提交 4cc782db 编写于 作者: S sneaxiy

test=release/1.0.0

此差异已折叠。
...@@ -167,15 +167,8 @@ cc_test(selected_rows_test SRCS selected_rows_test.cc DEPS selected_rows) ...@@ -167,15 +167,8 @@ cc_test(selected_rows_test SRCS selected_rows_test.cc DEPS selected_rows)
cc_test(op_kernel_type_test SRCS op_kernel_type_test.cc DEPS place device_context framework_proto) cc_test(op_kernel_type_test SRCS op_kernel_type_test.cc DEPS place device_context framework_proto)
cc_test(cow_ptr_tests SRCS details/cow_ptr_test.cc) cc_test(cow_ptr_tests SRCS details/cow_ptr_test.cc)
# cc_test(channel_test SRCS channel_test.cc)
cc_test(tuple_test SRCS tuple_test.cc ) cc_test(tuple_test SRCS tuple_test.cc )
if (NOT WIN32) if (NOT WIN32)
cc_test(rw_lock_test SRCS rw_lock_test.cc) cc_test(rw_lock_test SRCS rw_lock_test.cc)
endif (NOT WIN32) endif (NOT WIN32)
# disable test temporarily.
# TODO https://github.com/PaddlePaddle/Paddle/issues/11971
# cc_test(concurrency_test SRCS concurrency_test.cc DEPS go_op channel_close_op channel_create_op
# channel_send_op channel_recv_op sum_op select_op elementwise_add_op compare_op
# conditional_block_op while_op assign_op print_op executor proto_desc)
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <stddef.h> // for size_t
#include <condition_variable> // NOLINT
#include <typeindex>
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace framework {
enum class ChannelAction {
SEND = 0,
RECEIVE = 1,
CLOSE = 2,
};
// Channel is the abstract class of buffered and un-buffered channels.
template <typename T>
class Channel {
public:
virtual bool CanSend() = 0;
virtual bool CanReceive() = 0;
virtual void Send(T*) = 0;
virtual bool Receive(T*) = 0;
virtual size_t Cap() = 0;
virtual void Lock() = 0;
virtual void Unlock() = 0;
virtual bool IsClosed() = 0;
virtual void Close() = 0;
virtual ~Channel() {}
virtual void AddToSendQ(const void* referrer, T* data,
std::shared_ptr<std::condition_variable_any> cond,
std::function<bool(ChannelAction)> cb) = 0;
virtual void AddToReceiveQ(const void* referrer, T* data,
std::shared_ptr<std::condition_variable_any> cond,
std::function<bool(ChannelAction)> cb) = 0;
virtual void RemoveFromSendQ(const void* referrer) = 0;
virtual void RemoveFromReceiveQ(const void* referrer) = 0;
};
// Forward declaration of channel implementations.
template <typename T>
class ChannelImpl;
template <typename T>
Channel<T>* MakeChannel(size_t buffer_size) {
return new ChannelImpl<T>(buffer_size);
}
template <typename T>
void CloseChannel(Channel<T>* ch) {
ch->Close();
}
/*
* The ChannelHolder class serves two main purposes:
* 1. It acts as a unified wrapper for the different kinds of
* channels, i.e. Buffered and Unbuffered channels. This is
* similar to the ReaderHolder class.
* 2. It also helps us in TypeHiding. This is similar to the
* PlaceHolder implementations in variable.h and tensor.h.
*/
class ChannelHolder {
public:
template <typename T>
void Reset(size_t buffer_size) {
holder_.reset(new PlaceholderImpl<T>(buffer_size));
}
template <typename T>
void Send(T* data) {
PADDLE_ENFORCE_EQ(IsInitialized(), true,
"The Channel hasn't been initialized");
PADDLE_ENFORCE_EQ(
holder_->Type(), std::type_index(typeid(T)),
"Channel type is not same as the type of the data being sent");
// Static cast should be safe because we have ensured that types are same
Channel<T>* channel = static_cast<Channel<T>*>(holder_->Ptr());
PADDLE_ENFORCE_EQ(channel != nullptr, true, "Channel should not be null.");
channel->Send(data);
}
template <typename T>
bool Receive(T* data) {
PADDLE_ENFORCE_EQ(IsInitialized(), true,
"The Channel hasn't been initialized");
PADDLE_ENFORCE_EQ(
holder_->Type(), std::type_index(typeid(T)),
"Channel type is not same as the type of the data being sent");
Channel<T>* channel = static_cast<Channel<T>*>(holder_->Ptr());
PADDLE_ENFORCE_EQ(channel != nullptr, true, "Channel should not be null.");
return channel->Receive(data);
}
bool IsClosed() {
PADDLE_ENFORCE_EQ(IsInitialized(), true,
"The Channel hasn't been initialized");
return holder_->IsClosed();
}
bool CanSend() {
PADDLE_ENFORCE_EQ(IsInitialized(), true,
"The Channel hasn't been initialized");
return holder_->CanSend();
}
bool CanReceive() {
PADDLE_ENFORCE_EQ(IsInitialized(), true,
"The Channel hasn't been initialized");
return holder_->CanReceive();
}
void close() {
PADDLE_ENFORCE_EQ(IsInitialized(), true,
"The Channel hasn't been initialized");
holder_->Close();
}
size_t Cap() {
PADDLE_ENFORCE_EQ(IsInitialized(), true,
"The Channel hasn't been initialized");
return holder_->Cap();
}
void Lock() {
PADDLE_ENFORCE_EQ(IsInitialized(), true,
"The Channel hasn't been initialized");
holder_->Lock();
}
void Unlock() {
PADDLE_ENFORCE_EQ(IsInitialized(), true,
"The Channel hasn't been initialized");
holder_->Unlock();
}
template <typename T>
void AddToSendQ(const void* referrer, T* data,
std::shared_ptr<std::condition_variable_any> cond,
std::function<bool(ChannelAction)> cb) {
PADDLE_ENFORCE_EQ(IsInitialized(), true,
"The Channel hasn't been initialized");
Channel<T>* channel = static_cast<Channel<T>*>(holder_->Ptr());
if (channel != nullptr) {
channel->AddToSendQ(referrer, data, cond, cb);
}
}
template <typename T>
void AddToReceiveQ(const void* referrer, T* data,
std::shared_ptr<std::condition_variable_any> cond,
std::function<bool(ChannelAction)> cb) {
PADDLE_ENFORCE_EQ(IsInitialized(), true,
"The Channel hasn't been initialized");
Channel<T>* channel = static_cast<Channel<T>*>(holder_->Ptr());
if (channel != nullptr) {
channel->AddToReceiveQ(referrer, data, cond, cb);
}
}
void RemoveFromSendQ(const void* referrer) {
PADDLE_ENFORCE_EQ(IsInitialized(), true,
"The Channel hasn't been initialized");
holder_->RemoveFromSendQ(referrer);
}
void RemoveFromReceiveQ(const void* referrer) {
PADDLE_ENFORCE_EQ(IsInitialized(), true,
"The Channel hasn't been initialized");
holder_->RemoveFromReceiveQ(referrer);
}
inline bool IsInitialized() const { return holder_ != nullptr; }
inline const std::type_index Type() {
PADDLE_ENFORCE_EQ(IsInitialized(), true,
"The Channel hasn't been initialized");
return holder_->Type();
}
private:
/**
* @note Placeholder hides type T, so it doesn't appear as a template
* parameter of ChannelHolder.
*/
struct Placeholder {
virtual ~Placeholder() {}
virtual const std::type_index Type() const = 0;
virtual void* Ptr() const = 0;
virtual bool IsClosed() = 0;
virtual bool CanSend() = 0;
virtual bool CanReceive() = 0;
virtual void RemoveFromSendQ(const void* referrer) = 0;
virtual void RemoveFromReceiveQ(const void* referrer) = 0;
virtual void Close() = 0;
virtual void Lock() = 0;
virtual void Unlock() = 0;
virtual size_t Cap() = 0;
};
template <typename T>
struct PlaceholderImpl : public Placeholder {
explicit PlaceholderImpl(size_t buffer_size)
: type_(std::type_index(typeid(T))) {
channel_.reset(MakeChannel<T>(buffer_size));
}
virtual const std::type_index Type() const { return type_; }
virtual void* Ptr() const { return static_cast<void*>(channel_.get()); }
virtual bool IsClosed() {
if (channel_) {
return channel_->IsClosed();
}
return false;
}
virtual bool CanSend() {
if (channel_) {
return channel_->CanSend();
}
return false;
}
virtual bool CanReceive() {
if (channel_) {
return channel_->CanReceive();
}
return false;
}
virtual void RemoveFromSendQ(const void* referrer) {
if (channel_) {
channel_->RemoveFromSendQ(referrer);
}
}
virtual void RemoveFromReceiveQ(const void* referrer) {
if (channel_) {
channel_->RemoveFromReceiveQ(referrer);
}
}
virtual void Close() {
if (channel_) channel_->Close();
}
virtual size_t Cap() {
if (channel_)
return channel_->Cap();
else
return -1;
}
virtual void Lock() {
if (channel_) channel_->Lock();
}
virtual void Unlock() {
if (channel_) channel_->Unlock();
}
std::unique_ptr<Channel<T>> channel_;
const std::type_index type_;
};
// Pointer to a PlaceholderImpl object
std::unique_ptr<Placeholder> holder_;
};
} // namespace framework
} // namespace paddle
#include "paddle/fluid/framework/channel_impl.h"
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <stddef.h> // for size_t
#include <atomic>
#include <condition_variable> // NOLINT
#include <deque>
#include "paddle/fluid/framework/channel.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace framework {
template <typename T>
class ChannelImpl : public paddle::framework::Channel<T> {
friend Channel<T> *paddle::framework::MakeChannel<T>(size_t);
friend void paddle::framework::CloseChannel<T>(Channel<T> *);
public:
virtual bool CanSend();
virtual bool CanReceive();
virtual void Send(T *);
virtual bool Receive(T *);
virtual size_t Cap() { return cap_; }
virtual void Lock();
virtual void Unlock();
virtual bool IsClosed();
virtual void Close();
explicit ChannelImpl(size_t);
virtual ~ChannelImpl();
virtual void AddToSendQ(const void *referrer, T *data,
std::shared_ptr<std::condition_variable_any> cond,
std::function<bool(ChannelAction)> cb);
virtual void AddToReceiveQ(const void *referrer, T *data,
std::shared_ptr<std::condition_variable_any> cond,
std::function<bool(ChannelAction)> cb);
virtual void RemoveFromSendQ(const void *referrer);
virtual void RemoveFromReceiveQ(const void *referrer);
private:
struct QueueMessage {
T *data;
std::shared_ptr<std::condition_variable_any> cond;
bool chan_closed = false;
bool completed = false;
const void *referrer; // TODO(thuan): figure out better way to do this
std::function<bool(ChannelAction)> callback;
explicit QueueMessage(T *item)
: data(item), cond(std::make_shared<std::condition_variable_any>()) {}
QueueMessage(T *item, std::shared_ptr<std::condition_variable_any> cond)
: data(item), cond(cond) {}
void Wait(std::unique_lock<std::recursive_mutex> &lock) {
cond->wait(lock, [this]() { return completed; });
}
void Notify() {
completed = true;
cond->notify_all();
}
};
void send_return() {
send_ctr--;
destructor_cond_.notify_all();
}
bool recv_return(bool value) {
recv_ctr--;
destructor_cond_.notify_all();
return value;
}
std::shared_ptr<QueueMessage> get_first_message(
std::deque<std::shared_ptr<QueueMessage>> *queue, ChannelAction action) {
while (!queue->empty()) {
// Check whether this message was added by Select
// If this was added by Select then execute the callback
// to check if you can execute this message. The callback
// can return false if some other case was executed in Select.
