Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
4da291c6
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4da291c6
编写于
2月 15, 2019
作者:
T
Tao Luo
提交者:
GitHub
2月 15, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #15726 from qingqing01/fix_api_doc
Fix row_conv doc
上级
f7b768d3
28682325
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
5 addition
and
5 deletion
+5
-5
paddle/fluid/operators/row_conv_op.cc
paddle/fluid/operators/row_conv_op.cc
+5
-5
未找到文件。
paddle/fluid/operators/row_conv_op.cc
浏览文件 @
4da291c6
...
@@ -109,23 +109,23 @@ from future subsequences in a computationally efficient manner to improve
...
@@ -109,23 +109,23 @@ from future subsequences in a computationally efficient manner to improve
unidirectional recurrent neural networks. The row convolution operator is
unidirectional recurrent neural networks. The row convolution operator is
different from the 1D sequence convolution, and is computed as follows:
different from the 1D sequence convolution, and is computed as follows:
Given an input sequence $
in$ of length $t$ and input dimension $d
$,
Given an input sequence $
X$ of length $t$ and input dimension $D
$,
and a filter ($W$) of size $context \times
d$,
and a filter ($W$) of size $context \times
D$,
the output sequence is convolved as:
the output sequence is convolved as:
$$
$$
out_{i
, :} = \\sum_{j=i}^{i + context} in_{j,:} \\cdot W_{i-j, :
}
out_{i
} = \\sum_{j=i}^{i + context - 1} X_{j} \\cdot W_{j-i
}
$$
$$
In the above equation:
In the above equation:
* $Out_{i}$: The i-th row of output variable with shape [1, D].
* $Out_{i}$: The i-th row of output variable with shape [1, D].
* $
\\tau
$: Future context size.
* $
context
$: Future context size.
* $X_{j}$: The j-th row of input variable with shape [1, D].
* $X_{j}$: The j-th row of input variable with shape [1, D].
* $W_{
i-j}$: The (i-j
)-th row of parameters with shape [1, D].
* $W_{
j-i}$: The (j-i
)-th row of parameters with shape [1, D].
More details about row_conv please refer to
More details about row_conv please refer to
the design document
the design document
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录