
&
adesc
.
data
,
aengine
.
get
(),
nullptr
),
"could not create a softmax forward primitive descriptor"
);
reset
(
result
);
}
engine
get_engine
()
{
return
engine
::
query
(
*
this
);
}
};
softmax_forward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
memory
&
dst
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
dst
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a softmax forward primitive"
);
reset
(
result
);
}
};
/// @}
/// @addtogroup cpp_api_batch_norm Batch normalization
/// @{
struct
batch_normalization_forward
:
public
primitive
{
struct
desc
{
mkldnn_batch_normalization_desc_t
data
;
template
<
typename
T
>
desc
(
prop_kind
aprop_kind
,
const
memory
::
desc
&
src_desc
,
T
epsilon
,
unsigned
flags
)
{
error
::
wrap_c_api
(
mkldnn_batch_normalization_forward_desc_init
(
&
data
,
mkldnn
::
convert_to_c
(
aprop_kind
),
&
src_desc
.
data
,
static_cast
<
float
>
(
epsilon
),
flags
),
"could not create a batch normalization forward descriptor"
);
}
};
struct
primitive_desc
:
public
handle
<
mkldnn_primitive_desc_t
>
{
primitive_desc
(
const
desc
&
adesc
,
const
engine
&
aengine
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_create
(
&
result
,
&
adesc
.
data
,
aengine
.
get
(),
nullptr
),
"could not create a batch normalization forward "
"primitive descriptor"
);
reset
(
result
);
}
primitive_desc
(
const
desc
&
adesc
,
const
primitive_attr
&
aattr
,
const
engine
&
aengine
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_create_v2
(
&
result
,
&
adesc
.
data
,
aattr
.
get
(),
aengine
.
get
(),
nullptr
),
"could not create a batch normalization forward "
"primitive descriptor"
);
reset
(
result
);
}
memory
::
primitive_desc
weights_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
bndesc
;
const_mkldnn_primitive_desc_t
const_bndesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
weights_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
bndesc
,
const_bndesc
),
"could not clone a weights primitive descriptor"
);
adesc
.
reset
(
bndesc
);
return
adesc
;
}
memory
::
primitive_desc
mean_primitive_desc
()
const
{
memory
::
primitive_desc
aprimitive_desc
;
mkldnn_primitive_desc_t
bndesc
;
mkldnn_batch_normalization_desc_t
*
p
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_query
(
get
(),
mkldnn
::
convert_to_c
(
batch_normalization_d
),
0
,
&
p
),
"could not get a batch-normalization descriptor"
);
const_mkldnn_primitive_desc_t
const_bndesc
=
(
p
->
flags
&
use_global_stats
)
?
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
src_pd
),
1
)
:
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
dst_pd
),
1
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
bndesc
,
const_bndesc
),
"could not clone a mean primitive descriptor"
);
aprimitive_desc
.
reset
(
bndesc
);
return
aprimitive_desc
;
}
memory
::
primitive_desc
variance_primitive_desc
()
const
{
memory
::
primitive_desc
aprimitive_desc
;
mkldnn_primitive_desc_t
bndesc
;
mkldnn_batch_normalization_desc_t
*
p
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_query
(
get
(),
mkldnn
::
convert_to_c
(
batch_normalization_d
),
0
,
&
p
),
"could not get a batch-normalization descriptor"
);
const_mkldnn_primitive_desc_t
const_bndesc
=
(
p
->
flags
&
use_global_stats
)
?
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
src_pd
),
2
)
:
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
dst_pd
),
2
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
bndesc
,
const_bndesc
),
"could not clone a variance primitive descriptor"
);
aprimitive_desc
.
reset
(
bndesc
);
return
aprimitive_desc
;
}
memory
::
primitive_desc
workspace_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
workspace_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a workspace primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
dst_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
dst_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a dst primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
engine
get_engine
()
{
return
engine
::
query
(
*
this
);
}
};
batch_normalization_forward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
primitive
::
at
&
mean
,
const
primitive
::
at
&
variance
,
const
primitive
::
at
&
weights
,
const
memory
&
dst
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
,
mean
.
data
,
variance
.
data
,
weights
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
dst
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a batch normalization forward primitive"
);
reset
(
result
);
}
batch_normalization_forward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
primitive
::
at
&
mean
,
const
primitive
::
at
&
variance
,
const
memory
&
dst
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
,
mean
.
data
,
variance
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
dst
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a batch normalization forward primitive"
);
reset
(
result
);
}
/// @warning batch_normalization_forward has 2 constructors with very
/// similar signatures:
/// - (pd, src, weights, dst, mean, variance) // 2 in, 3 out
/// - (pd, src, dst, mean, variance, workspace) // 1 in, 4 out
/// The only way to distinguish between those is to explicitly
/// cast all input parameters to their type, i.e. to
/// const primitive:at &.
batch_normalization_forward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
primitive
::
at
&
weights
,
const
memory
&
dst
,
const
memory
&
mean
,
const
memory
&
variance
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
,
weights
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
dst
.
get
(),
mean
.
get
(),
variance
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a batch normalization forward primitive"
);
reset
(
result
);
}
batch_normalization_forward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
primitive
::
at
&
weights
,
const
memory
&
dst
,
const
memory
&
mean
,
const
memory
&
variance
,
const
memory
&
workspace
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
,
weights
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
dst
.
get
(),
mean
.
get
(),
variance
.
get
(),
workspace
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a batch normalization forward primitive"
);
reset
(
result
);
}
batch_normalization_forward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
memory
&
dst
,
const
memory
&
mean
,
const
memory
&
variance
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
dst
.
get
(),
mean
.
get
(),
variance
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a batch normalization forward primitive"
);
reset
(
result
);
}
/// @warning batch_normalization_forward has 2 constructors with very
/// similar signatures:
/// - (pd, src, weights, dst, mean, variance) // 2 in, 3 out
/// - (pd, src, dst, mean, variance, workspace) // 1 in, 4 out
/// The only way to distinguish between those is to explicitly
/// cast all input parameters to their type, i.e. to
/// const primitive:at &.
/// @note to make users' experience a little bit better this constructor
/// checks if whether parameters match corresponding primitive
/// descriptor, and if they are not -- call the other (proper)
/// constructor. Yeah, this is still very ugly...
batch_normalization_forward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
memory
&
dst
,
const
memory
&
mean
,
const
memory
&
variance
,
const
memory
&
workspace
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[
2
]
=
{
src
.
data
};
const_mkldnn_primitive_t
outputs
[
4
]
=
{
dst
.
get
(),
mean
.
get
(),
variance
.
get
(),
workspace
.
get
()};
if
(
1
)
{
// check whether this is the `wrong` constructor
const
int
n_inputs_expected
=
mkldnn_primitive_desc_query_s32
(
aprimitive_desc
.
get
(),
mkldnn_query_num_of_inputs_s32
,
0
);
const
int
n_outputs_expected
=
mkldnn_primitive_desc_query_s32
(
aprimitive_desc
.
get
(),
mkldnn_query_num_of_outputs_s32
,
0
);
if
(
n_inputs_expected
==
2
&&
n_outputs_expected
==
3
)
{
// shift parameters, get rid of workspace, and add weights...
auto
_weights
=
dst
;
inputs
[
1
]
=
{
_weights
.
get
(),
0
};
auto
_dst
=
mean
,
_mean
=
variance
,
_variance
=
workspace
;
outputs
[
0
]
=
_dst
.
get
();
outputs
[
1
]
=
_mean
.
get
();
outputs
[
2
]
=
_variance
.
get
();
outputs
[
3
]
=
nullptr
;
}
}
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a batch normalization forward primitive"
);
reset
(
result
);
}
batch_normalization_forward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
primitive
::
at
&
weights
,
const
memory
&
dst
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
,
weights
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
dst
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a batch normalization forward primitive"
);
reset
(
result
);
}
batch_normalization_forward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
memory
&
dst
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
dst
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a batch normalization forward primitive"
);
reset
(
result
);
}
};
struct
batch_normalization_backward
:
public
primitive
{
struct
desc
{
mkldnn_batch_normalization_desc_t
data
;
template
<
typename
T
>
desc
(
prop_kind
aprop_kind
,
const
memory
::
desc
&
diff_data_desc
,
const
memory
::
desc
&
data_desc
,
T
epsilon
,
unsigned
flags
)
{
error
::
wrap_c_api
(
mkldnn_batch_normalization_backward_desc_init
(
&
data
,
mkldnn
::
convert_to_c
(
aprop_kind
),
&
diff_data_desc
.
data
,
&
data_desc
.
data
,
static_cast
<
float
>
(
epsilon
),
flags
),
"could not create a batch normalization backward descriptor"
);
}
};
struct
primitive_desc
:
public
handle
<
mkldnn_primitive_desc_t
>
{
primitive_desc
(
const
desc
&
adesc
,
const
engine
&
aengine
,
const
batch_normalization_forward
::
primitive_desc
&
hint_fwd_primitive_desc
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_create
(
&
result
,
&
adesc
.
data
,
aengine
.
get
(),
hint_fwd_primitive_desc
.
get
()),
"could not create a batch normalization backward primitive "
"descriptor"
);
reset
(
result
);
}
memory
::
primitive_desc
weights_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
bndesc
;
const_mkldnn_primitive_desc_t
const_bndesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
weights_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
bndesc
,
const_bndesc
),
"could not clone a weights primitive descriptor"
);
adesc
.
reset
(
bndesc
);
return
adesc
;
}
memory
::
primitive_desc
diff_weights_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
bndesc
;
const_mkldnn_primitive_desc_t
const_bndesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
diff_weights_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
bndesc
,
const_bndesc
),
"could not clone a diff_weights primitive descriptor"
);
adesc
.
reset
(
bndesc
);
return
adesc
;
}
memory
::
primitive_desc
mean_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
bndesc
;
const_mkldnn_primitive_desc_t
const_bndesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
src_pd
),
1
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
bndesc
,
const_bndesc
),
"could not clone a mean primitive descriptor"
);
adesc
.
reset
(
bndesc
);
return
adesc
;
}
memory
::
primitive_desc
variance_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
bndesc
;
const_mkldnn_primitive_desc_t
const_bndesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
src_pd
),
2
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
bndesc
,
const_bndesc
),
"could not clone a variance primitive descriptor"
);
adesc
.
reset
(
bndesc
);
return
adesc
;
}
memory
::
primitive_desc
workspace_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
workspace_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a workspace primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
dst_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
dst_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a dst primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
engine
get_engine
()
{
return
engine
::
query
(
*
this
);
}
};
// Prop_kind == backward
batch_normalization_backward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
primitive
::
at
&
mean
,
const
primitive
::
at
&
variance
,
const
primitive
::
at
&
diff_dst
,
const
primitive
::
at
&
weights
,
const
memory
&
diff_src
,
const
memory
&
diff_weights
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
,
mean
.
data
,
variance
.
data
,
diff_dst
.
data
,
weights
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
diff_src
.
get
(),
diff_weights
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a batch normalization backward primitive"
);
reset
(
result
);
}
// Prop_kind == backward (+ws)
batch_normalization_backward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
primitive
::
at
&
mean
,
const
primitive
::
at
&
variance
,
const
primitive
::
at
&
diff_dst
,
const
primitive
::
at
&
weights
,
const
primitive
::
at
&
workspace
,
const
memory
&
diff_src
,
const
memory
&
diff_weights
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
,
mean
.
data
,
variance
.
data
,
diff_dst
.
data
,
weights
.
data
,
workspace
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
diff_src
.
get
(),
diff_weights
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a batch normalization backward primitive"
);
reset
(
result
);
}
// Prop_kind == backward_data (+ws or +weights)
/// @warning This constructor works for backward_data propagation
/// - w/ weights but w/o workspace, or
/// - w/ workspace but w/o weights
batch_normalization_backward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
primitive
::
at
&
mean
,
const
primitive
::
at
&
variance
,
const
primitive
::
at
&
diff_dst
,
const
primitive
::
at
&
weights_or_workspace
,
const
memory
&
diff_src
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
,
mean
.
data
,
variance
.
data
,
diff_dst
.
data
,
weights_or_workspace
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
diff_src
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a batch normalization backward primitive"
);
reset
(
result
);
}
// Prop_kind == backward_data
batch_normalization_backward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
primitive
::
at
&
mean
,
const
primitive
::
at
&
variance
,
const
primitive
::
at
&
diff_dst
,
const
memory
&
diff_src
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
,
mean
.
data
,
variance
.
data
,
diff_dst
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
diff_src
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a batch normalization backward primitive"
);
reset
(
result
);
}
};
/// @}
/// @addtogroup cpp_api_inner_product Inner Product
/// @{
struct
inner_product_forward
:
public
primitive
{
struct
desc
{
mkldnn_inner_product_desc_t
data
;
desc
(
prop_kind
aprop_kind
,
const
memory
::
desc
&
src_desc
,
const
memory
::
desc
&
weights_desc
,
const
memory
::
desc
&
bias_desc
,
const
memory
::
desc
&
dst_desc
)
{
error
::
wrap_c_api
(
mkldnn_inner_product_forward_desc_init
(
&
data
,
mkldnn
::
convert_to_c
(
aprop_kind
),
&
src_desc
.
data
,
&
weights_desc
.
data
,
&
bias_desc
.
data
,
&
dst_desc
.
data
),
"could not create a inner product forward descriptor"
);
}
desc
(
prop_kind
aprop_kind
,
const
memory
::
desc
&
src_desc
,
const
memory
::
desc
&
weights_desc
,
const
memory
::
desc
&
dst_desc
)
{
error
::
wrap_c_api
(
mkldnn_inner_product_forward_desc_init
(
&
data
,
mkldnn
::
convert_to_c
(
aprop_kind
),
&
src_desc
.
data
,
&
weights_desc
.
data
,
nullptr
,
&
dst_desc
.