// In that case just discard this QueueMessage and process next.
std::shared_ptr<QueueMessage> m = queue->front();
queue->pop_front();
if (m->callback == nullptr || m->callback(action)) return m;
}
return nullptr;
}
size_t cap_;
std::recursive_mutex mu_;
bool closed_;
std::deque<T> buf_;
std::deque<std::shared_ptr<QueueMessage>> recvq;
std::deque<std::shared_ptr<QueueMessage>> sendq;
std::atomic<unsigned> send_ctr{0};
std::atomic<unsigned> recv_ctr{0};
std::condition_variable_any destructor_cond_;
};
template <typename T>
ChannelImpl<T>::ChannelImpl(size_t capacity)
: cap_(capacity), closed_(false), send_ctr(0), recv_ctr(0) {
PADDLE_ENFORCE_GE(capacity, 0);
}
template <typename T>
bool ChannelImpl<T>::CanSend() {
std::lock_guard<std::recursive_mutex> lock{mu_};
return !closed_ && (!recvq.empty() || buf_.size() < cap_);
}
template <typename T>
bool ChannelImpl<T>::CanReceive() {
std::lock_guard<std::recursive_mutex> lock{mu_};
return !(closed_ && buf_.empty()) && (!sendq.empty() || buf_.size() > 0);
}
template <typename T>
void ChannelImpl<T>::Send(T *item) {
send_ctr++;
std::unique_lock<std::recursive_mutex> lock{mu_};
// If channel is closed, throw exception
if (closed_) {
send_return();
lock.unlock();
PADDLE_THROW("Cannot send on closed channel");
}
// If there is a receiver, directly pass the value we want
// to send to the receiver, bypassing the channel buffer if any
if (!recvq.empty()) {
std::shared_ptr<QueueMessage> m =
get_first_message(&recvq, ChannelAction::SEND);
if (m != nullptr) {
*(m->data) = std::move(*item);
m->Notify();
send_return();
return;
} else {
Send(item);
send_return();
return;
}
}
// Unbuffered channel will always bypass this
// If buffered channel has space in buffer,
// write the element to the buffer.
if (buf_.size() < cap_) {
// Copy to buffer
buf_.push_back(std::move(*item));
send_return();
return;
}
// Block on channel, because some receiver will complete
// the operation for us
auto m = std::make_shared<QueueMessage>(item);
sendq.push_back(m);
m->Wait(lock);
if (m->chan_closed) {
send_return();
lock.unlock();
PADDLE_THROW("Cannot send on closed channel");
}
send_return();
}
template <typename T>
bool ChannelImpl<T>::Receive(T *item) {
recv_ctr++;
std::unique_lock<std::recursive_mutex> lock{mu_};
// If channel is closed and buffer is empty or
// channel is unbuffered
if (closed_ && buf_.empty()) return recv_return(false);
// If there is a sender, directly receive the value we want
// from the sender. In case of a buffered channel, read from
// buffer and move front of send queue to the buffer
if (!sendq.empty()) {
std::shared_ptr<QueueMessage> m =
get_first_message(&sendq, ChannelAction::RECEIVE);
if (buf_.size() > 0) {
// Case 1 : Channel is Buffered
// Do Data transfer from front of buffer
// and add a QueueMessage to the buffer
*item = std::move(buf_.front());
buf_.pop_front();
// If first message from sendq is not null
// add it to the buffer and notify it
if (m != nullptr) {
// Copy to buffer
buf_.push_back(std::move(*(m->data)));
m->Notify();
} // Ignore if there is no first message
} else {
// Case 2: Channel is Unbuffered
// Do data transfer from front of SendQ
// If front is nullptr, then recursively call itself
if (m != nullptr) {
*item = std::move(*(m->data));
m->Notify();
} else {
return recv_return(Receive(item));
}
}
return recv_return(true);
}
// If this is a buffered channel and there are items in buffer
if (buf_.size() > 0) {
// Directly read from buffer
*item = std::move(buf_.front());
buf_.pop_front();
// return true
return recv_return(true);
}
// No sender available, block on this channel
// Some receiver will complete the option for us
auto m = std::make_shared<QueueMessage>(item);
recvq.push_back(m);
m->Wait(lock);
return recv_return(!m->chan_closed);
}
template <typename T>
void ChannelImpl<T>::Lock() {
mu_.lock();
}
template <typename T>
void ChannelImpl<T>::Unlock() {
mu_.unlock();
}
template <typename T>
bool ChannelImpl<T>::IsClosed() {
std::lock_guard<std::recursive_mutex> lock{mu_};
return closed_;
}
template <typename T>
void ChannelImpl<T>::Close() {
std::unique_lock<std::recursive_mutex> lock{mu_};
if (closed_) {
// TODO(abhinavarora): closing an already closed channel should panic
lock.unlock();
return;
}
closed_ = true;
// Empty the readers
while (!recvq.empty()) {
std::shared_ptr<QueueMessage> m = recvq.front();
recvq.pop_front();
m->chan_closed = true;
// Execute callback function (if any)
if (m->callback != nullptr) {
m->callback(ChannelAction::CLOSE);
}
m->Notify();
}
// Empty the senders
while (!sendq.empty()) {
std::shared_ptr<QueueMessage> m = sendq.front();
sendq.pop_front();
m->chan_closed = true;
// Execute callback function (if any)
if (m->callback != nullptr) {
m->callback(ChannelAction::CLOSE);
}
m->Notify();
}
}
template <typename T>
void ChannelImpl<T>::AddToSendQ(
const void *referrer, T *data,
std::shared_ptr<std::condition_variable_any> cond,
std::function<bool(ChannelAction)> cb) {
std::lock_guard<std::recursive_mutex> lock{mu_};
auto m = std::make_shared<QueueMessage>(data, cond);
m->referrer = referrer;
m->callback = cb;
sendq.push_back(m);
}
template <typename T>
void ChannelImpl<T>::AddToReceiveQ(
const void *referrer, T *data,
std::shared_ptr<std::condition_variable_any> cond,
std::function<bool(ChannelAction)> cb) {
std::lock_guard<std::recursive_mutex> lock{mu_};
auto m = std::make_shared<QueueMessage>(data, cond);
m->referrer = referrer;
m->callback = cb;
recvq.push_back(m);
}
template <typename T>
void ChannelImpl<T>::RemoveFromSendQ(const void *referrer) {
std::lock_guard<std::recursive_mutex> lock{mu_};
for (auto it = sendq.begin(); it != sendq.end();) {
std::shared_ptr<QueueMessage> sendMsg = (std::shared_ptr<QueueMessage>)*it;
if (sendMsg->referrer == referrer) {
it = sendq.erase(it);
} else {
++it;
}
}
}
template <typename T>
void ChannelImpl<T>::RemoveFromReceiveQ(const void *referrer) {
std::lock_guard<std::recursive_mutex> lock{mu_};
for (auto it = recvq.begin(); it != recvq.end();) {
std::shared_ptr<QueueMessage> recvMsg = (std::shared_ptr<QueueMessage>)*it;
if (recvMsg->referrer == referrer) {
it = recvq.erase(it);
} else {
++it;
}
}
}
template <typename T>
ChannelImpl<T>::~ChannelImpl() {
Close();
// The destructor must wait for all readers and writers to complete their task
// The channel has been closed, so we will not accept new readers and writers
std::unique_lock<std::recursive_mutex> lock{mu_};
destructor_cond_.wait(lock,
[this]() { return send_ctr == 0 && recv_ctr == 0; });
}
} // namespace framework
} // namespace paddle
此差异已折叠。
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <thread> // NOLINT
#include "gtest/gtest.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/channel.h"
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/op_registry.h"
USE_NO_KERNEL_OP(go);
USE_NO_KERNEL_OP(channel_close);
USE_NO_KERNEL_OP(channel_create);
USE_NO_KERNEL_OP(channel_recv);
USE_NO_KERNEL_OP(channel_send);
USE_NO_KERNEL_OP(elementwise_add);
USE_NO_KERNEL_OP(select);
USE_NO_KERNEL_OP(conditional_block);
USE_NO_KERNEL_OP(equal);
USE_NO_KERNEL_OP(assign);
USE_NO_KERNEL_OP(while);
USE_NO_KERNEL_OP(print);
namespace f = paddle::framework;
namespace p = paddle::platform;
namespace paddle {
namespace framework {
template <typename T>
LoDTensor *CreateVariable(Scope *scope, const p::CPUPlace &place,
std::string name, T value) {
// Create LoDTensor<int> of dim [1]
auto var = scope->Var(name);
auto tensor = var->GetMutable<LoDTensor>();
tensor->Resize({1});
T *expect = tensor->mutable_data<T>(place);
expect[0] = value;
return tensor;
}
void AddOp(const std::string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs, AttributeMap attrs,
BlockDesc *block) {
// insert op
auto op = block->AppendOp();
op->SetType(type);
for (auto &kv : inputs) {
op->SetInput(kv.first, kv.second);
}
for (auto &kv : outputs) {
op->SetOutput(kv.first, kv.second);
}
op->SetAttrMap(attrs);
}
void AddCase(ProgramDesc *program, Scope *scope, p::CPUPlace *place,
BlockDesc *casesBlock, int caseId, int caseType,
std::string caseChannel, std::string caseVarName,
std::function<void(BlockDesc *, Scope *)> func) {
std::string caseCondName = std::string("caseCond") + std::to_string(caseId);
std::string caseCondXVarName =
std::string("caseCondX") + std::to_string(caseId);
BlockDesc *caseBlock = program->AppendBlock(*casesBlock);
func(caseBlock, scope);
CreateVariable(scope, *place, caseCondName, false);
CreateVariable(scope, *place, caseCondXVarName, caseId);
CreateVariable(scope, *place, caseVarName, caseId);
scope->Var("step_scope");
AddOp("equal", {{"X", {caseCondXVarName}}, {"Y", {"caseToExecute"}}},
{{"Out", {caseCondName}}}, {}, casesBlock);
AddOp("conditional_block", {{"X", {caseCondName}}, {"Params", {}}},
{{"Out", {}}, {"Scope", {"step_scope"}}},
{{"sub_block", caseBlock}, {"is_scalar_condition", true}}, casesBlock);
}
void AddFibonacciSelect(Scope *scope, p::CPUPlace *place, ProgramDesc *program,
BlockDesc *parentBlock, std::string dataChanName,
std::string quitChanName) {
BlockDesc *whileBlock = program->AppendBlock(*parentBlock);
CreateVariable(scope, *place, "whileExitCond", true);
CreateVariable(scope, *place, "caseToExecute", -1);
CreateVariable(scope, *place, "case1var", 0);
CreateVariable(scope, *place, "xtemp", 0);
// TODO(thuan): Need to create fibXToSend, since channel send moves the actual
// data,
// which causes the data to be no longer accessible to do the fib calculation
// TODO(abhinav): Change channel send to do a copy instead of a move!
CreateVariable(scope, *place, "fibXToSend", 0);
CreateVariable(scope, *place, "fibX", 0);
CreateVariable(scope, *place, "fibY", 1);
CreateVariable(scope, *place, "quitVar", 0);
BlockDesc *casesBlock = program->AppendBlock(*whileBlock);
std::function<void(BlockDesc * caseBlock)> f = [](BlockDesc *caseBlock) {};
// TODO(thuan): Remove this once we change channel send to do a copy instead
// of move
AddOp("assign", {{"X", {"fibX"}}}, {{"Out", {"fibXToSend"}}}, {}, whileBlock);
// Case 0: Send to dataChanName
std::function<void(BlockDesc * caseBlock, Scope * scope)> case0Func = [&](
BlockDesc *caseBlock, Scope *scope) {
AddOp("assign", {{"X", {"fibX"}}}, {{"Out", {"xtemp"}}}, {}, caseBlock);
AddOp("assign", {{"X", {"fibY"}}}, {{"Out", {"fibX"}}}, {}, caseBlock);
AddOp("elementwise_add", {{"X", {"xtemp"}}, {"Y", {"fibY"}}},
{{"Out", {"fibY"}}}, {}, caseBlock);
};
AddCase(program, scope, place, casesBlock, 0, 1, dataChanName, "fibXToSend",
case0Func);
std::string case0Config =
std::string("0,1,") + dataChanName + std::string(",fibXToSend");
// Case 1: Receive from quitChanName
std::function<void(BlockDesc * caseBlock, Scope * scope)> case2Func = [&](
BlockDesc *caseBlock, Scope *scope) {
// Exit the while loop after we receive from quit channel.
