From 4fee15e86003b38973a1fdd943e4a6ef96bd9bbe Mon Sep 17 00:00:00 2001 From: Yang Yu Date: Tue, 30 Jan 2018 16:59:54 +0800 Subject: [PATCH] Merge test_understand_sentiment together Into one unit test file --- ...c_lstm.py => test_understand_sentiment.py} | 115 +++++++++---- .../book/test_understand_sentiment_conv.py | 101 ----------- .../book/test_understand_sentiment_lstm.py | 160 ------------------ 3 files changed, 78 insertions(+), 298 deletions(-) rename python/paddle/v2/fluid/tests/book/{test_understand_sentiment_dynamic_lstm.py => test_understand_sentiment.py} (52%) delete mode 100644 python/paddle/v2/fluid/tests/book/test_understand_sentiment_conv.py delete mode 100644 python/paddle/v2/fluid/tests/book/test_understand_sentiment_lstm.py diff --git a/python/paddle/v2/fluid/tests/book/test_understand_sentiment_dynamic_lstm.py b/python/paddle/v2/fluid/tests/book/test_understand_sentiment.py similarity index 52% rename from python/paddle/v2/fluid/tests/book/test_understand_sentiment_dynamic_lstm.py rename to python/paddle/v2/fluid/tests/book/test_understand_sentiment.py index 529223eba8..2ba9077a26 100644 --- a/python/paddle/v2/fluid/tests/book/test_understand_sentiment_dynamic_lstm.py +++ b/python/paddle/v2/fluid/tests/book/test_understand_sentiment.py @@ -1,4 +1,4 @@ -# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -12,9 +12,36 @@ # See the License for the specific language governing permissions and # limitations under the License. -import numpy as np -import paddle.v2 as paddle +import unittest import paddle.v2.fluid as fluid +import paddle.v2 as paddle +import contextlib + + +def convolution_net(data, label, input_dim, class_dim=2, emb_dim=32, + hid_dim=32): + emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim]) + conv_3 = fluid.nets.sequence_conv_pool( + input=emb, + num_filters=hid_dim, + filter_size=3, + act="tanh", + pool_type="sqrt") + conv_4 = fluid.nets.sequence_conv_pool( + input=emb, + num_filters=hid_dim, + filter_size=4, + act="tanh", + pool_type="sqrt") + prediction = fluid.layers.fc(input=[conv_3, conv_4], + size=class_dim, + act="softmax") + cost = fluid.layers.cross_entropy(input=prediction, label=label) + avg_cost = fluid.layers.mean(x=cost) + adam_optimizer = fluid.optimizer.Adam(learning_rate=0.002) + adam_optimizer.minimize(avg_cost) + accuracy = fluid.layers.accuracy(input=prediction, label=label) + return avg_cost, accuracy def stacked_lstm_net(data, @@ -51,63 +78,77 @@ def stacked_lstm_net(data, avg_cost = fluid.layers.mean(x=cost) adam_optimizer = fluid.optimizer.Adam(learning_rate=0.002) adam_optimizer.minimize(avg_cost) - accuracy = fluid.evaluator.Accuracy(input=prediction, label=label) - return avg_cost, accuracy, accuracy.metrics[0] - - -def to_lodtensor(data, place): - seq_lens = [len(seq) for seq in data] - cur_len = 0 - lod = [cur_len] - for l in seq_lens: - cur_len += l - lod.append(cur_len) - flattened_data = np.concatenate(data, axis=0).astype("int64") - flattened_data = flattened_data.reshape([len(flattened_data), 1]) - res = fluid.LoDTensor() - res.set(flattened_data, place) - res.set_lod([lod]) - return res - - -def main(): - BATCH_SIZE = 100 - PASS_NUM = 5 + accuracy = fluid.layers.accuracy(input=prediction, label=label) + return avg_cost, accuracy - word_dict = paddle.dataset.imdb.word_dict() - print "load word dict successfully" + +def main(word_dict, net_method, use_cuda): + if use_cuda and not fluid.core.is_compiled_with_cuda(): + return + + BATCH_SIZE = 128 + PASS_NUM = 5 dict_dim = len(word_dict) class_dim = 2 data = fluid.layers.data( name="words", shape=[1], dtype="int64", lod_level=1) label = fluid.layers.data(name="label", shape=[1], dtype="int64") - cost, accuracy, acc_out = stacked_lstm_net( + cost, acc_out = net_method( data, label, input_dim=dict_dim, class_dim=class_dim) train_data = paddle.batch( paddle.reader.shuffle( paddle.dataset.imdb.train(word_dict), buf_size=1000), batch_size=BATCH_SIZE) - place = fluid.CPUPlace() + place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) feeder = fluid.DataFeeder(feed_list=[data, label], place=place) exe.run(fluid.default_startup_program()) for pass_id in xrange(PASS_NUM): - accuracy.reset(exe) for data in train_data(): cost_val, acc_val = exe.run(fluid.default_main_program(), feed=feeder.feed(data), fetch_list=[cost, acc_out]) - pass_acc = accuracy.eval(exe) - print("cost=" + str(cost_val) + " acc=" + str(acc_val) + - " pass_acc=" + str(pass_acc)) - if cost_val < 1.0 and acc_val > 0.8: - exit(0) - exit(1) + print("cost=" + str(cost_val) + " acc=" + str(acc_val)) + if cost_val < 0.4 and acc_val > 0.8: + return + raise AssertionError("Cost is too large for {0}".format( + net_method.