data
),
"could not create a inner product forward descriptor"
);
}
};
struct
primitive_desc
:
public
handle
<
mkldnn_primitive_desc_t
>
{
primitive_desc
(
const
desc
&
adesc
,
const
engine
&
aengine
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_create
(
&
result
,
&
adesc
.
data
,
aengine
.
get
(),
nullptr
),
"could not create a inner product forward primitive descriptor"
);
reset
(
result
);
}
primitive_desc
(
const
desc
&
adesc
,
const
primitive_attr
&
aattr
,
const
engine
&
aengine
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_create_v2
(
&
result
,
&
adesc
.
data
,
aattr
.
get
(),
aengine
.
get
(),
nullptr
),
"could not create a inner product "
"forward primitive descriptor"
);
reset
(
result
);
}
memory
::
primitive_desc
src_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
src_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a src primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
weights_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
weights_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a weights primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
bias_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
weights_pd
),
1
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a bias primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
dst_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
dst_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a dst primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
engine
get_engine
()
{
return
engine
::
query
(
*
this
);
}
};
inner_product_forward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
primitive
::
at
weights
,
const
primitive
::
at
&
bias
,
const
memory
&
dst
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
,
weights
.
data
,
bias
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
dst
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a inner product forward primitive"
);
reset
(
result
);
}
inner_product_forward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
primitive
::
at
weights
,
const
memory
&
dst
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
,
weights
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
dst
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a inner product forward primitive"
);
reset
(
result
);
}
};
struct
inner_product_backward_data
:
public
primitive
{
struct
desc
{
mkldnn_inner_product_desc_t
data
;
desc
(
const
memory
::
desc
&
diff_src_desc
,
const
memory
::
desc
&
weights_desc
,
const
memory
::
desc
&
diff_dst_desc
)
{
error
::
wrap_c_api
(
mkldnn_inner_product_backward_data_desc_init
(
&
data
,
&
diff_src_desc
.
data
,
&
weights_desc
.
data
,
&
diff_dst_desc
.
data
),
"could not create a inner product backward data descriptor"
);
}
};
struct
primitive_desc
:
public
handle
<
mkldnn_primitive_desc_t
>
{
primitive_desc
(
const
desc
&
adesc
,
const
engine
&
aengine
,
const
inner_product_forward
::
primitive_desc
&
hint_fwd_primitive_desc
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_create
(
&
result
,
&
adesc
.
data
,
aengine
.
get
(),
hint_fwd_primitive_desc
.
get
()),
"could not create a inner product backward data primitive "
"descriptor"
);
reset
(
result
);
}
memory
::
primitive_desc
diff_dst_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
diff_dst_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a diff dst primititve descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
weights_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
weights_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a weights primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
diff_src_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
diff_src_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a diff src primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
engine
get_engine
()
{
return
engine
::
query
(
*
this
);
}
};
inner_product_backward_data
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
diff_dst
,
const
primitive
::
at
weights
,
const
memory
&
diff_src
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
diff_dst
.
data
,
weights
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
diff_src
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a inner product backward data primitive"
);
reset
(
result
);
}
};
struct
inner_product_backward_weights
:
public
primitive
{
struct
desc
{
mkldnn_inner_product_desc_t
data
;
desc
(
const
memory
::
desc
&
src_desc
,
const
memory
::
desc
&
diff_weights_desc
,
const
memory
::
desc
&
diff_bias_desc
,
const
memory
::
desc
&
diff_dst_desc
)
{
error
::
wrap_c_api
(
mkldnn_inner_product_backward_weights_desc_init
(
&
data
,
&
src_desc
.
data
,
&
diff_weights_desc
.
data
,
&
diff_bias_desc
.
data
,
&
diff_dst_desc
.
data
),
"could not create a inner product backward weights descriptor"
);
}
desc
(
const
memory
::
desc
&
src_desc
,
const
memory
::
desc
&
diff_weights_desc
,
const
memory
::
desc
&
diff_dst_desc
)
{
error
::
wrap_c_api
(
mkldnn_inner_product_backward_weights_desc_init
(
&
data
,
&
src_desc
.
data
,
&
diff_weights_desc
.
data
,
nullptr
,
&
diff_dst_desc
.
data
),
"could not create a inner product backward weights descriptor"
);
}
};
struct
primitive_desc
:
public
handle
<
mkldnn_primitive_desc_t
>
{
primitive_desc
(
const
desc
&
adesc
,
const
engine
&
aengine
,
const
inner_product_forward
::
primitive_desc
&
hint_fwd_primitive_desc
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_create
(
&
result
,
&
adesc
.
data
,
aengine
.
get
(),
hint_fwd_primitive_desc
.
get
()),
"could not create a inner product backward weights primitive "
"descriptor"
);
reset
(
result
);
}
memory
::
primitive_desc
diff_dst_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
diff_dst_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a diff dst primititve descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
diff_weights_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
diff_weights_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a diff weights primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
diff_bias_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
diff_weights_pd
),
1
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a diff bias primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
src_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
src_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a src primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
engine
get_engine
()
{
return
engine
::
query
(
*
this
);
}
};
inner_product_backward_weights
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
primitive
::
at
diff_dst
,
const
memory
&
diff_weights
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
,
diff_dst
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
diff_weights
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a inner product backward weights primitive"
);
reset
(
result
);
}
inner_product_backward_weights
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src
,
const
primitive
::
at
diff_dst
,
const
memory
&
diff_weights
,
const
memory
&
diff_bias
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[]
=
{
src
.
data
,
diff_dst
.
data
};
const_mkldnn_primitive_t
outputs
[]
=
{
diff_weights
.
get
(),
diff_bias
.
get
()};
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create a inner product backward weights primitive"
);
reset
(
result
);
}
};
/// @}
/// @addtogroup cpp_api_rnn RNN
/// @{
struct
rnn_cell
{
struct
desc
{
mkldnn_rnn_cell_desc_t
c_rnn_cell_
;
desc
(
algorithm
kind
,
algorithm
activation_f
)
{
error
::
wrap_c_api
(
mkldnn_rnn_cell_desc_init
(
&
c_rnn_cell_
,
mkldnn
::
convert_to_c
(
kind
),
mkldnn
::
convert_to_c
(
activation_f
),
0U
,
0
,
0
),
"could not init an rnn cell descriptor"
);
}
desc
(
algorithm
kind
)
:
desc
(
kind
,
algorithm
::
algorithm_undef
)
{}
operator
const
mkldnn_rnn_cell_desc_t
*
()
const
{
return
&
c_rnn_cell_
;
}
algorithm
get_cell_kind
()
const
{
return
algorithm
(
c_rnn_cell_
.
cell_kind
);
}
algorithm
get_activation
()
const
{
return
algorithm
(
c_rnn_cell_
.
activation_kind
);
}
float
get_alpha
()
const
{
return
c_rnn_cell_
.
alpha
;
}
void
set_alpha
(
float
alpha
)
{
c_rnn_cell_
.
flags
|=
mkldnn_rnn_cell_with_relu
;
c_rnn_cell_
.
alpha
=
alpha
;
}
float
get_clipping
()
const
{
return
c_rnn_cell_
.
clipping
;
}
void
set_clipping
(
float
clipping
)
{
c_rnn_cell_
.
flags
|=
mkldnn_rnn_cell_with_clipping
;
c_rnn_cell_
.
clipping
=
clipping
;
}
int
get_gates_count
()
const
{
return
mkldnn_rnn_cell_get_gates_count
(
&
c_rnn_cell_
);
}
int
get_state_count
()
const
{
return
mkldnn_rnn_cell_get_states_count
(
&
c_rnn_cell_
);
}
};
};
struct
rnn_forward
:
public
primitive
{
struct
desc
{
mkldnn_rnn_desc_t
data
;
desc
(
prop_kind
aprop_kind
,
rnn_cell
::
desc
cell
,
const
rnn_direction
direction
,
const
memory
::
desc
&
src_layer_desc
,
const
memory
::
desc
&
src_iter_desc
,
const
memory
::
desc
&
weights_layer_desc
,
const
memory
::
desc
&
weights_iter_desc
,
const
memory
::
desc
&
bias_desc
,
const
memory
::
desc
&
dst_layer_desc
,
const
memory
::
desc
&
dst_iter_desc
)
{
error
::
wrap_c_api
(
mkldnn_rnn_forward_desc_init
(
&
data
,
mkldnn
::
convert_to_c
(
aprop_kind
),
cell
,
mkldnn
::
convert_to_c
(
direction
),
&
src_layer_desc
.
data
,
&
src_iter_desc
.
data
,
&
weights_layer_desc
.
data
,
&
weights_iter_desc
.
data
,
&
bias_desc
.
data
,
&
dst_layer_desc
.
data
,
&
dst_iter_desc
.
data
),
"could not create an RNN forward descriptor"
);
}
};
struct
primitive_desc
:
public
handle
<
mkldnn_primitive_desc_t
>
{
primitive_desc
(
const
desc
&
adesc
,
const
engine
&
aengine
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_create
(
&
result
,
&
adesc
.
data
,
aengine
.
get
(),
nullptr
),
"could not create an RNN forward primitive descriptor"
);
reset
(
result
);
}
memory
::
primitive_desc
src_layer_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
src_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone an src layer primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
src_iter_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
src_pd
),
1
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a src iter primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
weights_layer_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
weights_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a weights primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
weights_src_iter_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
weights_pd
),
1
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a weights primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
bias_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
weights_pd
),
2
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a bias primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
workspace_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
ldesc
;
const_mkldnn_primitive_desc_t
const_ldesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
workspace_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
ldesc
,
const_ldesc
),
"could not clone a workspace primitive descriptor"
);
adesc
.
reset
(
ldesc
);
return
adesc
;
}
memory
::
primitive_desc
dst_layer_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
dst_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a dst last layer primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
dst_iter_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
dst_pd
),
1
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a dst last iteration primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
engine
get_engine
()
{
return
engine
::
query
(
*
this
);
}
};
rnn_forward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src_layer
,
const
primitive
::
at
&
src_iter
,
const
primitive
::
at
&
weights_layer
,
const
primitive
::
at
&
weights_iter
,
const
primitive
::
at
&
bias
,
const
memory
&
dst_layer
,
const
memory
&
dst_iter
,
const
memory
&
workspace
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[
5
];
const_mkldnn_primitive_t
outputs
[
3
];
int
idx
=
0
;
inputs
[
idx
++
]
=
src_layer
.
data
;
if
(
!
is_null_memory
(
src_iter
.
data
.
primitive
))
inputs
[
idx
++
]
=
src_iter
.
data
;
inputs
[
idx
++
]
=
weights_layer
.
data
;
inputs
[
idx
++
]
=
weights_iter
.
data
;
if
(
!
is_null_memory
(
bias
.
data
.
primitive
))
inputs
[
idx
++
]
=
bias
.
data
;
idx
=
0
;
outputs
[
idx
++
]
=
dst_layer
.
get
();
if
(
!
is_null_memory
(
dst_iter
.
get
()))
outputs
[
idx
++
]
=
dst_iter
.
get
();
if
(
!
is_null_memory
(
workspace
.
get
()))
outputs
[
idx
++
]
=
workspace
.
get
();
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create an RNN forward primitive"
);
reset
(
result
);
}
};
struct
rnn_backward
:
public
primitive
{
struct
desc
{
mkldnn_rnn_desc_t
data
;
desc
(
prop_kind
aprop_kind
,
rnn_cell
::
desc
cell
,
const
rnn_direction
direction
,
const
memory
::
desc
&
src_layer_desc
,
const
memory
::
desc
&
src_iter_desc
,
const
memory
::
desc
&
weights_layer_desc
,
const
memory
::
desc
&
weights_iter_desc
,
const
memory
::
desc
&
bias_desc
,
const
memory
::
desc
&
dst_layer_desc
,
const
memory
::
desc
&
dst_iter_desc
,
const
memory
::
desc
&
diff_src_layer_desc
,
const
memory
::
desc
&
diff_src_iter_desc
,
const
memory
::
desc
&
diff_weights_layer_desc
,
const
memory
::
desc
&
diff_weights_iter_desc
,
const
memory
::
desc
&
diff_bias_desc
,
const
memory
::
desc
&
diff_dst_layer_desc
,
const
memory
::
desc
&
diff_dst_iter_desc
)
{
error
::
wrap_c_api
(
mkldnn_rnn_backward_desc_init
(
&
data
,
mkldnn
::
convert_to_c
(
aprop_kind
),
cell
,
mkldnn
::
convert_to_c
(
direction
),
&
src_layer_desc
.
data
,
&
src_iter_desc
.
data
,
&
weights_layer_desc
.
data
,
&
weights_iter_desc
.
data
,
&
bias_desc
.
data
,
&
dst_layer_desc
.
data
,
&
dst_iter_desc
.
data
,
&
diff_src_layer_desc
.
data
,
&
diff_src_iter_desc
.
data
,
&
diff_weights_layer_desc
.
data
,
&
diff_weights_iter_desc
.
data
,
&
diff_bias_desc
.
data
,
&
diff_dst_layer_desc
.
data
,
&
diff_dst_iter_desc
.
data
),
"could not create an RNN backward descriptor"
);
}
};
struct
primitive_desc
:
public
handle
<
mkldnn_primitive_desc_t
>
{
primitive_desc
(
const
desc
&
adesc
,
const
engine
&
aengine
)
{
mkldnn_primitive_desc_t
result
;
error
::
wrap_c_api
(
mkldnn_primitive_desc_create
(
&
result
,
&
adesc
.
data
,
aengine
.