// We assign a false to "whileExitCond" variable, which will
// break out of while_op loop
CreateVariable(scope, *place, "whileFalse", false);
AddOp("assign", {{"X", {"whileFalse"}}}, {{"Out", {"whileExitCond"}}}, {},
caseBlock);
};
AddCase(program, scope, place, casesBlock, 1, 2, quitChanName, "quitVar",
case2Func);
std::string case1Config =
std::string("1,2,") + quitChanName + std::string(",quitVar");
// Select block
AddOp("select", {{"X", {dataChanName, quitChanName}},
{"case_to_execute", {"caseToExecute"}}},
{{"Out", {}}},
{{"sub_block", casesBlock},
{"cases", std::vector<std::string>{case0Config, case1Config}}},
whileBlock);
scope->Var("stepScopes");
AddOp("while",
{{"X", {dataChanName, quitChanName}}, {"Condition", {"whileExitCond"}}},
{{"Out", {}}, {"StepScopes", {"stepScopes"}}},
{{"sub_block", whileBlock}}, parentBlock);
}
TEST(Concurrency, Go_Op) {
Scope scope;
p::CPUPlace place;
// Initialize scope variables
p::CPUDeviceContext ctx(place);
// Create channel variable
scope.Var("Channel");
// Create Variables, x0 will be put into channel,
// result will be pulled from channel
CreateVariable(&scope, place, "Status", false);
CreateVariable(&scope, place, "x0", 99);
CreateVariable(&scope, place, "result", 0);
framework::Executor executor(place);
ProgramDesc program;
BlockDesc *block = program.MutableBlock(0);
// Create channel OP
AddOp("channel_create", {}, {{"Out", {"Channel"}}},
{{"capacity", 10}, {"data_type", f::proto::VarType::LOD_TENSOR}},
block);
// Create Go Op routine
BlockDesc *goOpBlock = program.AppendBlock(program.Block(0));
AddOp("channel_send", {{"Channel", {"Channel"}}, {"X", {"x0"}}},
{{"Status", {"Status"}}}, {}, goOpBlock);
// Create Go Op
AddOp("go", {{"X", {"Channel", "x0"}}}, {}, {{"sub_block", goOpBlock}},
block);
// Create Channel Receive Op
AddOp("channel_recv", {{"Channel", {"Channel"}}},
{{"Status", {"Status"}}, {"Out", {"result"}}}, {}, block);
// Create Channel Close Op
AddOp("channel_close", {{"Channel", {"Channel"}}}, {}, {}, block);
// Check the result tensor to make sure it is set to 0
const LoDTensor &tensor = (scope.FindVar("result"))->Get<LoDTensor>();
auto *initialData = tensor.data<int>();
EXPECT_EQ(initialData[0], 0);
executor.Run(program, &scope, 0, true, true);
// After we call executor.run, the Go operator should do a channel_send to
// set the "result" variable to 99.
auto *finalData = tensor.data<int>();
EXPECT_EQ(finalData[0], 99);
}
/**
* This test implements the fibonacci function using go_op and select_op
*/
TEST(Concurrency, Select) {
Scope scope;
p::CPUPlace place;
// Initialize scope variables
p::CPUDeviceContext ctx(place);
CreateVariable(&scope, place, "Status", false);
CreateVariable(&scope, place, "result", 0);
CreateVariable(&scope, place, "currentXFib", 0);
framework::Executor executor(place);
ProgramDesc program;
BlockDesc *block = program.MutableBlock(0);
// Create channel OP
std::string dataChanName = "Channel";
scope.Var(dataChanName);
AddOp("channel_create", {}, {{"Out", {dataChanName}}},
{{"capacity", 0}, {"data_type", f::proto::VarType::LOD_TENSOR}}, block);
std::string quitChanName = "Quit";
scope.Var(quitChanName);
AddOp("channel_create", {}, {{"Out", {quitChanName}}},
{{"capacity", 0}, {"data_type", f::proto::VarType::LOD_TENSOR}}, block);
// Create Go Op routine, which loops 10 times over fibonacci sequence
CreateVariable(&scope, place, "xReceiveVar", 0);
BlockDesc *goOpBlock = program.AppendBlock(program.Block(0));
for (int i = 0; i < 10; ++i) {
AddOp("channel_recv", {{"Channel", {dataChanName}}},
{{"Status", {"Status"}}, {"Out", {"currentXFib"}}}, {}, goOpBlock);
AddOp("print", {{"In", {"currentXFib"}}}, {{"Out", {"currentXFib"}}},
{{"first_n", 100},
{"summarize", -1},
{"print_tensor_name", false},
{"print_tensor_type", true},
{"print_tensor_shape", false},
{"print_tensor_lod", false},
{"print_phase", std::string("FORWARD")},
{"message", std::string("X: ")}},
goOpBlock);
}
CreateVariable(&scope, place, "quitSignal", 0);
AddOp("channel_send", {{"Channel", {quitChanName}}, {"X", {"quitSignal"}}},
{{"Status", {"Status"}}}, {}, goOpBlock);
// Create Go Op
AddOp("go", {{"X", {dataChanName, quitChanName}}}, {},
{{"sub_block", goOpBlock}}, block);
AddFibonacciSelect(&scope, &place, &program, block, dataChanName,
quitChanName);
// Create Channel Close Op
AddOp("channel_close", {{"Channel", {dataChanName}}}, {}, {}, block);
AddOp("channel_close", {{"Channel", {quitChanName}}}, {}, {}, block);
executor.Run(program, &scope, 0, true, true);
// After we call executor.run, "result" variable should be equal to 34
// (which is 10 loops through fibonacci sequence)
const LoDTensor &tensor = (scope.FindVar("currentXFib"))->Get<LoDTensor>();
auto *finalData = tensor.data<int>();
EXPECT_EQ(finalData[0], 34);
}
} // namespace framework
} // namespace paddle
...@@ -14,7 +14,6 @@ limitations under the License. */ ...@@ -14,7 +14,6 @@ limitations under the License. */
#include "paddle/fluid/framework/executor.h" #include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/channel.h"
#include "paddle/fluid/framework/feed_fetch_method.h" #include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h" #include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h" #include "paddle/fluid/framework/lod_tensor_array.h"
...@@ -76,15 +75,13 @@ void InitializeVariable(Variable* var, proto::VarType::Type var_type) { ...@@ -76,15 +75,13 @@ void InitializeVariable(Variable* var, proto::VarType::Type var_type) {
var->GetMutable<platform::PlaceList>(); var->GetMutable<platform::PlaceList>();
} else if (var_type == proto::VarType::READER) { } else if (var_type == proto::VarType::READER) {
var->GetMutable<ReaderHolder>(); var->GetMutable<ReaderHolder>();
} else if (var_type == proto::VarType::CHANNEL) {
var->GetMutable<ChannelHolder>();
} else if (var_type == proto::VarType::RAW) { } else if (var_type == proto::VarType::RAW) {
// GetMutable will be called in operator // GetMutable will be called in operator
} else { } else {
PADDLE_THROW( PADDLE_THROW(
"Variable type %d is not in " "Variable type %d is not in "
"[LOD_TENSOR, SELECTED_ROWS, FEED_MINIBATCH, FETCH_LIST, " "[LOD_TENSOR, SELECTED_ROWS, FEED_MINIBATCH, FETCH_LIST, "
"LOD_RANK_TABLE, PLACE_LIST, READER, CHANNEL, RAW]", "LOD_RANK_TABLE, PLACE_LIST, READER, RAW]",
var_type); var_type);
} }
} }
......
...@@ -126,7 +126,6 @@ message VarType { ...@@ -126,7 +126,6 @@ message VarType {
LOD_TENSOR_ARRAY = 13; LOD_TENSOR_ARRAY = 13;
PLACE_LIST = 14; PLACE_LIST = 14;
READER = 15; READER = 15;
CHANNEL = 16;
// Any runtime decided variable type is raw // Any runtime decided variable type is raw
// raw variables should manage their own allocations // raw variables should manage their own allocations
// in operators like nccl_op // in operators like nccl_op
...@@ -158,12 +157,6 @@ message VarType { ...@@ -158,12 +157,6 @@ message VarType {
message ReaderDesc { repeated LoDTensorDesc lod_tensor = 1; } message ReaderDesc { repeated LoDTensorDesc lod_tensor = 1; }
optional ReaderDesc reader = 5; optional ReaderDesc reader = 5;
message ChannelDesc {
required Type data_type = 1;
required int64 capacity = 2;
}
optional ChannelDesc channel = 6;
message Tuple { repeated Type element_type = 1; } message Tuple { repeated Type element_type = 1; }
optional Tuple tuple = 7; optional Tuple tuple = 7;
} }
......
...@@ -27,8 +27,11 @@ class SelectedRowsTester : public ::testing::Test { ...@@ -27,8 +27,11 @@ class SelectedRowsTester : public ::testing::Test {
selected_rows_.reset(new SelectedRows(rows, height)); selected_rows_.reset(new SelectedRows(rows, height));
Tensor* value = selected_rows_->mutable_value(); Tensor* value = selected_rows_->mutable_value();
value->mutable_data<float>( auto* data = value->mutable_data<float>(
make_ddim({static_cast<int64_t>(rows.size()), row_numel}), place_); make_ddim({static_cast<int64_t>(rows.size()), row_numel}), place_);
for (int64_t i = 0; i < value->numel(); ++i) {
data[i] = static_cast<float>(i);
}
} }
protected: protected:
...@@ -60,6 +63,10 @@ TEST_F(SelectedRowsTester, SerializeAndDeseralize) { ...@@ -60,6 +63,10 @@ TEST_F(SelectedRowsTester, SerializeAndDeseralize) {
ASSERT_EQ(selected_rows_->height(), dst_tensor.height()); ASSERT_EQ(selected_rows_->height(), dst_tensor.height());
ASSERT_EQ(selected_rows_->value().dims(), dst_tensor.value().dims()); ASSERT_EQ(selected_rows_->value().dims(), dst_tensor.value().dims());
ASSERT_EQ(selected_rows_->GetCompleteDims(), dst_tensor.GetCompleteDims()); ASSERT_EQ(selected_rows_->GetCompleteDims(), dst_tensor.GetCompleteDims());
auto* dst_data = dst_tensor.value().data<float>();
for (int64_t i = 0; i < dst_tensor.value().numel(); ++i) {
ASSERT_EQ(dst_data[i], static_cast<float>(i));
}
} }
TEST(SelectedRows, SparseTable) { TEST(SelectedRows, SparseTable) {
......
...@@ -17,7 +17,6 @@ limitations under the License. */ ...@@ -17,7 +17,6 @@ limitations under the License. */
#include <stdexcept> #include <stdexcept>
#include <string> #include <string>
#include <vector> #include <vector>
#include "paddle/fluid/framework/channel.h"
#include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/var_desc.h" #include "paddle/fluid/framework/var_desc.h"
......