__name__)) + + +class TestUnderstandSentiment(unittest.TestCase): + @classmethod + def setUpClass(cls): + cls.word_dict = paddle.dataset.imdb.word_dict() + + @contextlib.contextmanager + def new_program_scope(self): + prog = fluid.Program() + startup_prog = fluid.Program() + scope = fluid.core.Scope() + with fluid.scope_guard(scope): + with fluid.program_guard(prog, startup_prog): + yield + + def test_conv_cpu(self): + with self.new_program_scope(): + main(self.word_dict, net_method=convolution_net, use_cuda=False) + + def test_stacked_lstm_cpu(self): + with self.new_program_scope(): + main(self.word_dict, net_method=stacked_lstm_net, use_cuda=False) + + def test_conv_gpu(self): + with self.new_program_scope(): + main(self.word_dict, net_method=convolution_net, use_cuda=True) + + def test_stacked_lstm_gpu(self): + with self.new_program_scope(): + main(self.word_dict, net_method=stacked_lstm_net, use_cuda=True) if __name__ == '__main__': - main() + unittest.main() diff --git a/python/paddle/v2/fluid/tests/book/test_understand_sentiment_conv.py b/python/paddle/v2/fluid/tests/book/test_understand_sentiment_conv.py deleted file mode 100644 index df27399dd2..0000000000 --- a/python/paddle/v2/fluid/tests/book/test_understand_sentiment_conv.py +++ /dev/null @@ -1,101 +0,0 @@ -# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from __future__ import print_function -import numpy as np -import paddle.v2 as paddle -import paddle.v2.fluid as fluid - - -def convolution_net(data, label, input_dim, class_dim=2, emb_dim=32, - hid_dim=32): - emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim]) - conv_3 = fluid.nets.sequence_conv_pool( - input=emb, - num_filters=hid_dim, - filter_size=3, - act="tanh", - pool_type="sqrt") - conv_4 = fluid.nets.sequence_conv_pool( - input=emb, - num_filters=hid_dim, - filter_size=4, - act="tanh", - pool_type="sqrt") - prediction = fluid.layers.fc(input=[conv_3, conv_4], - size=class_dim, - act="softmax") - cost = fluid.layers.cross_entropy(input=prediction, label=label) - avg_cost = fluid.layers.mean(x=cost) - adam_optimizer = fluid.optimizer.Adam(learning_rate=0.002) - adam_optimizer.minimize(avg_cost) - accuracy = fluid.evaluator.Accuracy(input=prediction, label=label) - return avg_cost, accuracy, accuracy.metrics[0] - - -def to_lodtensor(data, place): - seq_lens = [len(seq) for seq in data] - cur_len = 0 - lod = [cur_len] - for l in seq_lens: - cur_len += l - lod.append(cur_len) - flattened_data = np.concatenate(data, axis=0).astype("int64") - flattened_data = flattened_data.reshape([len(flattened_data), 1]) - res = fluid.LoDTensor() - res.set(flattened_data, place) - res.set_lod([lod]) - return res - - -def main(): - BATCH_SIZE = 100 - PASS_NUM = 5 - - word_dict = paddle.dataset.imdb.word_dict() - dict_dim = len(word_dict) - class_dim = 2 - - data = fluid.layers.data( - name="words", shape=[1], dtype="int64", lod_level=1) - label = fluid.layers.data(name="label", shape=[1], dtype="int64") - cost, accuracy, acc_out = convolution_net( - data, label, input_dim=dict_dim, class_dim=class_dim) - - train_data = paddle.batch( - paddle.reader.shuffle( - paddle.dataset.imdb.train(word_dict), buf_size=1000), - batch_size=BATCH_SIZE) - place = fluid.CPUPlace() - exe = fluid.Executor(place) - feeder = fluid.DataFeeder(feed_list=[data, label], place=place) - - exe.run(fluid.default_startup_program()) - - for pass_id in xrange(PASS_NUM): - accuracy.reset(exe) - for data in train_data(): - cost_val, acc_val = exe.run(fluid.default_main_program(), - feed=feeder.feed(data), - fetch_list=[cost, acc_out]) - pass_acc = accuracy.eval(exe) - print("cost=" + str(cost_val) + " acc=" + str(acc_val) + - " pass_acc=" + str(pass_acc)) - if cost_val < 1.0 and pass_acc > 0.8: - exit(0) - exit(1) - - -if __name__ == '__main__': - main() diff --git a/python/paddle/v2/fluid/tests/book/test_understand_sentiment_lstm.py