get
(),
nullptr
),
"could not create an RNN backward primitive descriptor"
);
reset
(
result
);
}
memory
::
primitive_desc
src_layer_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
src_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone an src layer primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
src_iter_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
src_pd
),
1
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a src iter primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
weights_layer_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
weights_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a weights primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
weights_iter_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
weights_pd
),
1
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a weights primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
bias_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
weights_pd
),
2
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a bias primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
dst_layer_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
dst_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a dst last layer primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
dst_iter_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
dst_pd
),
1
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a dst last iteration primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
diff_src_layer_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
diff_src_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone an src_layer primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
diff_src_iter_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
diff_src_pd
),
1
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a src iter primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
diff_weights_layer_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
diff_weights_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a weights primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
diff_weights_iter_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
diff_weights_pd
),
1
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a weights primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
diff_bias_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
diff_weights_pd
),
2
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a bias primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
diff_dst_layer_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
diff_dst_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a dst last layer primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
diff_dst_iter_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
cdesc
;
const_mkldnn_primitive_desc_t
const_cdesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
diff_dst_pd
),
1
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
cdesc
,
const_cdesc
),
"could not clone a dst last iteration primitive descriptor"
);
adesc
.
reset
(
cdesc
);
return
adesc
;
}
memory
::
primitive_desc
workspace_primitive_desc
()
const
{
memory
::
primitive_desc
adesc
;
mkldnn_primitive_desc_t
ldesc
;
const_mkldnn_primitive_desc_t
const_ldesc
=
mkldnn_primitive_desc_query_pd
(
get
(),
mkldnn
::
convert_to_c
(
workspace_pd
),
0
);
error
::
wrap_c_api
(
mkldnn_primitive_desc_clone
(
&
ldesc
,
const_ldesc
),
"could not clone a workspace primitive descriptor"
);
adesc
.
reset
(
ldesc
);
return
adesc
;
}
engine
get_engine
()
{
return
engine
::
query
(
*
this
);
}
};
// With last iteration (with and without input src_iter)
rnn_backward
(
const
primitive_desc
&
aprimitive_desc
,
const
primitive
::
at
&
src_layer
,
const
primitive
::
at
&
src_iter
,
const
primitive
::
at
&
weights_layer
,
const
primitive
::
at
&
weights_iter
,
const
primitive
::
at
&
bias
,
const
primitive
::
at
&
dst_layer
,
const
primitive
::
at
&
dst_iter
,
const
memory
&
diff_src_layer
,
const
memory
&
diff_src_iter
,
const
memory
&
diff_weights_layer
,
const
memory
&
diff_weights_iter
,
const
memory
&
diff_bias
,
const
primitive
::
at
&
diff_dst_layer
,
const
primitive
::
at
&
diff_dst_iter
,
const
primitive
::
at
&
workspace
)
{
mkldnn_primitive_t
result
;
mkldnn_primitive_at_t
inputs
[
10
];
const_mkldnn_primitive_t
outputs
[
5
];
int
idx
=
0
;
inputs
[
idx
]
=
src_layer
.
data
;
if
(
!
is_null_memory
(
src_iter
.
data
.
primitive
))
inputs
[
idx
++
]
=
src_iter
.
data
;
inputs
[
idx
++
]
=
weights_layer
.
data
;
inputs
[
idx
++
]
=
weights_iter
.
data
;
if
(
!
is_null_memory
(
bias
.
data
.
primitive
))
inputs
[
idx
++
]
=
bias
.
data
;
inputs
[
idx
]
=
dst_layer
.
data
;
if
(
!
is_null_memory
(
dst_iter
.
data
.
primitive
))
inputs
[
idx
++
]
=
dst_iter
.
data
;
inputs
[
idx
]
=
diff_dst_layer
.
data
;
if
(
!
is_null_memory
(
diff_dst_iter
.
data
.
primitive
))
inputs
[
idx
++
]
=
diff_dst_iter
.
data
;
inputs
[
idx
]
=
workspace
.
data
;
idx
=
0
;
outputs
[
idx
]
=
diff_src_layer
.
get
();
if
(
!
is_null_memory
(
diff_src_iter
.
get
()))
outputs
[
idx
++
]
=
diff_src_iter
.
get
();
outputs
[
idx
]
=
diff_weights_layer
.
get
();
outputs
[
idx
]
=
diff_weights_iter
.
get
();
if
(
!
is_null_memory
(
diff_bias
.
get
()))
outputs
[
idx
]
=
diff_bias
.
get
();
error
::
wrap_c_api
(
mkldnn_primitive_create
(
&
result
,
aprimitive_desc
.
get
(),
inputs
,
outputs
),
"could not create an RNN backward primitive"
);
reset
(
result
);
}
};
/// @}
/// @} Primitives
/// @addtogroup cpp_api_stream Stream
/// @{
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
<
>
struct
handle_traits
<
mkldnn_stream_t
>
{
static
constexpr
auto
destructor
=
&
mkldnn_stream_destroy
;
};
#endif
struct
stream
:
public
handle
<
mkldnn_stream_t
>
{
using
handle
::
handle
;
enum
kind
{
any
=
mkldnn_stream_kind_t
::
mkldnn_any_stream
,
eager
=
mkldnn_stream_kind_t
::
mkldnn_eager
,
lazy
=
mkldnn_stream_kind_t
::
mkldnn_lazy
};
static
mkldnn_stream_kind_t
convert_to_c
(
kind
akind
)
{
return
static_cast
<
mkldnn_stream_kind_t
>
(
akind
);
}
/// Constructs a stream.
stream
(
kind
akind
)
{
mkldnn_stream_t
astream
;
error
::
wrap_c_api
(
mkldnn_stream_create
(
&
astream
,
convert_to_c
(
akind
)),
"could not create a stream"
);
reset
(
astream
);
}
/// Submits a vector of primitives to a stream for computations.
///
/// @param primitives The vector of primitives to submit.
/// @returns The stream.
stream
&
submit
(
std
::
vector
<
primitive
>
primitives
)
{
// TODO: find a proper way to convert vector<primitive> to
// vector<mkldnn_primitive_t>
if
(
primitives
.
size
()
==
0
)
return
*
this
;
std
::
vector
<
mkldnn_primitive_t
>
c_api_primitives
;
c_api_primitives
.
reserve
(
primitives
.
size
());
auto
convert_to_c
=
[](
primitive
p
)
{
return
p
.
get
();
};
std
::
transform
(
primitives
.
begin
(),
primitives
.
end
(),
std
::
back_inserter
(
c_api_primitives
),
convert_to_c
);
mkldnn_primitive_t
c_api_error_primitive
;
error
::
wrap_c_api
(
mkldnn_stream_submit
(
get
(),
c_api_primitives
.
size
(),
&
c_api_primitives
[
0
],
&
c_api_error_primitive
),
"could not submit primitives to a stream"
,
&
c_api_error_primitive
);
return
*
this
;
}
/// Waits for all computations submitted to the stream to complete.
///
/// @param block Specifies whether the operation should wait indefinitely or
/// return
/// immediately.
/// @returns @c true if all computations completed.
/// @returns @c false if not all computations completed.
bool
wait
(
bool
block
=
true
)
{
mkldnn_primitive_t
c_api_error_primitive
;
mkldnn_status_t
status
=
mkldnn_stream_wait
(
get
(),
block
,
&
c_api_error_primitive
);
if
(
status
!=
mkldnn_success
&&
status
!=
mkldnn_try_again
)
error
::
wrap_c_api
(
status
,
"could not wait on a stream"
,
&
c_api_error_primitive
);
return
(
status
==
mkldnn_success
);
}
stream
&
rerun
()
{
mkldnn_primitive_t
c_api_error_primitive
;
error
::
wrap_c_api
(
mkldnn_stream_rerun
(
get
(),
&
c_api_error_primitive
),
"could not rerun a stream"
,
&
c_api_error_primitive
);
return
*
this
;
}
};
/// @}
/// @} C++ API
}
// namespace mkldnn
#endif
python/paddle/fluid/data_feeder.py
浏览文件 @
50ba205d
...
@@ -54,9 +54,9 @@ class DataToLoDTensorConverter(object):
...
@@ -54,9 +54,9 @@ class DataToLoDTensorConverter(object):
self
.
data
.
append
(
data
)
self
.
data
.
append
(
data
)
else
:
else
:
cur_lod_len
=
len
(
data
)
cur_lod_len
=
len
(
data
)
lod
[
-
1
].
append
(
lod
[
-
1
][
-
1
]
+
cur_lod_len
)
lod
[
0
].
append
(
lod
[
0
][
-
1
]
+
cur_lod_len
)
for
each_data
in
data
:
for
each_data
in
data
:
self
.
_feed_impl_
(
each_data
,
lod
[
:
-
1
],
lod_level
-
1
)
self
.
_feed_impl_
(
each_data
,
lod
[
1
:
],
lod_level
-
1
)
def
done
(
self
):
def
done
(
self
):
arr
=
numpy
.
array
(
self
.
data
,
dtype
=
self
.
dtype
).
reshape
(
self
.
shape
)
arr
=
numpy
.
array
(
self
.
data
,
dtype
=
self
.
dtype
).
reshape
(
self
.
shape
)
...
...
python/paddle/fluid/inferencer.py
浏览文件 @
50ba205d
...
@@ -12,11 +12,14 @@
...
@@ -12,11 +12,14 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
import
contextlib
import
core
import
core
import
executor
import
executor
import
framework
import
framework
import
io
import
io
import
parallel_executor
import
unique_name
import
unique_name
from
trainer
import
check_and_get_place
from
trainer
import
check_and_get_place
...
@@ -24,40 +27,53 @@ __all__ = ['Inferencer', ]
...
@@ -24,40 +27,53 @@ __all__ = ['Inferencer', ]
class
Inferencer
(
object
):
class
Inferencer
(
object
):
def
__init__
(
self
,
infer_func
,
param_path
,
place
=
None
):
def
__init__
(
self
,
infer_func
,
param_path
,
place
=
None
,
parallel
=
False
):
"""
"""
:param infer_func: a function that will return predict Variable
:param infer_func: a function that will return predict Variable
:param param_path: the path where the inference model is saved by fluid.io.save_params
:param param_path: the path where the inference model is saved by fluid.io.save_params
:param place: place to do the inference
:param place: place to do the inference
:param parallel: use parallel_executor to run the inference, it will use multi CPU/GPU.
"""
"""
self
.
param_path
=
param_path
self
.
param_path
=
param_path
self
.
scope
=
core
.
Scope
()
self
.
scope
=
core
.
Scope
()
self
.
parallel
=
parallel
self
.
place
=
check_and_get_place
(
place
)
self
.
inference_program
=
framework
.
Program
()
self
.
inference_program
=
framework
.
Program
()
with
framework
.
program_guard
(
self
.
inference_program
):
with
framework
.
program_guard
(
self
.
inference_program
):
with
unique_name
.
guard
():
with
unique_name
.
guard
():
self
.
predict_var
=
infer_func
()
self
.
predict_var
=
infer_func
()
self
.
exe
=
executor
.
Executor
(
check_and_get_place
(
place
))
with
self
.
_prog_and_scope_guard
():
with
executor
.
scope_guard
(
self
.
scope
):
# load params from param_path into scope
# load params from param_path into scope
io
.
load_params
(
self
.
exe
,
param_path
,
self
.
inference_program
)
io
.
load_params
(
executor
.
Executor
(
self
.
place
),
param_path
)
if
parallel
:
with
self
.
_prog_and_scope_guard
():
self
.
exe
=
parallel_executor
.
ParallelExecutor
(
use_cuda
=
isinstance
(
self
.
place
,
core
.
CUDAPlace
),
loss_name
=
self
.
predict_var
.
name
)
else
:
self
.
exe
=
executor
.
Executor
(
self
.
place
)
def
infer
(
self
,
inputs
,
return_numpy
=
True
):
def
infer
(
self
,
inputs
):
"""
"""
:param inputs: a map of {"input_name": input_var} that will be feed into the inference program
:param inputs: a map of {"input_name": input_var} that will be feed into the inference program
to get the predict value
to get the predict value
:param return_numpy: if return numpy value for row tensor
:return: the predict value of the inference model
:return: the predict value of the inference model
"""
"""
if
not
isinstance
(
inputs
,
dict
):
if
not
isinstance
(
inputs
,
dict
):
raise
ValueError
(
raise
ValueError
(
"inputs should be a map of {'input_name': input_var}"
)
"inputs should be a map of {'input_name': input_var}"
)
with
executor
.
scope_guard
(
self
.
scope
):
with
self
.
_prog_and_scope_guard
():
results
=
self
.
exe
.
run
(
self
.
inference_program
,
results
=
self
.
exe
.
run
(
feed
=
inputs
,
feed
=
inputs
,
fetch_list
=
[
self
.
predict_var
.
name
])
fetch_list
=
[
self
.
predict_var
],
return_numpy
=
return_numpy
)
return
results
return
results
@
contextlib
.
contextmanager
def
_prog_and_scope_guard
(
self
):
with
framework
.
program_guard
(
main_program
=
self
.
inference_program
):
with
executor
.
scope_guard
(
self
.
scope
):
yield
python/paddle/fluid/layers/detection.py
浏览文件 @
50ba205d
...
@@ -23,6 +23,7 @@ import nn
...
@@ -23,6 +23,7 @@ import nn
import
math
import
math
__all__
=
[
__all__
=
[
'prior_box'
,
'multi_box_head'
,
'multi_box_head'
,
'bipartite_match'
,
'bipartite_match'
,
'target_assign'
,
'target_assign'
,
...
@@ -564,6 +565,98 @@ def ssd_loss(location,
...
@@ -564,6 +565,98 @@ def ssd_loss(location,
return
loss
return
loss
def
prior_box
(
input
,
image
,
min_sizes
,
max_sizes
=
None
,
aspect_ratios
=
None
,
variance
=
[
0.1
,
0.1
,
0.2
,
0.2
],
flip
=
False
,
clip
=
False
,
steps
=
[
0.0
,
0.0
],
offset
=
0.5
,
name
=
None
):
"""
**Prior box operator**
Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
Each position of the input produce N prior boxes, N is determined by
the count of min_sizes, max_sizes and aspect_ratios, The size of the
box is in range(min_size, max_size) interval, which is generated in
sequence according to the aspect_ratios.