...@@ -88,13 +88,7 @@ std::vector<std::vector<int64_t>> VarDesc::GetShapes() const { ...@@ -88,13 +88,7 @@ std::vector<std::vector<int64_t>> VarDesc::GetShapes() const {
} }
void VarDesc::SetDataType(proto::VarType::Type data_type) { void VarDesc::SetDataType(proto::VarType::Type data_type) {
switch (desc_.type().type()) {
case proto::VarType::CHANNEL:
mutable_channel_desc()->set_data_type(data_type);
break;
default:
mutable_tensor_desc()->set_data_type(data_type); mutable_tensor_desc()->set_data_type(data_type);
}
} }
void VarDesc::SetDataTypes( void VarDesc::SetDataTypes(
...@@ -115,13 +109,7 @@ void VarDesc::SetDataTypes( ...@@ -115,13 +109,7 @@ void VarDesc::SetDataTypes(
} }
proto::VarType::Type VarDesc::GetDataType() const { proto::VarType::Type VarDesc::GetDataType() const {
switch (desc_.type().type()) {
case proto::VarType::CHANNEL:
return channel_desc().data_type();
break;
default:
return tensor_desc().data_type(); return tensor_desc().data_type();
}
} }
std::vector<proto::VarType::Type> VarDesc::GetDataTypes() const { std::vector<proto::VarType::Type> VarDesc::GetDataTypes() const {
...@@ -134,17 +122,6 @@ std::vector<proto::VarType::Type> VarDesc::GetDataTypes() const { ...@@ -134,17 +122,6 @@ std::vector<proto::VarType::Type> VarDesc::GetDataTypes() const {
return res; return res;
} }
void VarDesc::SetCapacity(int64_t capacity) {
switch (desc_.type().type()) {
case proto::VarType::CHANNEL:
desc_.mutable_type()->mutable_channel()->set_capacity(capacity);
break;
default:
PADDLE_THROW("Setting 'capacity' is not supported by the type of var %s.",
this->Name());
}
}
void VarDesc::SetLoDLevel(int32_t lod_level) { void VarDesc::SetLoDLevel(int32_t lod_level) {
switch (desc_.type().type()) { switch (desc_.type().type()) {
case proto::VarType::LOD_TENSOR: case proto::VarType::LOD_TENSOR:
...@@ -214,19 +191,6 @@ std::vector<int32_t> VarDesc::GetLoDLevels() const { ...@@ -214,19 +191,6 @@ std::vector<int32_t> VarDesc::GetLoDLevels() const {
} }
} }
const proto::VarType::ChannelDesc &VarDesc::channel_desc() const {
PADDLE_ENFORCE(desc_.has_type(), "The var's type hasn't been set.");
PADDLE_ENFORCE(desc_.type().has_type(), "The var type hasn't been set.");
switch (desc_.type().type()) {
case proto::VarType::CHANNEL:
return desc_.type().channel();
default:
PADDLE_THROW(
"Getting 'channel_desc' is not supported by the type of var %s.",
this->Name());
}
}
const proto::VarType::TensorDesc &VarDesc::tensor_desc() const { const proto::VarType::TensorDesc &VarDesc::tensor_desc() const {
PADDLE_ENFORCE(desc_.has_type(), "The var's type hasn't been set."); PADDLE_ENFORCE(desc_.has_type(), "The var's type hasn't been set.");
PADDLE_ENFORCE(desc_.type().has_type(), "The var type hasn't been set."); PADDLE_ENFORCE(desc_.type().has_type(), "The var type hasn't been set.");
...@@ -262,20 +226,6 @@ std::vector<proto::VarType::TensorDesc> VarDesc::tensor_descs() const { ...@@ -262,20 +226,6 @@ std::vector<proto::VarType::TensorDesc> VarDesc::tensor_descs() const {
} }
} }
proto::VarType::ChannelDesc *VarDesc::mutable_channel_desc() {
PADDLE_ENFORCE(desc_.has_type(), "The var type hasn't been set.");
PADDLE_ENFORCE(desc_.type().has_type(), "The var type hasn't been set.");
switch (desc_.type().type()) {
case proto::VarType::CHANNEL:
return desc_.mutable_type()->mutable_channel();
default:
PADDLE_THROW(
"Getting 'mutable_channel_desc' is not supported by the type of var "
"%s.",
this->Name());
}
}
proto::VarType::TensorDesc *VarDesc::mutable_tensor_desc() { proto::VarType::TensorDesc *VarDesc::mutable_tensor_desc() {
PADDLE_ENFORCE(desc_.has_type(), "The var type hasn't been set."); PADDLE_ENFORCE(desc_.has_type(), "The var type hasn't been set.");
PADDLE_ENFORCE(desc_.type().has_type(), "The var type hasn't been set."); PADDLE_ENFORCE(desc_.type().has_type(), "The var type hasn't been set.");
......
...@@ -87,8 +87,6 @@ class VarDesc { ...@@ -87,8 +87,6 @@ class VarDesc {
void SetDataTypes( void SetDataTypes(
const std::vector<proto::VarType::Type> &multiple_data_type); const std::vector<proto::VarType::Type> &multiple_data_type);
void SetCapacity(int64_t capacity);
proto::VarType::Type GetDataType() const; proto::VarType::Type GetDataType() const;
std::vector<proto::VarType::Type> GetDataTypes() const; std::vector<proto::VarType::Type> GetDataTypes() const;
...@@ -110,10 +108,8 @@ class VarDesc { ...@@ -110,10 +108,8 @@ class VarDesc {
void SetPersistable(bool persistable) { desc_.set_persistable(persistable); } void SetPersistable(bool persistable) { desc_.set_persistable(persistable); }
private: private:
const proto::VarType::ChannelDesc &channel_desc() const;
const proto::VarType::TensorDesc &tensor_desc() const; const proto::VarType::TensorDesc &tensor_desc() const;
std::vector<proto::VarType::TensorDesc> tensor_descs() const; std::vector<proto::VarType::TensorDesc> tensor_descs() const;
proto::VarType::ChannelDesc *mutable_channel_desc();
proto::VarType::TensorDesc *mutable_tensor_desc(); proto::VarType::TensorDesc *mutable_tensor_desc();
std::vector<proto::VarType::TensorDesc *> mutable_tensor_descs(); std::vector<proto::VarType::TensorDesc *> mutable_tensor_descs();
......
...@@ -13,7 +13,6 @@ See the License for the specific language governing permissions and ...@@ -13,7 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include "paddle/fluid/framework/channel.h"
#include "paddle/fluid/framework/framework.pb.h" #include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_rank_table.h" #include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/lod_tensor.h"
...@@ -41,8 +40,6 @@ inline proto::VarType::Type ToVarType(std::type_index type) { ...@@ -41,8 +40,6 @@ inline proto::VarType::Type ToVarType(std::type_index type) {
return proto::VarType_Type_SELECTED_ROWS; return proto::VarType_Type_SELECTED_ROWS;
} else if (IsType<ReaderHolder>(type)) { } else if (IsType<ReaderHolder>(type)) {
return proto::VarType_Type_READER; return proto::VarType_Type_READER;
} else if (IsType<ChannelHolder>(type)) {
return proto::VarType_Type_CHANNEL;
} else { } else {
PADDLE_THROW("ToVarType:Unsupported type %s", type.name()); PADDLE_THROW("ToVarType:Unsupported type %s", type.name());
} }
...@@ -66,9 +63,6 @@ inline void VisitVarType(const framework::Variable& var, Visitor visitor) { ...@@ -66,9 +63,6 @@ inline void VisitVarType(const framework::Variable& var, Visitor visitor) {
case proto::VarType_Type_READER: case proto::VarType_Type_READER:
visitor(var.Get<ReaderHolder>()); visitor(var.Get<ReaderHolder>());
return; return;
case proto::VarType_Type_CHANNEL:
visitor(var.Get<ChannelHolder>());
return;
default: default:
PADDLE_THROW("Not supported visit type, %d", ToVarType(var.Type())); PADDLE_THROW("Not supported visit type, %d", ToVarType(var.Type()));
} }
......
...@@ -41,12 +41,6 @@ class AnalysisPass { ...@@ -41,12 +41,6 @@ class AnalysisPass {
// all passes have run. // all passes have run.
virtual bool Finalize() { return false; } virtual bool Finalize() { return false; }
// Get a Pass appropriate to print the Node this pass operates on.
virtual AnalysisPass *CreatePrinterPass(std::ostream &os,
const std::string &banner) const {
return nullptr;
}
// Create a debugger Pass that draw the DFG by graphviz toolkit. // Create a debugger Pass that draw the DFG by graphviz toolkit.
virtual AnalysisPass *CreateGraphvizDebugerPass() const { return nullptr; } virtual AnalysisPass *CreateGraphvizDebugerPass() const { return nullptr; }
......
...@@ -37,12 +37,16 @@ TEST(Analyzer, analysis_without_tensorrt) { ...@@ -37,12 +37,16 @@ TEST(Analyzer, analysis_without_tensorrt) {
TEST(Analyzer, analysis_with_tensorrt) { TEST(Analyzer, analysis_with_tensorrt) {
FLAGS_IA_enable_tensorrt_subgraph_engine = true; FLAGS_IA_enable_tensorrt_subgraph_engine = true;
Argument argument; Argument argument;
argument.Set<int>("minimum_subgraph_size", new int(0));
argument.Set<int>("max_batch_size", new int(3));
argument.Set<int>("workspace_size", new int(1 << 20));
argument.Set<std::string>("precision_mode", new std::string("FP32"));
argument.fluid_model_dir.reset(new std::string(FLAGS_inference_model_dir)); argument.fluid_model_dir.reset(new std::string(FLAGS_inference_model_dir));
Analyzer analyser; Analyzer analyser;
analyser.Run(&argument); analyser.Run(&argument);
} }
void TestWord2vecPrediction(const std::string &model_path) { void TestWord2vecPrediction(const std::string& model_path) {
NativeConfig config; NativeConfig config;
config.model_dir = model_path; config.model_dir = model_path;
config.use_gpu = false; config.use_gpu = false;
...@@ -73,8 +77,8 @@ void TestWord2vecPrediction(const std::string &model_path) { ...@@ -73,8 +77,8 @@ void TestWord2vecPrediction(const std::string &model_path) {
// The outputs' buffers are in CPU memory. // The outputs' buffers are in CPU memory.
for (size_t i = 0; i < std::min(5UL, num_elements); i++) { for (size_t i = 0; i < std::min(5UL, num_elements); i++) {
LOG(INFO) << "data: " LOG(INFO) << "data: "
<< static_cast<float *>(outputs.front().data.data())[i]; << static_cast<float*>(outputs.front().data.data())[i];
PADDLE_ENFORCE(static_cast<float *>(outputs.front().data.data())[i], PADDLE_ENFORCE(static_cast<float*>(outputs.front().data.data())[i],
result[i]); result[i]);
} }
} }
......