b/python/paddle/v2/fluid/tests/book/test_understand_sentiment_lstm.py deleted file mode 100644 index 117f74c59a..0000000000 --- a/python/paddle/v2/fluid/tests/book/test_understand_sentiment_lstm.py +++ /dev/null @@ -1,160 +0,0 @@ -# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import numpy as np -import paddle.v2 as paddle -import paddle.v2.fluid as fluid -from paddle.v2.fluid.layer_helper import LayerHelper - - -def lstm(x, c_pre_init, hidden_dim, forget_bias=None): - """ - This function helps create an operator for the LSTM (Long Short Term - Memory) cell that can be used inside an RNN. - """ - helper = LayerHelper('lstm_unit', **locals()) - rnn = fluid.layers.StaticRNN() - with rnn.step(): - c_pre = rnn.memory(init=c_pre_init) - x_t = rnn.step_input(x) - - before_fc = fluid.layers.concat(input=[x_t, c_pre], axis=1) - after_fc = fluid.layers.fc(input=before_fc, size=hidden_dim * 4) - - dtype = x.dtype - c = helper.create_tmp_variable(dtype) - h = helper.create_tmp_variable(dtype) - - helper.append_op( - type='lstm_unit', - inputs={"X": after_fc, - "C_prev": c_pre}, - outputs={"C": c, - "H": h}, - attrs={"forget_bias": forget_bias}) - - rnn.update_memory(c_pre, c) - rnn.output(h) - - return rnn() - - -def lstm_net(dict_dim, class_dim=2, emb_dim=32, seq_len=80, batch_size=50): - data = fluid.layers.data( - name="words", - shape=[seq_len * batch_size, 1], - append_batch_size=False, - dtype="int64", - lod_level=1) - label = fluid.layers.data( - name="label", - shape=[batch_size, 1], - append_batch_size=False, - dtype="int64") - - emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim]) - emb = fluid.layers.reshape(x=emb, shape=[batch_size, seq_len, emb_dim]) - emb = fluid.layers.transpose(x=emb, perm=[1, 0, 2]) - - c_pre_init = fluid.layers.fill_constant( - dtype=emb.dtype, shape=[batch_size, emb_dim], value=0.0) - c_pre_init.stop_gradient = False - layer_1_out = lstm(emb, c_pre_init=c_pre_init, hidden_dim=emb_dim) - layer_1_out = fluid.layers.transpose(x=layer_1_out, perm=[1, 0, 2]) - - prediction = fluid.layers.fc(input=layer_1_out, - size=class_dim, - act="softmax") - cost = fluid.layers.cross_entropy(input=prediction, label=label) - - avg_cost = fluid.layers.mean(x=cost) - adam_optimizer = fluid.optimizer.Adam(learning_rate=0.002) - adam_optimizer.minimize(avg_cost) - acc = fluid.layers.accuracy(input=prediction, label=label) - - return avg_cost, acc - - -def to_lodtensor(data, place): - seq_lens = [len(seq) for seq in data] - cur_len = 0 - lod = [cur_len] - for l in seq_lens: - cur_len += l - lod.append(cur_len) - flattened_data = np.concatenate(data, axis=0).astype("int64") - flattened_data = flattened_data.reshape([len(flattened_data), 1]) - res = fluid.LoDTensor() - res.set(flattened_data, place) - res.set_lod([lod]) - return res - - -def chop_data(data, chop_len=80, batch_size=50): - data = [(x[0][:chop_len], x[1]) for x in data if len(x[0]) >= chop_len] - - return data[:batch_size] - - -def prepare_feed_data(data, place): - tensor_words = to_lodtensor(map(lambda x: x[0], data), place) - - label = np.array(map(lambda x: x[1], data)).astype("int64") - label = label.reshape([len(label), 1]) - tensor_label = fluid.LoDTensor() - tensor_label.set(label, place) - - return tensor_words, tensor_label - - -def main(): - BATCH_SIZE = 100 - PASS_NUM = 5 - - word_dict = paddle.dataset.imdb.word_dict() - print "load word dict successfully" - dict_dim = len(word_dict) - class_dim = 2 - - cost, acc = lstm_net(dict_dim=dict_dim, class_dim=class_dim) - - train_data = paddle.batch( - paddle.reader.shuffle( - paddle.dataset.imdb.train(word_dict), buf_size=BATCH_SIZE * 10), - batch_size=BATCH_SIZE) - place = fluid.CPUPlace() - exe = fluid.Executor(place) - - exe.run(fluid.default_startup_program()) - - for pass_id in xrange(PASS_NUM): - for data in train_data(): - chopped_data = chop_data(data) - tensor_words, tensor_label = prepare_feed_data(chopped_data, place) - - outs = exe.run(fluid.default_main_program(), - feed={"words": tensor_words, - "label": tensor_label}, - fetch_list=[cost, acc]) - cost_val = np.array(outs[0]) - acc_val = np.array(outs[1]) - - print("cost=" + str(cost_val) + " acc=" + str(acc_val)) - if acc_val > 0.7: - exit(0) - exit(1) - - -if __name__ == '__main__': - main() -- GitLab