Args:
input(Variable): The Input Variables, the format is NCHW.
image(Variable): The input image data of PriorBoxOp,
the layout is NCHW.
min_sizes(list|tuple): min sizes of generated prior boxes.
max_sizes(list|tuple|None): max sizes of generated prior boxes.
Default: None.
aspect_ratios(list|tuple): the aspect ratios of generated prior
boxes. Default: None.
variance(list|tuple): the variances to be encoded in prior boxes.
Default:[0.1, 0.1, 0.2, 0.2].
flip(bool): Whether to flip aspect ratios. Default:False.
clip(bool): Whether to clip out-of-boundary boxes. Default: False.
step(list|turple): Prior boxes step across weight and height, If
step[0] == 0.0/step[1] == 0.0, the prior boxes step across
height/weight of the input will be automatically calculated.
Default: [0.0]
offset(float): Prior boxes center offset. Default: 0.5
name(str): Name of the prior box op. Default: None.
Returns:
boxes(Variable): the output prior boxes of PriorBox.
The layout is [H, W, num_priors, 4].
H is the height of input, W is the width of input,
num_priors is the total
box count of each position of input.
Variances(Variable): the expanded variances of PriorBox.
The layout is [H, W, num_priors, 4].
H is the height of input, W is the width of input
num_priors is the total
box count of each position of input
Examples:
.. code-block:: python
box, var = prior_box(
input=conv1,
image=images,
min_sizes=[100.],
flip=True,
clip=True)
"""
helper
=
LayerHelper
(
"prior_box"
,
**
locals
())
dtype
=
helper
.
input_dtype
()
attrs
=
{
'min_sizes'
:
min_sizes
,
'aspect_ratios'
:
aspect_ratios
,
'variances'
:
variance
,
'flip'
:
flip
,
'clip'
:
clip
,
'step_w'
:
steps
[
0
],
'step_h'
:
steps
[
1
],
'offset'
:
offset
}
if
max_sizes
is
not
None
and
len
(
max_sizes
)
>
0
and
max_sizes
[
0
]
>
0
:
attrs
[
'max_sizes'
]
=
max_sizes
box
=
helper
.
create_tmp_variable
(
dtype
)
var
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
type
=
"prior_box"
,
inputs
=
{
"Input"
:
input
,
"Image"
:
image
},
outputs
=
{
"Boxes"
:
box
,
"Variances"
:
var
},
attrs
=
attrs
,
)
box
.
stop_gradient
=
True
var
.
stop_gradient
=
True
return
box
,
var
def
multi_box_head
(
inputs
,
def
multi_box_head
(
inputs
,
image
,
image
,
base_size
,
base_size
,
...
@@ -660,47 +753,6 @@ def multi_box_head(inputs,
...
@@ -660,47 +753,6 @@ def multi_box_head(inputs,
clip=True)
clip=True)
"""
"""
def
_prior_box_
(
input
,
image
,
min_sizes
,
max_sizes
,
aspect_ratios
,
variance
,
flip
=
False
,
clip
=
False
,
step_w
=
0.0
,
step_h
=
0.0
,
offset
=
0.5
,
name
=
None
):
helper
=
LayerHelper
(
"prior_box"
,
**
locals
())
dtype
=
helper
.
input_dtype
()
attrs
=
{
'min_sizes'
:
min_sizes
,
'aspect_ratios'
:
aspect_ratios
,
'variances'
:
variance
,
'flip'
:
flip
,
'clip'
:
clip
,
'step_w'
:
step_w
,
'step_h'
:
step_h
,
'offset'
:
offset
}
if
len
(
max_sizes
)
>
0
and
max_sizes
[
0
]
>
0
:
attrs
[
'max_sizes'
]
=
max_sizes
box
=
helper
.
create_tmp_variable
(
dtype
)
var
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
type
=
"prior_box"
,
inputs
=
{
"Input"
:
input
,
"Image"
:
image
},
outputs
=
{
"Boxes"
:
box
,
"Variances"
:
var
},
attrs
=
attrs
,
)
box
.
stop_gradient
=
True
var
.
stop_gradient
=
True
return
box
,
var
def
_reshape_with_axis_
(
input
,
axis
=
1
):
def
_reshape_with_axis_
(
input
,
axis
=
1
):
if
not
(
axis
>
0
and
axis
<
len
(
input
.
shape
)):
if
not
(
axis
>
0
and
axis
<
len
(
input
.
shape
)):
raise
ValueError
(
"The axis should be smaller than "
raise
ValueError
(
"The axis should be smaller than "
...
@@ -777,11 +829,10 @@ def multi_box_head(inputs,
...
@@ -777,11 +829,10 @@ def multi_box_head(inputs,
aspect_ratio
=
aspect_ratios
[
i
]
aspect_ratio
=
aspect_ratios
[
i
]
if
not
_is_list_or_tuple_
(
aspect_ratio
):
if
not
_is_list_or_tuple_
(
aspect_ratio
):
aspect_ratio
=
[
aspect_ratio
]
aspect_ratio
=
[
aspect_ratio
]
step
=
[
step_w
[
i
]
if
step_w
else
0.0
,
step_h
[
i
]
if
step_w
else
0.0
]
box
,
var
=
_prior_box_
(
input
,
image
,
min_size
,
max_size
,
aspect_ratio
,
box
,
var
=
prior_box
(
input
,
image
,
min_size
,
max_size
,
aspect_ratio
,
variance
,
flip
,
clip
,
step_w
[
i
]
variance
,
flip
,
clip
,
step
,
offset
)
if
step_w
else
0.0
,
step_h
[
i
]
if
step_w
else
0.0
,
offset
)
box_results
.
append
(
box
)
box_results
.
append
(
box
)
var_results
.
append
(
var
)
var_results
.
append
(
var
)
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
50ba205d
...
@@ -1329,6 +1329,8 @@ def sequence_pool(input, pool_type):
...
@@ -1329,6 +1329,8 @@ def sequence_pool(input, pool_type):
sqrt : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
sqrt : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
max : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
max : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
last : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
first : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
Args:
Args:
input(variable): The input variable which is a LoDTensor.
input(variable): The input variable which is a LoDTensor.
...
@@ -1348,6 +1350,8 @@ def sequence_pool(input, pool_type):
...
@@ -1348,6 +1350,8 @@ def sequence_pool(input, pool_type):
sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
"""
"""
helper
=
LayerHelper
(
'sequence_pool'
,
**
locals
())
helper
=
LayerHelper
(
'sequence_pool'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
dtype
=
helper
.
input_dtype
()
...
@@ -3263,35 +3267,35 @@ def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
...
@@ -3263,35 +3267,35 @@ def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
"""
"""
**Smooth L1 Loss Operator. **
**Smooth L1 Loss Operator. **
This operator computes the smooth
l
1 loss for X and Y.
This operator computes the smooth
L
1 loss for X and Y.
The operator takes the first dimension of X and Y as batch size.
The operator takes the first dimension of X and Y as batch size.
For each instance, it computes the smooth
l
1 loss element by element first
For each instance, it computes the smooth
L
1 loss element by element first
and then sums all the losses. So the shape of Out is [batch_size, 1].
and then sums all the losses. So the shape of Out is [batch_size, 1].
Args:
Args:
x (Variable): A tensor with rank at least 2. The input value of smooth
x (Variable): A tensor with rank at least 2. The input value of smooth
l
1 loss op with shape [batch_size, dim1, ..., dimN].
L
1 loss op with shape [batch_size, dim1, ..., dimN].
y (Variable): A tensor with rank at least 2. The target value of smooth
y (Variable): A tensor with rank at least 2. The target value of smooth
l
1 loss op with same shape as x.
L
1 loss op with same shape as x.
inside_weight (Variable|None): A tensor with rank at least 2. This
inside_weight (Variable|None): A tensor with rank at least 2. This
input is optional and should have same shape with x. If provided,
input is optional and should have same shape with x. If provided,
the result of (x - y) will be multiplied by this tensor element by
the result of (x - y) will be multiplied by this tensor element by
element.
element.
outside_weight (Variable|None): A tensor with rank at least 2. This
outside_weight (Variable|None): A tensor with rank at least 2. This
input is optional and should have same shape with x. If provided,
input is optional and should have same shape with x. If provided,
the out smooth
l
1 loss will be multiplied by this tensor element
the out smooth
L
1 loss will be multiplied by this tensor element
by element.
by element.
sigma (float|None): Hyper parameter of smooth
l
1 loss op. A float scalar
sigma (float|None): Hyper parameter of smooth
L
1 loss op. A float scalar
with default value 1.0.
with default value 1.0.
Returns:
Returns:
Variable: A tensor with rank be 2. The output smooth
l
1 loss with
Variable: A tensor with rank be 2. The output smooth
L
1 loss with
shape [batch_size, 1].
shape [batch_size, 1].
Examples:
Examples:
.. code-block:: python
.. code-block:: python
data = fluid.layers.data(name='data', shape=[128], dtype='float32')
data = fluid.layers.data(name='data', shape=[128], dtype='float32')
label = fluid.layers.data(name='label', shape=[100], dtype='
int64
')
label = fluid.layers.data(name='label', shape=[100], dtype='
float32
')
fc = fluid.layers.fc(input=data, size=100)
fc = fluid.layers.fc(input=data, size=100)
out = fluid.layers.smooth_l1(x=fc, y=label)
out = fluid.layers.smooth_l1(x=fc, y=label)
"""
"""
...
@@ -3769,13 +3773,13 @@ def label_smooth(label,
...
@@ -3769,13 +3773,13 @@ def label_smooth(label,
def
roi_pool
(
input
,
rois
,
pooled_height
=
1
,
pooled_width
=
1
,
spatial_scale
=
1.0
):
def
roi_pool
(
input
,
rois
,
pooled_height
=
1
,
pooled_width
=
1
,
spatial_scale
=
1.0
):
"""
"""
Region of interest pooling (also known as RoI pooling) is to perform
Region of interest pooling (also known as RoI pooling) is to perform
is to perform max pooling on inputs of nonuniform sizes to obtain
is to perform max pooling on inputs of nonuniform sizes to obtain
fixed-size feature maps (e.g. 7*7).
fixed-size feature maps (e.g. 7*7).
The operator has three steps:
The operator has three steps:
1. Dividing each region proposal into equal-sized sections with
1. Dividing each region proposal into equal-sized sections with
the pooled_width and pooled_height
the pooled_width and pooled_height
2. Finding the largest value in each section
2. Finding the largest value in each section
3. Copying these max values to the output buffer
3. Copying these max values to the output buffer
Args:
Args:
...
@@ -3783,8 +3787,8 @@ def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
...
@@ -3783,8 +3787,8 @@ def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
rois (Variable): ROIs (Regions of Interest) to pool over. It should
rois (Variable): ROIs (Regions of Interest) to pool over. It should
be a 2-D one level LoTensor of shape [num_rois, 4].
be a 2-D one level LoTensor of shape [num_rois, 4].
The layout is [x1, y1, x2, y2], where (x1, y1)
The layout is [x1, y1, x2, y2], where (x1, y1)
is the top left coordinates, and (x2, y2) is the
is the top left coordinates, and (x2, y2) is the
bottom right coordinates. The num_rois is the
bottom right coordinates. The num_rois is the
total number of ROIs in this batch data.
total number of ROIs in this batch data.
pooled_height (integer): The pooled output height. Default: 1
pooled_height (integer): The pooled output height. Default: 1
pooled_width (integer): The pooled output width. Default: 1
pooled_width (integer): The pooled output width. Default: 1
...
@@ -3793,11 +3797,11 @@ def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
...
@@ -3793,11 +3797,11 @@ def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
to the scale used when pooling. Default: 1.0
to the scale used when pooling. Default: 1.0
Returns:
Returns:
pool_out (Variable): The output is a 4-D tensor of the shape
pool_out (Variable): The output is a 4-D tensor of the shape
(num_rois, channels, pooled_h, pooled_w).
(num_rois, channels, pooled_h, pooled_w).
Examples:
Examples:
pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
"""
"""
helper
=
LayerHelper
(
'roi_pool'
,
**
locals
())
helper
=
LayerHelper
(
'roi_pool'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
dtype
=
helper
.
input_dtype
()
...
...
python/paddle/fluid/tests/book/high-level-api/CMakeLists.txt
浏览文件 @
50ba205d
...
@@ -8,3 +8,4 @@ endforeach()
...
@@ -8,3 +8,4 @@ endforeach()
add_subdirectory
(
fit_a_line
)
add_subdirectory
(
fit_a_line
)
add_subdirectory
(
recognize_digits
)
add_subdirectory
(
recognize_digits
)
add_subdirectory
(
image_classification
)
python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py
浏览文件 @
50ba205d
...
@@ -57,22 +57,20 @@ def train(use_cuda, train_program, save_dirname):
...
@@ -57,22 +57,20 @@ def train(use_cuda, train_program, save_dirname):
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
))
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
))
def
event_handler
(
event
):
def
event_handler
(
event
):
if
isinstance
(
event
,
fluid
.
EndEpochEvent
):
if
isinstance
(
event
,
fluid
.
EndStepEvent
):
test_metrics
=
trainer
.
test
(
if
event
.
step
==
10
:
reader
=
test_reader
,
feed_order
=
[
'x'
,
'y'
])
test_metrics
=
trainer
.
test
(
print
test_metrics
reader
=
test_reader
,
feed_order
=
[
'x'
,
'y'
])
'''
print
test_metrics
'''
...
...
['25.768919467926025']
['25.768919467926025']
['15.343549569447836']
['15.343549569447836']
...