...@@ -97,8 +97,10 @@ void DataFlowGraphToFluidPass::AddFluidOp(Node *node) { ...@@ -97,8 +97,10 @@ void DataFlowGraphToFluidPass::AddFluidOp(Node *node) {
} }
} }
void CreateTrtEngineOp(Node *node, const DataFlowGraph &graph, void CreateTrtEngineOp(Node *node, Argument *argument,
framework::proto::BlockDesc *block) { framework::proto::BlockDesc *block) {
PADDLE_ENFORCE(argument->main_dfg.get());
const DataFlowGraph &graph = *(argument->main_dfg);
static int counter{0}; static int counter{0};
PADDLE_ENFORCE(node->IsFunctionBlock()); PADDLE_ENFORCE(node->IsFunctionBlock());
framework::OpDesc desc; framework::OpDesc desc;
...@@ -204,7 +206,10 @@ void CreateTrtEngineOp(Node *node, const DataFlowGraph &graph, ...@@ -204,7 +206,10 @@ void CreateTrtEngineOp(Node *node, const DataFlowGraph &graph,
PADDLE_ENFORCE(!block->vars().empty(), "the block has no var-desc"); PADDLE_ENFORCE(!block->vars().empty(), "the block has no var-desc");
// Set attrs // Set attrs
SetAttr(desc.Proto(), "subgraph", block->SerializeAsString()); SetAttr(desc.Proto(), "subgraph", block->SerializeAsString());
SetAttr(desc.Proto(), "max_batch_size", argument->Get<int>("max_batch_size"));
SetAttr(desc.Proto(), "workspace_size", argument->Get<int>("workspace_size"));
SetAttr(desc.Proto(), "engine_uniq_key", "trt-" + std::to_string(counter++)); SetAttr(desc.Proto(), "engine_uniq_key", "trt-" + std::to_string(counter++));
SetAttr(desc.Proto(), "parameters", ExtractParameters(graph.nodes.nodes())); SetAttr(desc.Proto(), "parameters", ExtractParameters(graph.nodes.nodes()));
SetAttr(desc.Proto(), "output_name_mapping", output_mapping); SetAttr(desc.Proto(), "output_name_mapping", output_mapping);
...@@ -248,7 +253,7 @@ void DataFlowGraphToFluidPass::AddEngineOp(Node *node) { ...@@ -248,7 +253,7 @@ void DataFlowGraphToFluidPass::AddEngineOp(Node *node) {
*block_desc.Proto()->mutable_vars() = *block_desc.Proto()->mutable_vars() =
argument_->origin_program_desc->blocks(0).vars(); argument_->origin_program_desc->blocks(0).vars();
PADDLE_ENFORCE(!block_desc.Proto()->vars().empty()); PADDLE_ENFORCE(!block_desc.Proto()->vars().empty());
CreateTrtEngineOp(node, *argument_->main_dfg, block_desc.Proto()); CreateTrtEngineOp(node, argument_, block_desc.Proto());
auto *main_block = desc_->mutable_blocks(framework::kRootBlockIndex); auto *main_block = desc_->mutable_blocks(framework::kRootBlockIndex);
auto *op = main_block->add_ops(); auto *op = main_block->add_ops();
PADDLE_ENFORCE(!node->pb_msg().empty(), "failed to set desc for block"); PADDLE_ENFORCE(!node->pb_msg().empty(), "failed to set desc for block");
......
...@@ -309,6 +309,8 @@ void SubGraphFuse::operator()() { ReplaceNodesWithSubGraphs(); } ...@@ -309,6 +309,8 @@ void SubGraphFuse::operator()() { ReplaceNodesWithSubGraphs(); }
void SubGraphFuse::ReplaceNodesWithSubGraphs() { void SubGraphFuse::ReplaceNodesWithSubGraphs() {
auto subgraphs = SubGraphSplitter(graph_, node_inside_subgraph_teller_)(); auto subgraphs = SubGraphSplitter(graph_, node_inside_subgraph_teller_)();
for (auto &subgraph : subgraphs) { for (auto &subgraph : subgraphs) {
if (subgraph.size() <= argument_->Get<int>("minimum_subgraph_size"))
continue;
std::unordered_set<Node *> subgraph_uniq(subgraph.begin(), subgraph.end()); std::unordered_set<Node *> subgraph_uniq(subgraph.begin(), subgraph.end());
// replace this sub-graph with the first node. Two steps: 1. Create a Block // replace this sub-graph with the first node. Two steps: 1. Create a Block
// Node that contains this subgraph 2. Mark the nodes inside the sub-graph // Node that contains this subgraph 2. Mark the nodes inside the sub-graph
......
...@@ -20,6 +20,7 @@ limitations under the License. */ ...@@ -20,6 +20,7 @@ limitations under the License. */
#include <vector> #include <vector>
#include "paddle/fluid/inference/analysis/argument.h"
#include "paddle/fluid/inference/analysis/data_flow_graph.h" #include "paddle/fluid/inference/analysis/data_flow_graph.h"
#include "paddle/fluid/inference/analysis/node.h" #include "paddle/fluid/inference/analysis/node.h"
...@@ -63,8 +64,11 @@ class SubGraphFuse { ...@@ -63,8 +64,11 @@ class SubGraphFuse {
public: public:
using NodeInsideSubgraphTeller = SubGraphSplitter::NodeInsideSubgraphTeller; using NodeInsideSubgraphTeller = SubGraphSplitter::NodeInsideSubgraphTeller;
SubGraphFuse(DataFlowGraph *graph, const NodeInsideSubgraphTeller &teller) SubGraphFuse(DataFlowGraph *graph, const NodeInsideSubgraphTeller &teller,
: graph_(graph), node_inside_subgraph_teller_(teller) {} Argument *argument)
: graph_(graph),
node_inside_subgraph_teller_(teller),
argument_(argument) {}
// The main method which run all the logic. // The main method which run all the logic.
void operator()(); void operator()();
...@@ -76,6 +80,7 @@ class SubGraphFuse { ...@@ -76,6 +80,7 @@ class SubGraphFuse {
private: private:
DataFlowGraph *graph_; DataFlowGraph *graph_;
NodeInsideSubgraphTeller node_inside_subgraph_teller_; NodeInsideSubgraphTeller node_inside_subgraph_teller_;
Argument *argument_;
}; };
} // namespace analysis } // namespace analysis
......
...@@ -66,10 +66,12 @@ TEST(SubGraphSplitter, Split) { ...@@ -66,10 +66,12 @@ TEST(SubGraphSplitter, Split) {
TEST(SubGraphSplitter, Fuse) { TEST(SubGraphSplitter, Fuse) {
auto desc = LoadProgramDesc(FLAGS_inference_model_dir + "/__model__"); auto desc = LoadProgramDesc(FLAGS_inference_model_dir + "/__model__");
auto dfg = ProgramDescToDFG(desc); auto dfg = ProgramDescToDFG(desc);
Argument argument;
argument.Set<int>("minimum_subgraph_size", new int(3));
size_t count0 = dfg.nodes.size(); size_t count0 = dfg.nodes.size();
SubGraphFuse fuse(&dfg, teller); SubGraphFuse fuse(&dfg, teller, &argument);
fuse(); fuse();
int count1 = 0; int count1 = 0;
......
...@@ -24,7 +24,7 @@ TensorRTSubGraphPass::TensorRTSubGraphPass( ...@@ -24,7 +24,7 @@ TensorRTSubGraphPass::TensorRTSubGraphPass(
: node_inside_subgraph_teller_(teller) {} : node_inside_subgraph_teller_(teller) {}
void TensorRTSubGraphPass::Run(DataFlowGraph *graph) { void TensorRTSubGraphPass::Run(DataFlowGraph *graph) {
SubGraphFuse(graph, node_inside_subgraph_teller_)(); SubGraphFuse(graph, node_inside_subgraph_teller_, argument_)();
VLOG(4) << "debug info " VLOG(4) << "debug info "
<< graph->HumanReadableInfo(false /*show_values*/, << graph->HumanReadableInfo(false /*show_values*/,
true /*show_functions*/); true /*show_functions*/);
......
...@@ -33,7 +33,10 @@ class TensorRTSubGraphPass : public DataFlowGraphPass { ...@@ -33,7 +33,10 @@ class TensorRTSubGraphPass : public DataFlowGraphPass {
explicit TensorRTSubGraphPass(const NodeInsideSubgraphTeller& teller); explicit TensorRTSubGraphPass(const NodeInsideSubgraphTeller& teller);
bool Initialize(Argument* argument) override { return true; } bool Initialize(Argument* argument) override {
argument_ = argument;
return true;
}
// This class get a sub-graph as input and determine whether to transform this // This class get a sub-graph as input and determine whether to transform this
// sub-graph into TensorRT. // sub-graph into TensorRT.
...@@ -46,6 +49,7 @@ class TensorRTSubGraphPass : public DataFlowGraphPass { ...@@ -46,6 +49,7 @@ class TensorRTSubGraphPass : public DataFlowGraphPass {
private: private:
NodeInsideSubgraphTeller node_inside_subgraph_teller_; NodeInsideSubgraphTeller node_inside_subgraph_teller_;
Argument* argument_;
}; };
} // namespace analysis } // namespace analysis
......
...@@ -36,6 +36,10 @@ TEST(TensorRTSubGraphPass, main) { ...@@ -36,6 +36,10 @@ TEST(TensorRTSubGraphPass, main) {
}; };
Argument argument(FLAGS_inference_model_dir); Argument argument(FLAGS_inference_model_dir);
argument.Set<int>("minimum_subgraph_size", new int(0));
argument.Set<int>("max_batch_size", new int(3));
argument.Set<int>("workspace_size", new int(1 << 20));
argument.Set<std::string>("precision_mode", new std::string("FP32"));
DFG_GraphvizDrawPass::Config config{FLAGS_dot_dir, "origin"}; DFG_GraphvizDrawPass::Config config{FLAGS_dot_dir, "origin"};
DFG_GraphvizDrawPass::Config config1{FLAGS_dot_dir, "fusion"}; DFG_GraphvizDrawPass::Config config1{FLAGS_dot_dir, "fusion"};
......
...@@ -21,6 +21,12 @@ limitations under the License. */ ...@@ -21,6 +21,12 @@ limitations under the License. */
#include "paddle/fluid/inference/api/api_impl.h" #include "paddle/fluid/inference/api/api_impl.h"
#include "paddle/fluid/inference/tests/test_helper.h" #include "paddle/fluid/inference/tests/test_helper.h"
#ifdef __clang__
#define ACC_DIFF 4e-3
#else
#define ACC_DIFF 1e-3
#endif
DEFINE_string(dirname, "", "Directory of the inference model."); DEFINE_string(dirname, "", "Directory of the inference model.");
namespace paddle { namespace paddle {
...@@ -99,8 +105,8 @@ void MainWord2Vec(bool use_gpu) { ...@@ -99,8 +105,8 @@ void MainWord2Vec(bool use_gpu) {
float* lod_data = output1.data<float>(); float* lod_data = output1.data<float>();
for (int i = 0; i < output1.numel(); ++i) { for (int i = 0; i < output1.numel(); ++i) {
EXPECT_LT(lod_data[i] - data[i], 1e-3); EXPECT_LT(lod_data[i] - data[i], ACC_DIFF);
EXPECT_GT(lod_data[i] - data[i], -1e-3); EXPECT_GT(lod_data[i] - data[i], -ACC_DIFF);
} }
} }
...@@ -144,7 +150,7 @@ void MainImageClassification(bool use_gpu) { ...@@ -144,7 +150,7 @@ void MainImageClassification(bool use_gpu) {
float* data = static_cast<float*>(outputs[0].data.data()); float* data = static_cast<float*>(outputs[0].data.data());
float* lod_data = output1.data<float>(); float* lod_data = output1.data<float>();
for (size_t j = 0; j < len / sizeof(float); ++j) { for (size_t j = 0; j < len / sizeof(float); ++j) {
EXPECT_NEAR(lod_data[j], data[j], 1e-3); EXPECT_NEAR(lod_data[j], data[j], ACC_DIFF);
} }
} }
...@@ -199,7 +205,7 @@ void MainThreadsWord2Vec(bool use_gpu) { ...@@ -199,7 +205,7 @@ void MainThreadsWord2Vec(bool use_gpu) {
float* ref_data = refs[tid].data<float>(); float* ref_data = refs[tid].data<float>();
EXPECT_EQ(refs[tid].numel(), static_cast<int64_t>(len / sizeof(float))); EXPECT_EQ(refs[tid].numel(), static_cast<int64_t>(len / sizeof(float)));
for (int i = 0; i < refs[tid].numel(); ++i) { for (int i = 0; i < refs[tid].numel(); ++i) {
EXPECT_NEAR(ref_data[i], data[i], 1e-3); EXPECT_NEAR(ref_data[i], data[i], ACC_DIFF);
} }
}); });
} }
...@@ -251,7 +257,7 @@ void MainThreadsImageClassification(bool use_gpu) { ...@@ -251,7 +257,7 @@ void MainThreadsImageClassification(bool use_gpu) {
float* ref_data = refs[tid].data<float>(); float* ref_data = refs[tid].data<float>();
EXPECT_EQ((size_t)refs[tid].numel(), len / sizeof(float)); EXPECT_EQ((size_t)refs[tid].numel(), len / sizeof(float));
for (int i = 0; i < refs[tid].numel(); ++i) { for (int i = 0; i < refs[tid].numel(); ++i) {
EXPECT_NEAR(ref_data[i], data[i], 1e-3); EXPECT_NEAR(ref_data[i], data[i], ACC_DIFF);
} }
}); });
} }
......
...@@ -35,8 +35,6 @@ class TensorRTSubgraphPredictor : public NativePaddlePredictor { ...@@ -35,8 +35,6 @@ class TensorRTSubgraphPredictor : public NativePaddlePredictor {
bool Init(const std::shared_ptr<framework::Scope>& parent_scope) { bool Init(const std::shared_ptr<framework::Scope>& parent_scope) {
FLAGS_IA_enable_tensorrt_subgraph_engine = true; FLAGS_IA_enable_tensorrt_subgraph_engine = true;
VLOG(3) << "Predictor::init()"; VLOG(3) << "Predictor::init()";
FLAGS_tensorrt_max_batch_size = config_.max_batch_size;
FLAGS_tensorrt_workspace_size = config_.workspace_size;
if (config_.use_gpu) { if (config_.use_gpu) {
place_ = paddle::platform::CUDAPlace(config_.device); place_ = paddle::platform::CUDAPlace(config_.device);
} else { } else {
...@@ -92,6 +90,14 @@ class TensorRTSubgraphPredictor : public NativePaddlePredictor { ...@@ -92,6 +90,14 @@ class TensorRTSubgraphPredictor : public NativePaddlePredictor {
void OptimizeInferenceProgram() { void OptimizeInferenceProgram() {
// Analyze inference_program // Analyze inference_program
Argument argument; Argument argument;
argument.Set<int>("minimum_subgraph_size",
new int(config_.minimum_subgraph_size));
argument.Set<int>("max_batch_size", new int(config_.max_batch_size));
argument.Set<int>("workspace_size", new int(config_.workspace_size));
argument.Set<std::string>("precision_mode",
new std::string(config_.precision_mode));
if (!config_.model_dir.empty()) { if (!config_.model_dir.empty()) {
argument.fluid_model_dir.reset(new std::string(config_.model_dir)); argument.fluid_model_dir.reset(new std::string(config_.model_dir));
} else { } else {
......
...@@ -194,6 +194,14 @@ struct MixedRTConfig : public NativeConfig { ...@@ -194,6 +194,14 @@ struct MixedRTConfig : public NativeConfig {
// For workspace_size, refer it from here: // For workspace_size, refer it from here:
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#troubleshooting // https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#troubleshooting
int workspace_size{1 << 30}; int workspace_size{1 << 30};
// We transform the Ops that can be converted into TRT layer in the model,
// and aggregate these Ops into subgraphs for TRT execution.
// We set this variable to control the minimum number of nodes in the
// subgraph, 3 as default value.
int minimum_subgraph_size = 3;
// Reserved configuration
// We just support "FP32" now, "FP16" and "INT8" will be supported.
std::string precision_mode = "FP32";
}; };
// NOTE WIP, not stable yet. // NOTE WIP, not stable yet.
......
...@@ -85,3 +85,13 @@ if (WITH_ANAKIN AND WITH_MKL) # only needed in CI ...@@ -85,3 +85,13 @@ if (WITH_ANAKIN AND WITH_MKL) # only needed in CI
DEPS inference_anakin_api_shared dynload_cuda SERIAL) DEPS inference_anakin_api_shared dynload_cuda SERIAL)
endif() endif()
endif() endif()
if(WITH_GPU AND TENSORRT_FOUND)
set(TRT_MODEL_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/trt")
if (NOT EXISTS ${TRT_MODEL_INSTALL_DIR})
inference_download_and_uncompress(${TRT_MODEL_INSTALL_DIR} ${INFERENCE_URL}/tensorrt_test "trt_test_models.tar.gz")
endif()
cc_test(test_trt_models SRCS trt_models_tester.cc
ARGS --dirname=${TRT_MODEL_INSTALL_DIR}/trt_test_models
DEPS paddle_inference_tensorrt_subgraph_engine)
endif()
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <glog/logging.h>
#include <gtest/gtest.h>
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
namespace paddle {
using paddle::contrib::MixedRTConfig;
DEFINE_string(dirname, "", "Directory of the inference model.");
NativeConfig GetConfigNative() {
NativeConfig config;
config.model_dir = FLAGS_dirname;
// LOG(INFO) << "dirname " << config.model_dir;
config.fraction_of_gpu_memory = 0.45;
config.use_gpu = true;
config.device = 0;
return config;
}
MixedRTConfig GetConfigTRT() {
MixedRTConfig config;
config.model_dir = FLAGS_dirname;
config.use_gpu = true;
config.fraction_of_gpu_memory = 0.2;
config.device = 0;
config.max_batch_size = 3;
return config;
}
void CompareTensorRTWithFluid(int batch_size, std::string model_dirname) {
NativeConfig config0 = GetConfigNative();
config0.model_dir = model_dirname;
MixedRTConfig config1 = GetConfigTRT();
config1.model_dir = model_dirname;
config1.max_batch_size = batch_size;
auto predictor0 =
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config0);
auto predictor1 =
CreatePaddlePredictor<MixedRTConfig,
PaddleEngineKind::kAutoMixedTensorRT>(config1);
// Prepare inputs
int height = 224;
int width = 224;
float *data = new float[batch_size * 3 * height * width];
memset(data, 0, sizeof(float) * (batch_size * 3 * height * width));
data[0] = 1.0f;
// Prepare inputs
PaddleTensor tensor;
tensor.name = "input_0";
tensor.shape = std::vector<int>({batch_size, 3, height, width});
tensor.data = PaddleBuf(static_cast<void *>(data),
sizeof(float) * (batch_size * 3 * height * width));
tensor.dtype = PaddleDType::FLOAT32;
std::vector<PaddleTensor> paddle_tensor_feeds(1, tensor);
// Prepare outputs
std::vector<PaddleTensor> outputs0;
std::vector<PaddleTensor> outputs1;
CHECK(predictor0->Run(paddle_tensor_feeds, &outputs0));
CHECK(predictor1->Run(paddle_tensor_feeds, &outputs1, batch_size));
// Get output.
ASSERT_EQ(outputs0.size(), 1UL);
ASSERT_EQ(outputs1.size(), 1UL);
const size_t num_elements = outputs0.front().data.length() / sizeof(float);
const size_t num_elements1 = outputs1.front().data.length() / sizeof(float);
EXPECT_EQ(num_elements, num_elements1);
auto *data0 = static_cast<float *>(outputs0.front().data.data());
auto *data1 = static_cast<float *>(outputs1.front().data.data());
ASSERT_GT(num_elements, 0UL);
for (size_t i = 0; i < std::min(num_elements, num_elements1); i++) {
EXPECT_NEAR(data0[i], data1[i], 1e-3);
}
}
TEST(trt_models_test, main) {
std::vector<std::string> infer_models = {"mobilenet", "resnet50",
"resnext50"};
for (auto &model_dir : infer_models) {
CompareTensorRTWithFluid(1, FLAGS_dirname + "/" + model_dir);
}
}
} // namespace paddle
...@@ -301,6 +301,7 @@ op_library(fusion_lstm_op DEPS cpu_lstm_compute) ...@@ -301,6 +301,7 @@ op_library(fusion_lstm_op DEPS cpu_lstm_compute)
if (WITH_GPU) if (WITH_GPU)
op_library(conv_op DEPS vol2col depthwise_conv im2col) op_library(conv_op DEPS vol2col depthwise_conv im2col)
op_library(layer_norm_op DEPS cub) op_library(layer_norm_op DEPS cub)
op_library(reduce_mean_op DEPS cub)
else() else()
op_library(conv_op DEPS vol2col im2col) op_library(conv_op DEPS vol2col im2col)
endif() endif()
...@@ -313,11 +314,6 @@ op_library(save_combine_op DEPS lod_tensor) ...@@ -313,11 +314,6 @@ op_library(save_combine_op DEPS lod_tensor)
op_library(load_combine_op DEPS lod_tensor) op_library(load_combine_op DEPS lod_tensor)
op_library(concat_op DEPS concat) op_library(concat_op DEPS concat)
# FIXME(thuan): Move CSP operators to paddle/fluid/framework/operators/concurrency
add_subdirectory(concurrency)
op_library(channel_send_op DEPS concurrency)
op_library(channel_recv_op DEPS concurrency)
list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS}) list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS})
foreach(src ${GENERAL_OPS}) foreach(src ${GENERAL_OPS})
......
...@@ -36,11 +36,16 @@ class AucOp : public framework::OperatorWithKernel { ...@@ -36,11 +36,16 @@ class AucOp : public framework::OperatorWithKernel {
"Out and Label should have same height."); "Out and Label should have same height.");
int num_pred_buckets = ctx->Attrs().Get<int>("num_thresholds") + 1; int num_pred_buckets = ctx->Attrs().Get<int>("num_thresholds") + 1;
int slide_steps = ctx->Attrs().Get<int>("slide_steps");
PADDLE_ENFORCE_GE(num_pred_buckets, 1, "num_thresholds must larger than 1");
PADDLE_ENFORCE_GE(slide_steps, 0, "slide_steps must be natural number");
ctx->SetOutputDim("AUC", {1}); ctx->SetOutputDim("AUC", {1});
ctx->SetOutputDim("BatchAUC", {1});
ctx->SetOutputDim("StatPosOut", {num_pred_buckets}); slide_steps = slide_steps == 0 ? 1 : slide_steps;
ctx->SetOutputDim("StatNegOut", {num_pred_buckets}); ctx->SetOutputDim("StatPosOut", {slide_steps, num_pred_buckets});
ctx->SetOutputDim("StatNegOut", {slide_steps, num_pred_buckets});
} }
protected: protected:
...@@ -62,6 +67,7 @@ class AucOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -62,6 +67,7 @@ class AucOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("Label", AddInput("Label",
"A 2D int tensor indicating the label of the training data. " "A 2D int tensor indicating the label of the training data. "
"shape: [batch_size, 1]"); "shape: [batch_size, 1]");
// TODO(typhoonzero): support weight input // TODO(typhoonzero): support weight input
AddInput("StatPos", "Statistic value when label = 1"); AddInput("StatPos", "Statistic value when label = 1");
AddInput("StatNeg", "Statistic value when label = 0"); AddInput("StatNeg", "Statistic value when label = 0");
...@@ -69,18 +75,19 @@ class AucOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -69,18 +75,19 @@ class AucOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput("AUC", AddOutput("AUC",
"A scalar representing the " "A scalar representing the "
"current area-under-the-curve."); "current area-under-the-curve.");
AddOutput("BatchAUC", "The AUC for current batch");
AddOutput("StatPosOut", "Statistic value when label = 1"); AddOutput("StatPosOut", "Statistic value when label = 1");
AddOutput("StatNegOut", "Statistic value when label = 0"); AddOutput("StatNegOut", "Statistic value when label = 0");
AddAttr<std::string>("curve", "Curve type, can be 'ROC' or 'PR'.") AddAttr<std::string>("curve", "Curve type, can be 'ROC' or 'PR'.")
.SetDefault("ROC"); .SetDefault("ROC");
AddAttr<int>("num_thresholds", AddAttr<int>(
"The number of thresholds to use when discretizing the" "num_thresholds",
" roc curve.") "The number of thresholds to use when discretizing the roc curve.")
.SetDefault((2 << 12) - 1); .SetDefault((2 << 12) - 1);
AddAttr<int>("slide_steps", "Use slide steps to calc batch auc.")
.SetDefault(1);
AddComment(R"DOC( AddComment(R"DOC(
Area Under The Curve (AUC) Operator. Area Under The Curve (AUC) Operator.
......