...
'''
'''
if
float
(
test_metrics
[
0
])
<
20.0
:
if
save_dirname
is
not
None
:
if
save_dirname
is
not
None
:
trainer
.
save_params
(
save_dirname
)
trainer
.
save_params
(
save_dirname
)
return
trainer
.
stop
()
trainer
.
train
(
trainer
.
train
(
reader
=
train_reader
,
reader
=
train_reader
,
...
@@ -94,7 +92,7 @@ def infer(use_cuda, inference_program, save_dirname=None):
...
@@ -94,7 +92,7 @@ def infer(use_cuda, inference_program, save_dirname=None):
tensor_x
=
numpy
.
random
.
uniform
(
0
,
10
,
[
batch_size
,
13
]).
astype
(
"float32"
)
tensor_x
=
numpy
.
random
.
uniform
(
0
,
10
,
[
batch_size
,
13
]).
astype
(
"float32"
)
results
=
inferencer
.
infer
({
'x'
:
tensor_x
})
results
=
inferencer
.
infer
({
'x'
:
tensor_x
})
print
(
"infer results: "
,
results
[
0
]
)
print
(
"infer results: "
,
numpy
.
array
(
results
[
0
])
)
def
main
(
use_cuda
):
def
main
(
use_cuda
):
...
...
python/paddle/fluid/tests/book/high-level-api/image_classification/CMakeLists.txt
0 → 100644
浏览文件 @
50ba205d
file
(
GLOB TEST_OPS RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"test_*.py"
)
string
(
REPLACE
".py"
""
TEST_OPS
"
${
TEST_OPS
}
"
)
# default test
foreach
(
src
${
TEST_OPS
}
)
py_test
(
${
src
}
SRCS
${
src
}
.py
)
endforeach
()
python/paddle/fluid/tests/book/high-level-api/image_classification/cifar10_small_test_set.py
0 → 100644
浏览文件 @
50ba205d
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
CIFAR dataset.
This module will download dataset from
https://www.cs.toronto.edu/~kriz/cifar.html and parse train/test set into
paddle reader creators.
The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes,
with 6000 images per class. There are 50000 training images and 10000 test
images.
The CIFAR-100 dataset is just like the CIFAR-10, except it has 100 classes
containing 600 images each. There are 500 training images and 100 testing
images per class.
"""
import
cPickle
import
itertools
import
numpy
import
paddle.v2.dataset.common
import
tarfile
__all__
=
[
'train10'
]
URL_PREFIX
=
'https://www.cs.toronto.edu/~kriz/'
CIFAR10_URL
=
URL_PREFIX
+
'cifar-10-python.tar.gz'
CIFAR10_MD5
=
'c58f30108f718f92721af3b95e74349a'
def
reader_creator
(
filename
,
sub_name
,
batch_size
=
None
):
def
read_batch
(
batch
):
data
=
batch
[
'data'
]
labels
=
batch
.
get
(
'labels'
,
batch
.
get
(
'fine_labels'
,
None
))
assert
labels
is
not
None
for
sample
,
label
in
itertools
.
izip
(
data
,
labels
):
yield
(
sample
/
255.0
).
astype
(
numpy
.
float32
),
int
(
label
)
def
reader
():
with
tarfile
.
open
(
filename
,
mode
=
'r'
)
as
f
:
names
=
(
each_item
.
name
for
each_item
in
f
if
sub_name
in
each_item
.
name
)
batch_count
=
0
for
name
in
names
:
batch
=
cPickle
.
load
(
f
.
extractfile
(
name
))
for
item
in
read_batch
(
batch
):
if
isinstance
(
batch_size
,
int
)
and
batch_count
>
batch_size
:
break
batch_count
+=
1
yield
item
return
reader
def
train10
(
batch_size
=
None
):
"""
CIFAR-10 training set creator.
It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].
:return: Training reader creator
:rtype: callable
"""
return
reader_creator
(
paddle
.
v2
.
dataset
.
common
.
download
(
CIFAR10_URL
,
'cifar'
,
CIFAR10_MD5
),
'data_batch'
,
batch_size
=
batch_size
)
python/paddle/fluid/tests/book/high-level-api/image_classification/
no
test_image_classification_resnet.py
→
python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_resnet.py
浏览文件 @
50ba205d
...
@@ -17,6 +17,7 @@ from __future__ import print_function
...
@@ -17,6 +17,7 @@ from __future__ import print_function
import
paddle
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
numpy
import
numpy
import
cifar10_small_test_set
def
resnet_cifar10
(
input
,
depth
=
32
):
def
resnet_cifar10
(
input
,
depth
=
32
):
...
@@ -81,46 +82,50 @@ def train_network():
...
@@ -81,46 +82,50 @@ def train_network():
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
accuracy
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
)
accuracy
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
)
return
avg_cost
,
accuracy
return
[
avg_cost
,
accuracy
]
def
train
(
use_cuda
,
save_path
):
def
train
(
use_cuda
,
train_program
,
save_dirname
):
BATCH_SIZE
=
128
BATCH_SIZE
=
128
EPOCH_NUM
=
1
EPOCH_NUM
=
1
train_reader
=
paddle
.
batch
(
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
cifar
.
train10
(
),
buf_size
=
128
*
10
),
cifar10_small_test_set
.
train10
(
batch_size
=
10
),
buf_size
=
128
*
10
),
batch_size
=
BATCH_SIZE
)
batch_size
=
BATCH_SIZE
)
test_reader
=
paddle
.
batch
(
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
cifar
.
test10
(),
batch_size
=
BATCH_SIZE
)
paddle
.
dataset
.
cifar
.
test10
(),
batch_size
=
BATCH_SIZE
)
def
event_handler
(
event
):
def
event_handler
(
event
):
if
isinstance
(
event
,
fluid
.
End
Iteration
):
if
isinstance
(
event
,
fluid
.
End
StepEvent
):
if
(
event
.
batch_id
%
10
)
==
0
:
avg_cost
,
accuracy
=
trainer
.
test
(
avg_cost
,
accuracy
=
trainer
.
test
(
reader
=
test_reader
)
reader
=
test_reader
,
feed_order
=
[
'pixel'
,
'label'
]
)
print
(
'BatchID {1:04}, Loss {2:2.2}, Acc {3:2.2}'
.
format
(
print
(
'Loss {0:2.2}, Acc {1:2.2}'
.
format
(
avg_cost
,
accuracy
))
event
.
batch_id
+
1
,
avg_cost
,
accuracy
))
if
accuracy
>
0.01
:
# Low threshold for speeding up CI
if
accuracy
>
0.01
:
# Low threshold for speeding up CI
trainer
.
params
.
save
(
save_path
)
if
save_dirname
is
not
None
:
return
trainer
.
save_params
(
save_dirname
)
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
trainer
=
fluid
.
Trainer
(
trainer
=
fluid
.
Trainer
(
train_
network
,
train_
func
=
train_program
,
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
),
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
),
place
=
place
,
place
=
place
)
event_handler
=
event_handler
)
trainer
.
train
(
train_reader
,
EPOCH_NUM
,
event_handler
=
event_handler
)
trainer
.
train
(
reader
=
train_reader
,
num_epochs
=
EPOCH_NUM
,
event_handler
=
event_handler
,
feed_order
=
[
'pixel'
,
'label'
])
def
infer
(
use_cuda
,
save_path
):
params
=
fluid
.
Params
(
save_path
)
def
infer
(
use_cuda
,
inference_program
,
save_dirname
=
None
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
inference_network
,
params
,
place
=
place
)
inferencer
=
fluid
.
Inferencer
(
infer_func
=
inference_program
,
param_path
=
save_dirname
,
place
=
place
)
# The input's dimension of conv should be 4-D or 5-D.
# The input's dimension of conv should be 4-D or 5-D.
# Use normilized image pixels as input data, which should be in the range
# Use normilized image pixels as input data, which should be in the range
...
@@ -135,8 +140,14 @@ def main(use_cuda):
...
@@ -135,8 +140,14 @@ def main(use_cuda):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
return
save_path
=
"image_classification_resnet.inference.model"
save_path
=
"image_classification_resnet.inference.model"
train
(
use_cuda
,
save_path
)
infer
(
use_cuda
,
save_path
)
train
(
use_cuda
=
use_cuda
,
train_program
=
train_network
,
save_dirname
=
save_path
)
infer
(
use_cuda
=
use_cuda
,
inference_program
=
inference_network
,
save_dirname
=
save_path
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/book/high-level-api/image_classification/
no
test_image_classification_vgg.py
→
python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_vgg.py
浏览文件 @
50ba205d
...
@@ -17,6 +17,7 @@ from __future__ import print_function
...
@@ -17,6 +17,7 @@ from __future__ import print_function
import
paddle
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
numpy
import
numpy
import
cifar10_small_test_set
def
vgg16_bn_drop
(
input
):
def
vgg16_bn_drop
(
input
):
...
@@ -60,46 +61,48 @@ def train_network():
...
@@ -60,46 +61,48 @@ def train_network():
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
accuracy
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
)
accuracy
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
)
return
avg_cost
,
accuracy
return
[
avg_cost
,
accuracy
]
def
train
(
use_cuda
,
save_path
):
def
train
(
use_cuda
,
train_program
,
save_dirname
):
BATCH_SIZE
=
128
BATCH_SIZE
=
128
EPOCH_NUM
=
1
train_reader
=
paddle
.
batch
(
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
cifar
.
train10
(
),
buf_size
=
128
*
10
),
cifar10_small_test_set
.
train10
(
batch_size
=
10
),
buf_size
=
128
*
10
),
batch_size
=
BATCH_SIZE
)
batch_size
=
BATCH_SIZE
)
test_reader
=
paddle
.
batch
(
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
cifar
.
test10
(),
batch_size
=
BATCH_SIZE
)
paddle
.
dataset
.
cifar
.
test10
(),
batch_size
=
BATCH_SIZE
)
def
event_handler
(
event
):
def
event_handler
(
event
):
if
isinstance
(
event
,
fluid
.
End
Iteration
):
if
isinstance
(
event
,
fluid
.
End
StepEvent
):
if
(
event
.
batch_id
%
10
)
==
0
:
avg_cost
,
accuracy
=
trainer
.
test
(
avg_cost
,
accuracy
=
trainer
.
test
(
reader
=
test_reader
)
reader
=
test_reader
,
feed_order
=
[
'pixel'
,
'label'
]
)
print
(
'BatchID {1:04}, Loss {2:2.2}, Acc {3:2.2}'
.
format
(
print
(
'Loss {0:2.2}, Acc {1:2.2}'
.
format
(
avg_cost
,
accuracy
))
event
.
batch_id
+
1
,
avg_cost
,
accuracy
))
if
accuracy
>
0.01
:
# Low threshold for speeding up CI
if
accuracy
>
0.01
:
# Low threshold for speeding up CI
trainer
.
params
.
save
(
save_path
)
if
save_dirname
is
not
None
:
return
trainer
.
save_params
(
save_dirname
)
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
trainer
=
fluid
.
Trainer
(
trainer
=
fluid
.
Trainer
(
train_network
,
train_func
=
train_program
,
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
),
place
=
place
,
place
=
place
,
event_handler
=
event_handler
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
))
trainer
.
train
(
train_reader
,
EPOCH_NUM
,
event_handler
=
event_handler
)
trainer
.
train
(
reader
=
train_reader
,
num_epochs
=
1
,
event_handler
=
event_handler
,
feed_order
=
[
'pixel'
,
'label'
])
def
infer
(
use_cuda
,
save_path
):
def
infer
(
use_cuda
,
inference_program
,
save_dirname
=
None
):
params
=
fluid
.
Params
(
save_path
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
inference_network
,
params
,
place
=
place
)
inferencer
=
fluid
.
Inferencer
(
infer_func
=
inference_program
,
param_path
=
save_dirname
,
place
=
place
)
# The input's dimension of conv should be 4-D or 5-D.
# The input's dimension of conv should be 4-D or 5-D.
# Use normilized image pixels as input data, which should be in the range
# Use normilized image pixels as input data, which should be in the range
...
@@ -114,8 +117,14 @@ def main(use_cuda):
...
@@ -114,8 +117,14 @@ def main(use_cuda):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
return
save_path
=
"image_classification_vgg.inference.model"
save_path
=
"image_classification_vgg.inference.model"
train
(
use_cuda
,
save_path
)
infer
(
use_cuda
,
save_path
)
train
(
use_cuda
=
use_cuda
,
train_program
=
train_network
,
save_dirname
=
save_path
)
infer
(
use_cuda
=
use_cuda
,
inference_program
=
inference_network
,
save_dirname
=
save_path
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_conv.py
浏览文件 @
50ba205d
...
@@ -62,31 +62,31 @@ def train(use_cuda, train_program, save_dirname):
...
@@ -62,31 +62,31 @@ def train(use_cuda, train_program, save_dirname):
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
trainer
=
fluid
.
Trainer
(
trainer
=
fluid
.
Trainer
(
train_func
=
train_program
,
place
=
place
,
optimizer
=
optimizer
)
train_func
=
train_program
,
place
=
place
,
optimizer
=
optimizer
,
parallel
=
True
)
def
event_handler
(
event
):
def
event_handler
(
event
):
if
isinstance
(
event
,
fluid
.
EndEpochEvent
):
if
isinstance
(
event
,
fluid
.
EndEpochEvent
):
test_reader
=
paddle
.
batch
(
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
BATCH_SIZE
)
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
BATCH_SIZE
)
test_metrics
=
trainer
.
test
(
avg_cost
,
acc
=
trainer
.
test
(
reader
=
test_reader
,
feed_order
=
[
'img'
,
'label'
])
reader
=
test_reader
,
feed_order
=
[
'img'
,
'label'
])
avg_cost_set
=
test_metrics
[
0
]
acc_set
=
test_metrics
[
1
]
# get test acc and loss
acc
=
numpy
.
array
(
acc_set
).
mean
()
avg_cost
=
numpy
.
array
(
avg_cost_set
).
mean
()
print
(
"avg_cost: %s"
%
avg_cost
)
print
(
"avg_cost: %s"
%
avg_cost
)
print
(
"acc : %s"
%
acc
)
print
(
"acc : %s"
%
acc
)
if
float
(
acc
)
>
0.2
:
# Smaller value to increase CI speed
if
acc
>
0.2
:
# Smaller value to increase CI speed
trainer
.
save_params
(
save_dirname
)
trainer
.
save_params
(
save_dirname
)
else
:
else
:
print
(
'BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'
.
format
(
print
(
'BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'
.
format
(
event
.
epoch
+
1
,
float
(
avg_cost
),
float
(
acc
)
))
event
.
epoch
+
1
,
avg_cost
,
acc
))
if
math
.
isnan
(
float
(
avg_cost
)
):
if
math
.
isnan
(
avg_cost
):
sys
.
exit
(
"got NaN loss, training failed."
)
sys
.
exit
(
"got NaN loss, training failed."
)
elif
isinstance
(
event
,
fluid
.
EndStepEvent
):
print
(
"Step {0}, Epoch {1} Metrics {2}"
.
format
(
event
.
step
,
event
.
epoch
,
map
(
numpy
.
array
,
event
.
metrics
)))
train_reader
=
paddle
.
batch
(
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
reader
.
shuffle
(
...
@@ -112,7 +112,7 @@ def infer(use_cuda, inference_program, save_dirname=None):
...
@@ -112,7 +112,7 @@ def infer(use_cuda, inference_program, save_dirname=None):
results
=
inferencer
.
infer
({
'img'
:
tensor_img
})
results
=
inferencer
.
infer
({
'img'
:
tensor_img
})
print
(
"infer results: "
,
results
[
0
]
)
print
(
"infer results: "
,
numpy
.
array
(
results
[
0
])
)
def
main
(
use_cuda
):
def
main
(
use_cuda
):
...
@@ -131,4 +131,4 @@ def main(use_cuda):
...
@@ -131,4 +131,4 @@ def main(use_cuda):
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
# for use_cuda in (False, True):
# for use_cuda in (False, True):
main
(
use_cuda
=
Fals
e
)
main
(
use_cuda
=
Tru
e
)
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_mlp.py
浏览文件 @
50ba205d
...
@@ -55,24 +55,18 @@ def train(use_cuda, train_program, save_dirname):
...
@@ -55,24 +55,18 @@ def train(use_cuda, train_program, save_dirname):
if
isinstance
(
event
,
fluid
.
EndEpochEvent
):
if
isinstance
(
event
,
fluid
.
EndEpochEvent
):
test_reader
=
paddle
.
batch
(
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
BATCH_SIZE
)
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
BATCH_SIZE
)
test_metrics
=
trainer
.
test
(
avg_cost
,
acc
=
trainer
.
test
(
reader
=
test_reader
,
feed_order
=
[
'img'
,
'label'
])
reader
=
test_reader
,
feed_order
=
[
'img'
,
'label'
])
avg_cost_set
=
test_metrics
[
0
]
acc_set
=
test_metrics
[
1
]
# get test acc and loss
acc
=
numpy
.
array
(
acc_set
).
mean
()
avg_cost
=
numpy
.
array
(
avg_cost_set
).
mean
()
print
(
"avg_cost: %s"
%
avg_cost
)
print
(
"avg_cost: %s"
%
avg_cost
)
print
(
"acc : %s"
%
acc
)
print
(
"acc : %s"
%
acc
)
if
float
(
acc
)
>
0.2
:
# Smaller value to increase CI speed
if
acc
>
0.2
:
# Smaller value to increase CI speed
trainer
.
save_params
(
save_dirname
)
trainer
.
save_params
(
save_dirname
)
else
:
else
:
print
(
'BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'
.
format
(
print
(
'BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'
.
format
(
event
.
epoch
+
1
,
float
(
avg_cost
),
float
(
acc
)
))
event
.
epoch
+
1
,
avg_cost
,
acc
))
if
math
.
isnan
(
float
(
avg_cost
)
):
if
math
.
isnan
(
avg_cost
):
sys
.
exit
(
"got NaN loss, training failed."
)
sys
.
exit
(
"got NaN loss, training failed."
)
train_reader
=
paddle
.
batch
(
train_reader
=
paddle
.
batch
(
...
@@ -99,7 +93,7 @@ def infer(use_cuda, inference_program, save_dirname=None):
...
@@ -99,7 +93,7 @@ def infer(use_cuda, inference_program, save_dirname=None):
results
=
inferencer
.
infer
({
'img'
:
tensor_img
})
results
=
inferencer
.
infer
({
'img'
:
tensor_img
})
print
(
"infer results: "
,
results
[
0
]
)
print
(
"infer results: "
,
numpy
.
array
(
results
[
0
])
)
def
main
(
use_cuda
):
def
main
(
use_cuda
):
...
...
python/paddle/fluid/tests/book/high-level-api/word2vec/
no_
test_word2vec_new_api.py
→
python/paddle/fluid/tests/book/high-level-api/word2vec/test_word2vec_new_api.py
浏览文件 @
50ba205d
...
@@ -90,7 +90,7 @@ def train_program(is_sparse):
...
@@ -90,7 +90,7 @@ def train_program(is_sparse):
return
avg_cost
return
avg_cost
def
train
(
use_cuda
,
train_program
,
save_
path
):
def
train
(
use_cuda
,
train_program
,
save_
dirname
):
train_reader
=
paddle
.
batch
(
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
imikolov
.
train
(
word_dict
,
N
),
BATCH_SIZE
)
paddle
.
dataset
.
imikolov
.
train
(
word_dict
,
N
),
BATCH_SIZE
)
test_reader
=
paddle
.
batch
(
test_reader
=
paddle
.
batch
(
...
@@ -99,27 +99,36 @@ def train(use_cuda, train_program, save_path):
...
@@ -99,27 +99,36 @@ def train(use_cuda, train_program, save_path):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
def
event_handler
(
event
):
def
event_handler
(
event
):
if
isinstance
(
event
,
fluid
.
EndEpochEvent
):
if
isinstance
(
event
,
fluid
.
EndStepEvent
):
outs
=
trainer
.
test
(
reader
=
test_reader
)
outs
=
trainer
.
test
(
reader
=
test_reader
,
feed_order
=
[
'firstw'
,
'secondw'
,
'thirdw'
,
'forthw'
,
'nextw'
])
avg_cost
=
outs
[
0
]
avg_cost
=
outs
[
0
]
print
(
"loss= "
,
avg_cost
)
print
(
"loss= "
,
avg_cost
)
if
avg_cost
<
5.0
:
if
avg_cost
<
10.0
:
trainer
.
save_params
(
save_path
)
trainer
.
save_params
(
save_dirname
)
return
trainer
.
stop
()
if
math
.
isnan
(
avg_cost
):
if
math
.
isnan
(
avg_cost
):
sys
.
exit
(
"got NaN loss, training failed."
)
sys
.
exit
(
"got NaN loss, training failed."
)
trainer
=
fluid
.
Trainer
(
trainer
=
fluid
.
Trainer
(
train_program
,
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
),
place
=
place
)
train_func
=
train_program
,
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
),
place
=
place
)
trainer
.
train
(
trainer
.
train
(
reader
=
train_reader
,
num_epochs
=
1
,
event_handler
=
event_handler
)
reader
=
train_reader
,
num_epochs
=
1
,
event_handler
=
event_handler
,
feed_order
=
[
'firstw'
,
'secondw'
,
'thirdw'
,
'forthw'
,
'nextw'
])
def
infer
(
use_cuda
,
inference_program
,
save_
path
):
def
infer
(
use_cuda
,
inference_program
,
save_
dirname
=
None
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
inferencer
=
fluid
.
Inferencer
(
infer_func
=
inference_program
,
param_path
=
save_
path
,
place
=
place
)
infer_func
=
inference_program
,
param_path
=
save_
dirname
,
place
=
place
)
lod
=
[
0
,
1
]
lod
=
[
0
,
1
]
first_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
-
1
)
first_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
-
1
)
...
@@ -142,9 +151,17 @@ def main(use_cuda, is_sparse):
...
@@ -142,9 +151,17 @@ def main(use_cuda, is_sparse):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
return
save_path
=
"word2vec.params"
save_path
=
"word2vec.inference.model"
train
(
use_cuda
,
partial
(
train_program
,
is_sparse
),
save_path
)
infer
(
use_cuda
,
partial
(
inference_program
,
is_sparse
),
save_path
)
train
(
use_cuda
=
use_cuda
,
train_program
=
partial
(
train_program
,
is_sparse
),
save_dirname
=
save_path
)
infer
(
use_cuda
=
use_cuda
,
inference_program
=
partial
(
inference_program
,
is_sparse
),
save_dirname
=
save_path
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/book/test_label_semantic_roles.py
浏览文件 @
50ba205d
...
@@ -182,12 +182,6 @@ def train(use_cuda, save_dirname=None, is_local=True):
...
@@ -182,12 +182,6 @@ def train(use_cuda, save_dirname=None, is_local=True):
crf_decode
=
fluid
.
layers
.
crf_decoding
(
crf_decode
=
fluid
.
layers
.
crf_decoding
(
input
=
feature_out
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'crfw'
))
input
=
feature_out
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'crfw'
))
chunk_evaluator
=
fluid
.
evaluator
.
ChunkEvaluator
(
input
=
crf_decode
,
label
=
target
,
chunk_scheme
=
"IOB"
,
num_chunk_types
=
int
(
math
.
ceil
((
label_dict_len
-
1
)
/
2.0
)))
train_data
=
paddle
.
batch
(
train_data
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
conll05
.
test
(),
buf_size
=
8192
),
paddle
.
dataset
.
conll05
.
test
(),
buf_size
=
8192
),
...
@@ -203,7 +197,6 @@ def train(use_cuda, save_dirname=None, is_local=True):
...
@@ -203,7 +197,6 @@ def train(use_cuda, save_dirname=None, is_local=True):
def
train_loop
(
main_program
):
def
train_loop
(
main_program
):
exe
.
run
(
fluid
.
default_startup_program
())
exe
.
run
(
fluid
.
default_startup_program
())
embedding_param
=
fluid
.
global_scope
().
find_var
(
embedding_param
=
fluid
.
global_scope
().
find_var
(
embedding_name
).
get_tensor
()
embedding_name
).
get_tensor
()
embedding_param
.
set
(
embedding_param
.
set
(
...
@@ -213,27 +206,19 @@ def train(use_cuda, save_dirname=None, is_local=True):
...
@@ -213,27 +206,19 @@ def train(use_cuda, save_dirname=None, is_local=True):
start_time
=
time
.
time
()
start_time
=
time
.
time
()
batch_id
=
0
batch_id
=
0
for
pass_id
in
xrange
(
PASS_NUM
):
for
pass_id
in
xrange
(
PASS_NUM
):
chunk_evaluator
.
reset
(
exe
)
for
data
in
train_data
():
for
data
in
train_data
():
cost
,
precision
,
recall
,
f1_score
=
exe
.
run
(
cost
=
exe
.
run
(
main_program
,
main_program
,
feed
=
feeder
.
feed
(
data
),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
])
fetch_list
=
[
avg_cost
]
+
chunk_evaluator
.
metrics
)
cost
=
cost
[
0
]
pass_precision
,
pass_recall
,
pass_f1_score
=
chunk_evaluator
.
eval
(
exe
)
if
batch_id
%
10
==
0
:
if
batch_id
%
10
==
0
:
print
(
"avg_cost:"
+
str
(
cost
)
+
" precision:"
+
str
(
print
(
"avg_cost:"
+
str
(
cost
))
precision
)
+
" recall:"
+
str
(
recall
)
+
" f1_score:"
+
str
(
f1_score
)
+
" pass_precision:"
+
str
(
pass_precision
)
+
" pass_recall:"
+
str
(
pass_recall
)
+
" pass_f1_score:"
+
str
(
pass_f1_score
))
if
batch_id
!=
0
:
if
batch_id
!=
0
:
print
(
"second per batch: "
+
str
((
time
.
time
(
print
(
"second per batch: "
+
str
((
time
.
time
(
)
-
start_time
)
/
batch_id
))
)
-
start_time
)
/
batch_id
))
# Set the threshold low to speed up the CI test
# Set the threshold low to speed up the CI test
if
float
(
pass_precision
)
>
0.01
:
if
float
(
cost
)
<
60.0
:
if
save_dirname
is
not
None
:
if
save_dirname
is
not
None
:
# TODO(liuyiqun): Change the target to crf_decode
# TODO(liuyiqun): Change the target to crf_decode
fluid
.
io
.
save_inference_model
(
save_dirname
,
[
fluid
.
io
.
save_inference_model
(
save_dirname
,
[
...
...
python/paddle/fluid/tests/test_data_feeder.py
浏览文件 @
50ba205d
...
@@ -13,15 +13,62 @@
...
@@ -13,15 +13,62 @@
# limitations under the License.
# limitations under the License.
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
unittest
def
test_converter
():
class
TestDataFeeder
(
unittest
.
TestCase
):
img
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
1
,
28
,
28
])
def
test_lod_level_0_converter
(
self
):
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
img
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
1
,
28
,
28
])
feeder
=
fluid
.
DataFeeder
([
img
,
label
],
fluid
.
CPUPlace
())
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
result
=
feeder
.
feed
([[[
0
]
*
784
,
[
9
]],
[[
1
]
*
784
,
[
1
]]])
feeder
=
fluid
.
DataFeeder
([
img
,
label
],
fluid
.