...@@ -32,7 +32,9 @@ class AucKernel : public framework::OpKernel<T> { ...@@ -32,7 +32,9 @@ class AucKernel : public framework::OpKernel<T> {
std::string curve = ctx.Attr<std::string>("curve"); std::string curve = ctx.Attr<std::string>("curve");
int num_thresholds = ctx.Attr<int>("num_thresholds"); int num_thresholds = ctx.Attr<int>("num_thresholds");
// buckets contain numbers from 0 to num_thresholds
int num_pred_buckets = num_thresholds + 1; int num_pred_buckets = num_thresholds + 1;
int slide_steps = ctx.Attr<int>("slide_steps");
// Only use output var for now, make sure it's persistable and // Only use output var for now, make sure it's persistable and
// not cleaned up for each batch. // not cleaned up for each batch.
...@@ -40,16 +42,19 @@ class AucKernel : public framework::OpKernel<T> { ...@@ -40,16 +42,19 @@ class AucKernel : public framework::OpKernel<T> {
auto *stat_pos = ctx.Output<Tensor>("StatPosOut"); auto *stat_pos = ctx.Output<Tensor>("StatPosOut");
auto *stat_neg = ctx.Output<Tensor>("StatNegOut"); auto *stat_neg = ctx.Output<Tensor>("StatNegOut");
auto *stat_pos_data = stat_pos->mutable_data<int64_t>(ctx.GetPlace()); auto *origin_stat_pos = stat_pos->mutable_data<int64_t>(ctx.GetPlace());
auto *stat_neg_data = stat_neg->mutable_data<int64_t>(ctx.GetPlace()); auto *origin_stat_neg = stat_neg->mutable_data<int64_t>(ctx.GetPlace());
calcAuc(ctx, label, predict, stat_pos_data, stat_neg_data, num_thresholds,
auc);
auto *batch_auc = ctx.Output<Tensor>("BatchAUC"); std::vector<int64_t> stat_pos_data(num_pred_buckets, 0);
std::vector<int64_t> stat_pos_batch(num_pred_buckets, 0); std::vector<int64_t> stat_neg_data(num_pred_buckets, 0);
std::vector<int64_t> stat_neg_batch(num_pred_buckets, 0);
calcAuc(ctx, label, predict, stat_pos_batch.data(), stat_neg_batch.data(), auto stat_pos_calc = stat_pos_data.data();
num_thresholds, batch_auc); auto stat_neg_calc = stat_neg_data.data();
statAuc(label, predict, num_pred_buckets, num_thresholds, slide_steps,
origin_stat_pos, origin_stat_neg, &stat_pos_calc, &stat_neg_calc);
calcAuc(ctx, stat_pos_calc, stat_neg_calc, num_thresholds, auc);
} }
private: private:
...@@ -58,29 +63,76 @@ class AucKernel : public framework::OpKernel<T> { ...@@ -58,29 +63,76 @@ class AucKernel : public framework::OpKernel<T> {
return (X1 > X2 ? (X1 - X2) : (X2 - X1)) * (Y1 + Y2) / 2.0; return (X1 > X2 ? (X1 - X2) : (X2 - X1)) * (Y1 + Y2) / 2.0;
} }
inline static void calcAuc(const framework::ExecutionContext &ctx, inline static void statAuc(const framework::Tensor *label,
const framework::Tensor *label,
const framework::Tensor *predict, const framework::Tensor *predict,
int64_t *stat_pos, int64_t *stat_neg, const int num_pred_buckets,
int num_thresholds, const int num_thresholds, const int slide_steps,
framework::Tensor *auc_tensor) { int64_t *origin_stat_pos, int64_t *origin_stat_neg,
int64_t **stat_pos, int64_t **stat_neg) {
size_t batch_size = predict->dims()[0]; size_t batch_size = predict->dims()[0];
size_t inference_width = predict->dims()[1]; size_t inference_width = predict->dims()[1];
const T *inference_data = predict->data<T>(); const T *inference_data = predict->data<T>();
const auto *label_data = label->data<int64_t>(); const auto *label_data = label->data<int64_t>();
auto *auc = auc_tensor->mutable_data<double>(ctx.GetPlace());
for (size_t i = 0; i < batch_size; i++) { for (size_t i = 0; i < batch_size; i++) {
uint32_t binIdx = static_cast<uint32_t>( uint32_t binIdx = static_cast<uint32_t>(
inference_data[i * inference_width + 1] * num_thresholds); inference_data[i * inference_width + 1] * num_thresholds);
if (label_data[i]) { if (label_data[i]) {
stat_pos[binIdx] += 1.0; (*stat_pos)[binIdx] += 1.0;
} else {
(*stat_neg)[binIdx] += 1.0;
}
}
int bucket_length = num_pred_buckets * sizeof(int64_t);
// will stat auc unlimited.
if (slide_steps == 0) {
for (int slide = 0; slide < num_pred_buckets; ++slide) {
origin_stat_pos[slide] += (*stat_pos)[slide];
origin_stat_neg[slide] += (*stat_neg)[slide];
}
*stat_pos = origin_stat_pos;
*stat_neg = origin_stat_neg;
} else { } else {
stat_neg[binIdx] += 1.0; for (int slide = 1; slide < slide_steps; ++slide) {
int dst_idx = (slide - 1) * num_pred_buckets;
int src_inx = slide * num_pred_buckets;
std::memcpy(origin_stat_pos + dst_idx, origin_stat_pos + src_inx,
bucket_length);
std::memcpy(origin_stat_neg + dst_idx, origin_stat_neg + src_inx,
bucket_length);
}
std::memcpy(origin_stat_pos + (slide_steps - 1) * num_pred_buckets,
*stat_pos, bucket_length);
std::memcpy(origin_stat_neg + (slide_steps - 1) * num_pred_buckets,
*stat_neg, bucket_length);
std::memset(*stat_pos, 0, bucket_length);
std::memset(*stat_neg, 0, bucket_length);
for (int slide = 0; slide < num_pred_buckets; ++slide) {
int stat_pos_steps = 0;
int stat_neg_steps = 0;
for (int step = 0; step < slide_steps; ++step) {
stat_pos_steps += origin_stat_pos[slide + step * num_pred_buckets];
stat_neg_steps += origin_stat_neg[slide + step * num_pred_buckets];
}
(*stat_pos)[slide] += stat_pos_steps;
(*stat_neg)[slide] += stat_neg_steps;
}
} }
} }
inline static void calcAuc(const framework::ExecutionContext &ctx,
int64_t *stat_pos, int64_t *stat_neg,
int num_thresholds,
framework::Tensor *auc_tensor) {
auto *auc = auc_tensor->mutable_data<double>(ctx.GetPlace());
*auc = 0.0f; *auc = 0.0f;
double totPos = 0.0; double totPos = 0.0;
...@@ -96,7 +148,6 @@ class AucKernel : public framework::OpKernel<T> { ...@@ -96,7 +148,6 @@ class AucKernel : public framework::OpKernel<T> {
totPos += stat_pos[idx]; totPos += stat_pos[idx];
totNeg += stat_neg[idx]; totNeg += stat_neg[idx];
*auc += trapezoidArea(totNeg, totNegPrev, totPos, totPosPrev); *auc += trapezoidArea(totNeg, totNegPrev, totPos, totPosPrev);
--idx; --idx;
} }
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/channel.h"
#include "paddle/fluid/framework/op_registry.h"
namespace pf = paddle::framework;
static constexpr char kChannel[] = "Channel";
namespace paddle {
namespace operators {
class ChannelCloseOp : public framework::OperatorBase {
public:
ChannelCloseOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: framework::OperatorBase(type, inputs, outputs, attrs) {}
private:
void RunImpl(const framework::Scope &scope,
const platform::Place &dev_place) const override {
auto &inp = *scope.FindVar(Input(kChannel));
// Get the mutable version of the channel variable and closes it.
pf::ChannelHolder *ch = inp.GetMutable<framework::ChannelHolder>();
ch->close();
}
};
class ChannelCloseOpOpInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *context) const override {
PADDLE_ENFORCE(context->HasInput("Channel"),
"The input of ChannelClose op must be set");
}
};
class ChannelCloseOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput(kChannel,
"The Channel Variable that should be closed by"
" the ChannelClose Op.");
AddComment(R"DOC(
Channel Close Operator.
This operator closes an open channel.
)DOC");
}
};
} // namespace operators
} // namespace paddle
REGISTER_OPERATOR(channel_close, paddle::operators::ChannelCloseOp,
paddle::framework::EmptyGradOpMaker,
paddle::operators::ChannelCloseOpMaker);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/channel.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
namespace pf = paddle::framework;
static constexpr char kOutput[] = "Out";
namespace paddle {
namespace operators {
class ChannelCreateOp : public framework::OperatorBase {
public:
ChannelCreateOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: framework::OperatorBase(type, inputs, outputs, attrs) {}
private:
void RunImpl(const framework::Scope &scope,
const platform::Place &dev_place) const override {
auto &out = *scope.FindVar(Output(kOutput));
// Determine the datatype and capacity of the channel to be created
// from the attributes provided.
auto dtype =
static_cast<framework::proto::VarType::Type>(Attr<int>("data_type"));
auto capacity = Attr<int>("capacity");
// Based on the datatype, create a new channel holder initialized with
// the given capacity. When capacity is 0, an unbuffered channel is
// created.
pf::ChannelHolder *ch = out.GetMutable<framework::ChannelHolder>();
if (dtype == framework::proto::VarType::LOD_TENSOR) {
ch->Reset<pf::LoDTensor>(capacity);
} else if (dtype == framework::proto::VarType::SELECTED_ROWS) {
ch->Reset<pf::SelectedRows>(capacity);
} else if (dtype == framework::proto::VarType::LOD_RANK_TABLE) {
ch->Reset<pf::LoDRankTable>(capacity);
} else if (dtype == framework::proto::VarType::LOD_TENSOR_ARRAY) {
ch->Reset<pf::LoDTensorArray>(capacity);
} else if (dtype == framework::proto::VarType::READER) {
ch->Reset<pf::ReaderHolder>(capacity);
} else if (dtype == framework::proto::VarType::CHANNEL) {
ch->Reset<pf::ChannelHolder>(capacity);
} else if (dtype == framework::proto::VarType::BOOL) {
ch->Reset<bool>(capacity);
} else if (dtype == framework::proto::VarType::INT32) {
ch->Reset<int>(capacity);
} else if (dtype == framework::proto::VarType::INT64) {
ch->Reset<int64_t>(capacity);
} else if (dtype == framework::proto::VarType::FP32) {
ch->Reset<float>(capacity);
} else if (dtype == framework::proto::VarType::FP64) {
ch->Reset<double>(capacity);
} else {
PADDLE_THROW(
"Data type %d is not in "
"[LOD_TENSOR, SELECTED_ROWS, LOD_RANK_TABLE, LOD_TENSOR_ARRAY, "
"READER, CHANNEL, BOOL, INT32, INT64, FP32, FP64]",
dtype);
}
}
};
class ChannelCreateOpOpInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *context) const override {
PADDLE_ENFORCE(context->HasOutput(kOutput),
"The output of ChannelCreate op must be set");
context->SetOutputDim(kOutput, {1});
}
};
class ChannelCreateOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddOutput(kOutput,
"The object of a Channel type created by ChannelCreate Op.");
AddAttr<int>("capacity", "The size of the buffer of Channel.")
.SetDefault(0);
AddAttr<int>("data_type", "The data type of elements inside the Channel.");
AddComment(R"DOC(
Channel Create Operator.
This operator creates an object of the VarType Channel and returns it.