CPUPlace
())
print
(
result
)
result
=
feeder
.
feed
([([
0
]
*
784
,
[
9
]),
([
1
]
*
784
,
[
1
])])
print
(
result
)
self
.
assertEqual
(
result
[
'image'
].
shape
(),
[
2
,
1
,
28
,
28
])
self
.
assertEqual
(
result
[
'label'
].
shape
(),
[
2
,
1
])
self
.
assertEqual
(
result
[
'image'
].
lod
(),
[])
self
.
assertEqual
(
result
[
'label'
].
lod
(),
[])
def
test_lod_level_1_converter
(
self
):
# lod_level = 1
# each sentence has a different number of words
sentences
=
fluid
.
layers
.
data
(
name
=
'sentences'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
feeder
=
fluid
.
DataFeeder
([
sentences
,
label
],
fluid
.
CPUPlace
())
# lod = [[0, 3, 5, 9]]
# data = [[1, 2, 3], [4, 5], [6, 7, 8, 9]]
# label = [1] * len(data)
result
=
feeder
.
feed
(
[([
1
,
2
,
3
],
[
1
]),
([
4
,
5
],
[
1
]),
([
6
,
7
,
8
,
9
],
[
1
])])
print
(
result
)
self
.
assertEqual
(
result
[
'sentences'
].
shape
(),
[
9
,
1
])
self
.
assertEqual
(
result
[
'label'
].
shape
(),
[
3
,
1
])
self
.
assertEqual
(
result
[
'sentences'
].
lod
(),
[[
0
,
3
,
5
,
9
]])
self
.
assertEqual
(
result
[
'label'
].
lod
(),
[])
def
test_lod_level_2_converter
(
self
):
# lod_level = 2
# paragraphs -> sentences -> words
paragraphs
=
fluid
.
layers
.
data
(
name
=
'paragraphs'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
2
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
feeder
=
fluid
.
DataFeeder
([
paragraphs
,
label
],
fluid
.
CPUPlace
())
# lod = [[0, 2, 3], [0, 3, 5, 9]]
# data = [[[1, 2, 3], [4, 5]], [[6, 7, 8, 9]]]
# label = [1] * len(data)
result
=
feeder
.
feed
(
[([[
1
,
2
,
3
],
[
4
,
5
]],
[
1
]),
([[
6
,
7
,
8
,
9
]],
[
1
])])
print
(
result
)
self
.
assertEqual
(
result
[
'paragraphs'
].
shape
(),
[
9
,
1
])
self
.
assertEqual
(
result
[
'label'
].
shape
(),
[
2
,
1
])
self
.
assertEqual
(
result
[
'paragraphs'
].
lod
(),
[[
0
,
2
,
3
],
[
0
,
3
,
5
,
9
]])
self
.
assertEqual
(
result
[
'label'
].
lod
(),
[])
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
test_converter
()
unittest
.
main
()
python/paddle/fluid/tests/test_detection.py
浏览文件 @
50ba205d
...
@@ -109,6 +109,24 @@ class TestDetection(unittest.TestCase):
...
@@ -109,6 +109,24 @@ class TestDetection(unittest.TestCase):
print
(
str
(
program
))
print
(
str
(
program
))
class
TestPriorBox
(
unittest
.
TestCase
):
def
test_prior_box
(
self
):
data_shape
=
[
3
,
224
,
224
]
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
data_shape
,
dtype
=
'float32'
)
conv1
=
fluid
.
layers
.
conv2d
(
images
,
3
,
3
,
2
)
box
,
var
=
layers
.
prior_box
(
input
=
conv1
,
image
=
images
,
min_sizes
=
[
100.0
],
aspect_ratios
=
[
1.
],
flip
=
True
,
clip
=
True
)
assert
len
(
box
.
shape
)
==
4
assert
box
.
shape
==
var
.
shape
assert
box
.
shape
[
3
]
==
4
class
TestMultiBoxHead
(
unittest
.
TestCase
):
class
TestMultiBoxHead
(
unittest
.
TestCase
):
def
test_multi_box_head
(
self
):
def
test_multi_box_head
(
self
):
data_shape
=
[
3
,
224
,
224
]
data_shape
=
[
3
,
224
,
224
]
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
50ba205d
...
@@ -28,11 +28,11 @@ function(py_test_modules TARGET_NAME)
...
@@ -28,11 +28,11 @@ function(py_test_modules TARGET_NAME)
if
(
WITH_TESTING
)
if
(
WITH_TESTING
)
set
(
options
""
)
set
(
options
""
)
set
(
oneValueArgs
""
)
set
(
oneValueArgs
""
)
set
(
multiValueArgs MODULES DEPS
ARGS
ENVS
)
set
(
multiValueArgs MODULES DEPS ENVS
)
cmake_parse_arguments
(
py_test_modules
"
${
options
}
"
"
${
oneValueArgs
}
"
"
${
multiValueArgs
}
"
${
ARGN
}
)
cmake_parse_arguments
(
py_test_modules
"
${
options
}
"
"
${
oneValueArgs
}
"
"
${
multiValueArgs
}
"
${
ARGN
}
)
add_test
(
NAME
${
TARGET_NAME
}
add_test
(
NAME
${
TARGET_NAME
}
COMMAND env PYTHONPATH=
${
PADDLE_BINARY_DIR
}
/python
${
py_test_modules_ENVS
}
COMMAND env PYTHONPATH=
${
PADDLE_BINARY_DIR
}
/python
${
py_test_modules_ENVS
}
${
PYTHON_EXECUTABLE
}
-u -m unittest --verbose
${
py_test_modules_MODULES
}
${
py_test_modules_ARG
S
}
${
PYTHON_EXECUTABLE
}
${
PADDLE_SOURCE_DIR
}
/tools/test_runner.py
${
py_test_modules_MODULE
S
}
WORKING_DIRECTORY
${
CMAKE_CURRENT_BINARY_DIR
}
)
WORKING_DIRECTORY
${
CMAKE_CURRENT_BINARY_DIR
}
)
endif
()
endif
()
endfunction
()
endfunction
()
...
...
python/paddle/fluid/tests/unittests/test_dist_train.py
浏览文件 @
50ba205d
...
@@ -52,15 +52,18 @@ class TestSendOp(unittest.TestCase):
...
@@ -52,15 +52,18 @@ class TestSendOp(unittest.TestCase):
serv
=
layers
.
ListenAndServ
(
serv
=
layers
.
ListenAndServ
(
"127.0.0.1:0"
,
[
"X"
],
optimizer_mode
=
False
)
"127.0.0.1:0"
,
[
"X"
],
optimizer_mode
=
False
)
with
serv
.
do
():
with
serv
.
do
():
out_var
=
main
.
global_block
().
create_var
(
name
=
"scale_0.tmp_0"
,
psersistable
=
True
,
dtype
=
"float32"
,
shape
=
[
32
,
32
])
x
=
layers
.
data
(
x
=
layers
.
data
(
shape
=
[
32
,
32
],
shape
=
[
32
,
32
],
dtype
=
'float32'
,
dtype
=
'float32'
,
name
=
"X"
,
name
=
"X"
,
append_batch_size
=
False
)
append_batch_size
=
False
)
fluid
.
initializer
.
Constant
(
value
=
1.0
)(
x
,
main
.
global_block
())
fluid
.
initializer
.
Constant
(
value
=
1.0
)(
x
,
main
.
global_block
())
o
=
layers
.
scale
(
x
=
x
,
scale
=
10.0
)
layers
.
scale
(
x
=
x
,
scale
=
10.0
,
out
=
out_var
)
main
.
global_block
().
create_var
(
name
=
o
.
name
,
psersistable
=
False
,
dtype
=
o
.
dtype
,
shape
=
o
.
shape
)
self
.
server_exe
=
fluid
.
Executor
(
place
)
self
.
server_exe
=
fluid
.
Executor
(
place
)
self
.
server_exe
.
run
(
main
)
self
.
server_exe
.
run
(
main
)
...
...
python/paddle/fluid/tests/unittests/test_network_with_dtype.py
浏览文件 @
50ba205d
...
@@ -24,33 +24,30 @@ BATCH_SIZE = 20
...
@@ -24,33 +24,30 @@ BATCH_SIZE = 20
class
TestNetWithDtype
(
unittest
.
TestCase
):
class
TestNetWithDtype
(
unittest
.
TestCase
):
def
set
_network
(
self
):
def
set
Up
(
self
):
self
.
dtype
=
"float64"
self
.
dtype
=
"float64"
self
.
init_dtype
()
self
.
init_dtype
()
main
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
):
self
.
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
13
],
dtype
=
self
.
dtype
)
self
.
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
self
.
dtype
)
y_predict
=
fluid
.
layers
.
fc
(
input
=
self
.
x
,
size
=
1
,
act
=
None
)
cost
=
fluid
.
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
self
.
y
)
def
run_net_on_place
(
self
,
place
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
13
],
dtype
=
self
.
dtype
)
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
self
.
dtype
)
y_predict
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
1
,
act
=
None
)
cost
=
fluid
.
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
y
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
self
.
program
=
main
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
)
self
.
fetch_list
=
[
avg_cost
]
sgd_optimizer
.
minimize
(
avg_cost
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
)
fetch_list
=
[
avg_cost
]
sgd_optimizer
.
minimize
(
avg_cost
)
def
run_net_on_place
(
self
,
place
):
train_reader
=
paddle
.
batch
(
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
uci_housing
.
train
(),
batch_size
=
BATCH_SIZE
)
paddle
.
dataset
.
uci_housing
.
train
(),
batch_size
=
BATCH_SIZE
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
self
.
x
,
self
.
y
])
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
x
,
y
])
exe
=
fluid
.
Executor
(
place
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
()
)
exe
.
run
(
startup
)
for
data
in
train_reader
():
for
data
in
train_reader
():
exe
.
run
(
self
.
program
,
exe
.
run
(
main
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
fetch_list
)
feed
=
feeder
.
feed
(
data
),
fetch_list
=
self
.
fetch_list
)
# the main program is runable, the datatype is fully supported
# the main program is runable, the datatype is fully supported
break
break
...
@@ -58,14 +55,12 @@ class TestNetWithDtype(unittest.TestCase):
...
@@ -58,14 +55,12 @@ class TestNetWithDtype(unittest.TestCase):
pass
pass
def
test_cpu
(
self
):
def
test_cpu
(
self
):
self
.
set_network
()
place
=
fluid
.
CPUPlace
()
place
=
fluid
.
CPUPlace
()
self
.
run_net_on_place
(
place
)
self
.
run_net_on_place
(
place
)
def
test_gpu
(
self
):
def
test_gpu
(
self
):
if
not
core
.
is_compiled_with_cuda
():
if
not
core
.
is_compiled_with_cuda
():
return
return
self
.
set_network
()
place
=
fluid
.
CUDAPlace
(
0
)
place
=
fluid
.
CUDAPlace
(
0
)
self
.
run_net_on_place
(
place
)
self
.
run_net_on_place
(
place
)
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor.py
浏览文件 @
50ba205d
...
@@ -775,7 +775,7 @@ class TestCRFModel(unittest.TestCase):
...
@@ -775,7 +775,7 @@ class TestCRFModel(unittest.TestCase):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
self
.
check_network_convergence
(
self
.
check_network_convergence
(
is_sparse
=
Fals
e
,
build_strategy
=
build_strategy
)
is_sparse
=
Tru
e
,
build_strategy
=
build_strategy
)
def
test_update_dense_parameter_reduce
(
self
):
def
test_update_dense_parameter_reduce
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
=
fluid
.
BuildStrategy
()
...
@@ -849,8 +849,7 @@ class TestFetchOp(unittest.TestCase):
...
@@ -849,8 +849,7 @@ class TestFetchOp(unittest.TestCase):
assert
not
math
.
isnan
(
np
.
sum
(
ret
[
i
]))
and
\
assert
not
math
.
isnan
(
np
.
sum
(
ret
[
i
]))
and
\
not
math
.
isinf
(
np
.
sum
(
ret
[
i
]))
not
math
.
isinf
(
np
.
sum
(
ret
[
i
]))
@
unittest
.
skip
(
"this test is buggy"
)
def
test_fetch_op
(
self
):
def
test_feed
(
self
):
tst_reader
=
paddle
.
batch
(
flowers
.
test
(
use_xmap
=
False
),
batch_size
=
16
)
tst_reader
=
paddle
.
batch
(
flowers
.
test
(
use_xmap
=
False
),
batch_size
=
16
)
tst_reader_iter
=
tst_reader
()
tst_reader_iter
=
tst_reader
()
...
...
python/paddle/fluid/trainer.py
浏览文件 @
50ba205d
...
@@ -12,17 +12,18 @@
...
@@ -12,17 +12,18 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
import
contextlib
import
os
import
os
import
core
import
core
import
framework
import
executor
import
data_feeder
import
data_feeder
import
contextlib
import
executor
import
framework
import
io
import
io
import
unique_name
# optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module
# optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module
import
optimizer
as
opt_module
import
optimizer
as
opt_module
import
parallel_executor
from
transpiler
import
distribute_transpiler
from
transpiler
import
distribute_transpiler
__all__
=
[
__all__
=
[
...
@@ -48,12 +49,14 @@ class BeginStepEvent(object):
...
@@ -48,12 +49,14 @@ class BeginStepEvent(object):
def
__init__
(
self
,
epoch_id
,
step_id
):
def
__init__
(
self
,
epoch_id
,
step_id
):
self
.
epoch
=
epoch_id
self
.
epoch
=
epoch_id
self
.
step
=
step_id
self
.
step
=
step_id
self
.
fetch_metrics
=
True
class
EndStepEvent
(
object
):
class
EndStepEvent
(
object
):
def
__init__
(
self
,
epoch_id
,
step_id
):
def
__init__
(
self
,
epoch_id
,
step_id
,
metrics
):
self
.
epoch
=
epoch_id
self
.
epoch
=
epoch_id
self
.
step
=
step_id
self
.
step
=
step_id
self
.
metrics
=
metrics
def
check_and_get_place
(
place
):
def
check_and_get_place
(
place
):
...
@@ -87,12 +90,18 @@ class Trainer(object):
...
@@ -87,12 +90,18 @@ class Trainer(object):
Args:
Args:
train_func(callable): A function which will return loss. The loss must be a scalar.
train_func(callable): A function which will return loss. The loss must be a scalar.
infer_func(callable): A function which will return predict, used to save inference model
optimizer(optimizer.Optimizer): The optimizer should be an instance of Optimizer
optimizer(optimizer.Optimizer): The optimizer should be an instance of Optimizer
place: The device place of this trainer.
place: The device place of this trainer.
"""
"""
def
__init__
(
self
,
train_func
,
optimizer
,
param_path
=
None
,
place
=
None
):
def
__init__
(
self
,
train_func
,
optimizer
,
param_path
=
None
,
place
=
None
,
parallel
=
False
):
self
.
__stop
=
False
self
.
parallel
=
parallel
# 1. we need to generate a framework.Program by calling
# 1. we need to generate a framework.Program by calling
# program_func. Reference: fluid.program_guard in
# program_func. Reference: fluid.program_guard in
# test_word2vec.py
# test_word2vec.py
...
@@ -106,14 +115,14 @@ class Trainer(object):
...
@@ -106,14 +115,14 @@ class Trainer(object):
with
framework
.
program_guard
(
self
.
train_program
,
self
.
startup_program
):
with
framework
.
program_guard
(
self
.
train_program
,
self
.
startup_program
):
program_func_outs
=
train_func
()
program_func_outs
=
train_func
()
self
.
t
est
_outputs
=
program_func_outs
if
isinstance
(
self
.
t
rain_func
_outputs
=
program_func_outs
if
isinstance
(
program_func_outs
,
list
)
else
[
program_func_outs
]
program_func_outs
,
list
)
else
[
program_func_outs
]
self
.
test_program
=
self
.
train_program
.
clone
()
self
.
test_program
=
self
.
train_program
.
clone
()
if
not
isinstance
(
optimizer
,
opt_module
.
Optimizer
):
if
not
isinstance
(
optimizer
,
opt_module
.
Optimizer
):
raise
TypeError
(
raise
TypeError
(
"The optimizer should be an instance of Optimizer"
)
"The optimizer should be an instance of Optimizer"
)
# The fisrt element of program_func_outs is loss.
# The fisrt element of program_func_outs is loss.
loss
=
self
.
t
est
_outputs
[
0
]
loss
=
self
.
t
rain_func
_outputs
[
0
]
optimize_ops
,
params_grads
=
optimizer
.
minimize
(
loss
)
optimize_ops
,
params_grads
=
optimizer
.
minimize
(
loss
)
self
.
place
=
check_and_get_place
(
place
)
self
.
place
=
check_and_get_place
(
place
)
...
@@ -131,7 +140,40 @@ class Trainer(object):
...
@@ -131,7 +140,40 @@ class Trainer(object):
# load params from param_path into scope
# load params from param_path into scope
io
.
load_persistables
(
exe
,
dirname
=
param_path
)
io
.
load_persistables
(
exe
,
dirname
=
param_path
)
def
_transpile_nccl2_dist
(
self
):
# PADDLE_TRAINER_IPS
if
"PADDLE_TRAINER_IPS"
not
in
os
.
environ
:
self
.
nccl_id_var
=
None
else
:
self
.
trainer_id
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
))
port
=
os
.
getenv
(
"PADDLE_PSERVER_PORT"
)
worker_ips
=
os
.
getenv
(
"PADDLE_TRAINER_IPS"
)
worker_endpoints
=
[]
for
ip
in
worker_ips
.
split
(
","
):
worker_endpoints
.
append
(
':'
.
join
([
ip
,
port
]))
self
.
num_trainers
=
len
(
worker_endpoints
)
current_endpoint
=
os
.
getenv
(
"POD_IP"
)
+
":"
+
port
worker_endpoints
.
remove
(
current_endpoint
)
# TODO(wuyi): use self.nccl_id_var, self.num_trainers and self.trainer_id
# in ParallelExecutor to start
# distributed training using NCCL2
self
.
nccl_id_var
=
self
.
startup_program
.
global_block
().
create_var
(
name
=
"NCCLID"
,
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
)
self
.
startup_program
.
global_block
().
append_op
(
type
=
"gen_nccl_id"
,
inputs
=
{},
outputs
=
{
"NCCLID"
:
self
.
nccl_id_var
},
attrs
=
{
"endpoint"
:
current_endpoint
,
"endpoint_list"
:
worker_endpoints
,
"trainer_id"
:
self
.
trainer_id
})
def
_dist_transpile_if_necessary
(
self
,
optimize_ops
,
params_grads
):
def
_dist_transpile_if_necessary
(
self
,
optimize_ops
,
params_grads
):
self
.
_transpile_nccl2_dist
()
if
self
.
nccl_id_var
!=
None
:
return
if
"PADDLE_TRAINING_ROLE"
not
in
os
.
environ
:
if
"PADDLE_TRAINING_ROLE"
not
in
os
.
environ
:
return
return
...
@@ -169,12 +211,13 @@ class Trainer(object):
...
@@ -169,12 +211,13 @@ class Trainer(object):
'TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
'TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
)
)
def
train
(
self
,
def
stop
(
self
):
num_epochs
,
"""
event_handler
,
stop training
reader
,
"""
feed_order
,
self
.
__stop
=
True
parallel
=
False
):
def
train
(
self
,
num_epochs
,
event_handler
,
reader
=
None
,
feed_order
=
None
):
"""
"""
Train the model.
Train the model.
...
@@ -182,25 +225,24 @@ class Trainer(object):
...
@@ -182,25 +225,24 @@ class Trainer(object):
num_epochs: The number of epoch. An epoch will process all data in reader
num_epochs: The number of epoch. An epoch will process all data in reader
event_handler: The event handler. A function with type (ev:Event)->void
event_handler: The event handler. A function with type (ev:Event)->void
reader:
reader:
parallel: True if use multi-CPUs or multi-GPUs
feed_order: Feeding order of reader. None will following the defining
feed_order: Feeding order of reader. None will following the defining
order in program
order in program
Returns:
Returns:
"""
"""
if
parallel
:
raise
NotImplementedError
(
"Parallel Executor version of trainer is not implemented"
)
training_role
=
os
.
getenv
(
"PADDLE_TRAINING_ROLE"
,
""
)
training_role
=
os
.
getenv
(
"PADDLE_TRAINING_ROLE"
,
""
)
if
training_role
==
"PSERVER"
:
if
training_role
==
"PSERVER"
:
with
self
.
_prog_and_scope_guard
():
with
self
.
_prog_and_scope_guard
():
exe
=
executor
.
Executor
(
self
.
place
)
exe
=
executor
.
Executor
(
self
.
place
)
exe
.
run
()
exe
.
run
()
return
return
if
self
.
parallel
:
self
.
_train_by_executor
(
num_epochs
,
event_handler
,
reader
,
feed_order
)
self
.
_train_by_parallel_executor
(
num_epochs
,
event_handler
,
reader
,
feed_order
)
else
:
self
.
_train_by_executor
(
num_epochs
,
event_handler
,
reader
,
feed_order
)
def
test
(
self
,
reader
,
feed_order
):
def
test
(
self
,
reader
,
feed_order
):
"""
"""
...
@@ -212,7 +254,8 @@ class Trainer(object):
...
@@ -212,7 +254,8 @@ class Trainer(object):
order in program
order in program
"""
"""
return
self
.
_test_by_executor
(
reader
,
feed_order
,
self
.
test_outputs
)
return
self
.
_test_by_executor
(
reader
,
feed_order
,
self
.
train_func_outputs
)
def
save_params
(
self
,
param_path
):
def
save_params
(
self
,
param_path
):
# reference: save_persistables in io.py
# reference: save_persistables in io.py
...
@@ -246,13 +289,27 @@ class Trainer(object):
...
@@ -246,13 +289,27 @@ class Trainer(object):
feeder
=
data_feeder
.
DataFeeder
(
feeder
=
data_feeder
.
DataFeeder
(
feed_list
=
feed_var_list
,
place
=
self
.
place
)
feed_list
=
feed_var_list
,
place
=
self
.
place
)
exe
=
executor
.
Executor
(
self
.
place
)
exe
=
executor
.
Executor
(
self
.
place
)
for
epoch_id
in
range
(
num_epochs
):
reader
=
feeder
.
decorate_reader
(
reader
,
multi_devices
=
False
)
event_handler
(
BeginEpochEvent
(
epoch_id
))
self
.
_train_by_any_executor
(
event_handler
,
exe
,
num_epochs
,
reader
)
for
step_id
,
data
in
enumerate
(
reader
()):
event_handler
(
BeginStepEvent
(
epoch_id
,
step_id
))
def
_train_by_any_executor
(
self
,
event_handler
,
exe
,
num_epochs
,
reader
):
exe
.
run
(
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[])
for
epoch_id
in
range
(
num_epochs
):
event_handler
(
EndStepEvent
(
epoch_id
,
step_id
))
event_handler
(
BeginEpochEvent
(
epoch_id
))
event_handler
(
EndEpochEvent
(
epoch_id
))
for
step_id
,
data
in
enumerate
(
reader
()):
if
self
.
__stop
:
return
begin_event
=
BeginStepEvent
(
epoch_id
,
step_id
)
event_handler
(
begin_event
)
if
begin_event
.
fetch_metrics
:
metrics
=
exe
.
run
(
feed
=
data
,
fetch_list
=
[
var
.
name
for
var
in
self
.
train_func_outputs
])
else
:
metrics
=
exe
.
run
(
feed
=
data
,
fetch_list
=
[])
event_handler
(
EndStepEvent
(
epoch_id
,
step_id
,
metrics
))
event_handler
(
EndEpochEvent
(
epoch_id
))
def
_test_by_executor
(
self
,
reader
,
feed_order
,
fetch_list
):
def
_test_by_executor
(
self
,
reader
,
feed_order
,
fetch_list
):
with
executor
.
scope_guard
(
self
.
scope
):
with
executor
.
scope_guard
(
self
.
scope
):
...
@@ -271,6 +328,26 @@ class Trainer(object):
...
@@ -271,6 +328,26 @@ class Trainer(object):
return
[
x
/
count
for
x
in
accumulated
]
return
[
x
/
count
for
x
in
accumulated
]
def
_train_by_parallel_executor
(
self
,
num_epochs
,
event_handler
,
reader
,
feed_order
):
with
self
.
_prog_and_scope_guard
():
pe
=
self
.
_get_or_create_parallel_executor
()
feed_var_list
=
build_feed_var_list
(
self
.
train_program
,
feed_order
)
feeder
=
data_feeder
.
DataFeeder
(
feed_list
=
feed_var_list
,
place
=
self
.
place
)
reader
=
feeder
.
decorate_reader
(
reader
,
multi_devices
=
True
)
self
.
_train_by_any_executor
(
event_handler
,
pe
,
num_epochs
,
reader
)
def
_get_parallel_executor
(
self
):
return
getattr
(
self
,
'parallel_executor'
,
None
)
def
_get_or_create_parallel_executor
(
self
):
if
self
.
_get_parallel_executor
()
is
None
:
self
.
parallel_executor
=
parallel_executor
.
ParallelExecutor
(
use_cuda
=
isinstance
(
self
.
place
,
core
.
CUDAPlace
),
loss_name
=
self
.
train_func_outputs
[
0
].
name
)
return
self
.
_get_parallel_executor
()
def
build_feed_var_list
(
program
,
feed_order
):
def
build_feed_var_list
(
program
,
feed_order
):
if
not
isinstance
(
program
,
framework
.
Program
):
if
not
isinstance
(
program
,
framework
.
Program
):
...
...
tools/test_runner.py
0 → 100644
浏览文件 @
50ba205d
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
os
import
sys
import
paddle.fluid
as
fluid
import
importlib
import
cStringIO
def
main
():
sys
.
path
.
append
(
os
.
getcwd
())
some_test_failed
=
False
for
module_name
in
sys
.
argv
[
1
:]:
buffer
=
cStringIO
.
StringIO
()
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
scope
=
fluid
.
core
.
Scope
()
with
fluid
.
program_guard
(
main
,
startup
):
with
fluid
.
scope_guard
(
scope
):
with
fluid
.
unique_name
.
guard
():
test_loader
=
unittest
.
TestLoader
()
module
=
importlib
.
import_module
(
module_name
)
tests
=
test_loader
.
loadTestsFromModule
(
module
)
res
=
unittest
.
TextTestRunner
(
stream
=
buffer
).
run
(
tests
)
if
not
res
.
wasSuccessful
():
some_test_failed
=
True
print
>>
sys
.
stderr
,
module_name
,
'failed
\n
'
,
buffer
.
getvalue
(
)
if
some_test_failed
:
exit
(
1
)
if
__name__
==
'__main__'
:
main
()
tools/timeline.py
浏览文件 @
50ba205d
...
@@ -171,7 +171,7 @@ if args.timeline_path:
...
@@ -171,7 +171,7 @@ if args.timeline_path:
profile_paths
=
profile_path
.
split
(
','
)
profile_paths
=
profile_path
.
split
(
','
)
profile_dict
=
dict
()
profile_dict
=
dict
()
if
len
(
profile_path
)
==
1
:
if
len
(
profile_path
s
)
==
1
:
with
open
(
profile_path
,
'r'
)
as
f
:
with
open
(
profile_path
,
'r'
)
as
f
:
profile_s
=
f
.
read
()
profile_s
=
f
.
read
()
profile_pb
=
profiler_pb2
.
Profile
()
profile_pb
=
profiler_pb2
.
Profile
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录