)DOC");
}
};
} // namespace operators
} // namespace paddle
REGISTER_OPERATOR(channel_create, paddle::operators::ChannelCreateOp,
paddle::framework::EmptyGradOpMaker,
paddle::operators::ChannelCreateOpMaker);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/channel.h"
#include <paddle/fluid/framework/lod_rank_table.h>
#include <paddle/fluid/framework/lod_tensor_array.h>
#include <paddle/fluid/framework/reader.h>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/operators/concurrency/channel_util.h"
#include "paddle/fluid/operators/math/math_function.h"
static constexpr char Channel[] = "Channel";
static constexpr char Status[] = "Status";
static constexpr char Out[] = "Out";
namespace paddle {
namespace operators {
void SetReceiveStatus(const platform::Place &dev_place,
framework::Variable *status_var, bool status) {
auto cpu = platform::CPUPlace();
auto status_tensor =
status_var->GetMutable<framework::LoDTensor>()->mutable_data<bool>({1},
cpu);
status_tensor[0] = status;
}
class ChannelRecvOp : public framework::OperatorBase {
public:
ChannelRecvOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: framework::OperatorBase(type, inputs, outputs, attrs) {}
void InferShape(framework::InferShapeContext *ctx) const {
PADDLE_ENFORCE(ctx->HasInput(Channel),
"Input(Channel) of ChannelRecvOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput(Out),
"Input(Channel) of ChannelRecvOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput(Status),
"Output(Status) of ChannelRecvOp should not be null.");
ctx->SetOutputDim("Status", {1});
}
private:
void RunImpl(const framework::Scope &scope,
const platform::Place &dev_place) const override {
// Get the channel holder created by channel_create op, passed as input.
framework::ChannelHolder *ch =
scope.FindVar(Input(Channel))->GetMutable<framework::ChannelHolder>();
auto output_var = scope.FindVar(Output(Out));
// Receive the data from the channel.
bool ok = concurrency::ChannelReceive(ch, output_var);
// Set the status output of the `ChannelReceive` call.
SetReceiveStatus(dev_place, scope.FindVar(Output(Status)), ok);
}
};
class ChannelRecvOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput(Channel,
"(Channel) A variable which \"receives\" the a value sent"
"to it by a channel_send op.")
.AsDuplicable();
AddOutput(Out,
"(Variable) Output Variable that will hold the data received"
" from the Channel")
.AsDuplicable();
AddOutput(Status,
"(Tensor) An LoD Tensor that returns a boolean status of the"
"result of the receive operation.")
.AsDuplicable();
AddComment(R"DOC(
)DOC");
}
};
} // namespace operators
} // namespace paddle
REGISTER_OPERATOR(channel_recv, paddle::operators::ChannelRecvOp,
paddle::framework::EmptyGradOpMaker,
paddle::operators::ChannelRecvOpMaker);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/channel.h"
#include <paddle/fluid/framework/lod_rank_table.h>
#include <paddle/fluid/framework/lod_tensor_array.h>
#include <paddle/fluid/framework/reader.h>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/operators/concurrency/channel_util.h"
#include "paddle/fluid/operators/math/math_function.h"
static constexpr char Channel[] = "Channel";
static constexpr char X[] = "X";
namespace paddle {
namespace operators {
class ChannelSendOp : public framework::OperatorBase {
public:
ChannelSendOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: framework::OperatorBase(type, inputs, outputs, attrs) {}
void InferShape(framework::InferShapeContext *ctx) const {
PADDLE_ENFORCE(ctx->HasInput(Channel),
"Input(Channel) of ChannelSendOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput(X),
"Input(X) of ChannelSendOp should not be null.");
}
private:
void RunImpl(const framework::Scope &scope,
const platform::Place &dev_place) const override {
// Get the channel holder created by channel_create op, passed as input.
framework::ChannelHolder *ch =
scope.FindVar(Input(Channel))->GetMutable<framework::ChannelHolder>();
auto input_var = scope.FindVar(Input(X));
// Send the input data through the channel.
concurrency::ChannelSend(ch, input_var);
}
};
class ChannelSendOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput(Channel,
"(Channel) A variable which \"sends\" the passed in value to "
"a listening receiver.")
.AsDuplicable();
AddInput(X, "(Variable) The value which gets sent by the channel.")
.AsDuplicable();
AddComment(R"DOC(
)DOC");
}
};
} // namespace operators
} // namespace paddle
REGISTER_OPERATOR(channel_send, paddle::operators::ChannelSendOp,
paddle::framework::EmptyGradOpMaker,
paddle::operators::ChannelSendOpMaker);
cc_library(concurrency SRCS channel_util.cc DEPS device_context framework_proto boost eigen3)
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/concurrency/channel_util.h"
#include "paddle/fluid/framework/var_type.h"
namespace poc = paddle::operators::concurrency;
void poc::ChannelSend(framework::ChannelHolder *ch, framework::Variable *var) {
auto type = framework::ToVarType(var->Type());
if (type == framework::proto::VarType_Type_LOD_TENSOR)
ch->Send(var->GetMutable<framework::LoDTensor>());
else if (type == framework::proto::VarType_Type_LOD_RANK_TABLE)
ch->Send(var->GetMutable<framework::LoDRankTable>());
else if (type == framework::proto::VarType_Type_LOD_TENSOR_ARRAY)
ch->Send(var->GetMutable<framework::LoDTensorArray>());
else if (type == framework::proto::VarType_Type_SELECTED_ROWS)
ch->Send(var->GetMutable<framework::SelectedRows>());
else if (type == framework::proto::VarType_Type_READER)
ch->Send(var->GetMutable<framework::ReaderHolder>());
else if (type == framework::proto::VarType_Type_CHANNEL)
ch->Send(var->GetMutable<framework::ChannelHolder>());
else
PADDLE_THROW("ChannelSend:Unsupported type");
}
bool poc::ChannelReceive(framework::ChannelHolder *ch,
framework::Variable *var) {
// Get type of channel and use that to call mutable data for Variable
auto type = framework::ToVarType(ch->Type());
if (type == framework::proto::VarType_Type_LOD_TENSOR)
return ch->Receive(var->GetMutable<framework::LoDTensor>());
else if (type == framework::proto::VarType_Type_LOD_RANK_TABLE)
return ch->Receive(var->GetMutable<framework::LoDRankTable>());
else if (type == framework::proto::VarType_Type_LOD_TENSOR_ARRAY)
return ch->Receive(var->GetMutable<framework::LoDTensorArray>());
else if (type == framework::proto::VarType_Type_SELECTED_ROWS)
return ch->Receive(var->GetMutable<framework::SelectedRows>());
else if (type == framework::proto::VarType_Type_READER)
return ch->Receive(var->GetMutable<framework::ReaderHolder>());
else if (type == framework::proto::VarType_Type_CHANNEL)
return ch->Receive(var->GetMutable<framework::ChannelHolder>());
else
PADDLE_THROW("ChannelReceive:Unsupported type");
}
void poc::ChannelAddToSendQ(framework::ChannelHolder *ch, const void *referrer,
framework::Variable *var,
std::shared_ptr<std::condition_variable_any> cond,
std::function<bool(framework::ChannelAction)> cb) {
auto type = framework::ToVarType(var->Type());
if (type == framework::proto::VarType_Type_LOD_TENSOR) {
ch->AddToSendQ(referrer, var->GetMutable<framework::LoDTensor>(), cond, cb);
} else if (type == framework::proto::VarType_Type_LOD_RANK_TABLE) {
ch->AddToSendQ(referrer, var->GetMutable<framework::LoDRankTable>(), cond,
cb);
} else if (type == framework::proto::VarType_Type_LOD_TENSOR_ARRAY) {
ch->AddToSendQ(referrer, var->GetMutable<framework::LoDTensorArray>(), cond,
cb);
} else if (type == framework::proto::VarType_Type_SELECTED_ROWS) {
ch->AddToSendQ(referrer, var->GetMutable<framework::SelectedRows>(), cond,
cb);
} else if (type == framework::proto::VarType_Type_READER) {
ch->AddToSendQ(referrer, var->GetMutable<framework::ReaderHolder>(), cond,
cb);
} else if (type == framework::proto::VarType_Type_CHANNEL) {
ch->AddToSendQ(referrer, var->GetMutable<framework::ChannelHolder>(), cond,
cb);
} else {
PADDLE_THROW("ChannelAddToSendQ:Unsupported type");
}
}
void poc::ChannelAddToReceiveQ(
framework::ChannelHolder *ch, const void *referrer,
framework::Variable *var, std::shared_ptr<std::condition_variable_any> cond,
std::function<bool(framework::ChannelAction)> cb) {
auto type = framework::ToVarType(var->Type());
if (type == framework::proto::VarType_Type_LOD_TENSOR) {
ch->AddToReceiveQ(referrer, var->GetMutable<framework::LoDTensor>(), cond,
cb);
} else if (type == framework::proto::VarType_Type_LOD_RANK_TABLE) {
ch->AddToReceiveQ(referrer, var->GetMutable<framework::LoDRankTable>(),
cond, cb);
} else if (type == framework::proto::VarType_Type_LOD_TENSOR_ARRAY) {
ch->AddToReceiveQ(referrer, var->GetMutable<framework::LoDTensorArray>(),
cond, cb);
} else if (type == framework::proto::VarType_Type_SELECTED_ROWS) {
ch->AddToReceiveQ(referrer, var->GetMutable<framework::SelectedRows>(),
cond, cb);
} else if (type == framework::proto::VarType_Type_READER) {
ch->AddToReceiveQ(referrer, var->GetMutable<framework::ReaderHolder>(),
cond, cb);
} else if (type == framework::proto::VarType_Type_CHANNEL) {
ch->AddToReceiveQ(referrer, var->GetMutable<framework::ChannelHolder>(),
cond, cb);
} else {
PADDLE_THROW("ChannelAddToReceiveQ:Unsupported type");
}
}
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/channel.h"
#include "paddle/fluid/framework/variable.h"
namespace paddle {
namespace operators {
namespace concurrency {
void ChannelSend(framework::ChannelHolder *ch, framework::Variable *var);
bool ChannelReceive(framework::ChannelHolder *ch, framework::Variable *var);
void ChannelAddToSendQ(framework::ChannelHolder *ch, const void *referrer,
framework::Variable *var,
std::shared_ptr<std::condition_variable_any> cond,
std::function<bool(framework::ChannelAction)> cb);
void ChannelAddToReceiveQ(framework::ChannelHolder *ch, const void *referrer,
framework::Variable *var,
std::shared_ptr<std::condition_variable_any> cond,
std::function<bool(framework::ChannelAction)> cb);
} // namespace concurrency
} // namespace operators
} // namespace paddle
...@@ -380,7 +380,8 @@ class DepthwiseConvKernel : public framework::OpKernel<T> { ...@@ -380,7 +380,8 @@ class DepthwiseConvKernel : public framework::OpKernel<T> {
math::DepthwiseConvFunctor<DeviceContext, T> depthwiseConv; math::DepthwiseConvFunctor<DeviceContext, T> depthwiseConv;
auto& dev_ctx = context.template device_context<DeviceContext>(); auto& dev_ctx = context.template device_context<DeviceContext>();
depthwiseConv(dev_ctx, *input, filter, strides, paddings, output); depthwiseConv(dev_ctx, *input, filter, strides, paddings, dilations,
output);
} }
}; };
...@@ -415,14 +416,14 @@ class DepthwiseConvGradKernel : public framework::OpKernel<T> { ...@@ -415,14 +416,14 @@ class DepthwiseConvGradKernel : public framework::OpKernel<T> {
input_grad->mutable_data<T>(context.GetPlace()); input_grad->mutable_data<T>(context.GetPlace());
set_zero(dev_ctx, input_grad, static_cast<T>(0)); set_zero(dev_ctx, input_grad, static_cast<T>(0));
depthwiseConvInputGrad(dev_ctx, *input, filter, *output_grad, strides, depthwiseConvInputGrad(dev_ctx, *input, filter, *output_grad, strides,
paddings, input_grad); paddings, dilations, input_grad);
} }
if (filter_grad) { if (filter_grad) {
filter_grad->mutable_data<T>(context.GetPlace()); filter_grad->mutable_data<T>(context.GetPlace());
set_zero(dev_ctx, filter_grad, static_cast<T>(0)); set_zero(dev_ctx, filter_grad, static_cast<T>(0));
depthwiseConvFilterGrad(dev_ctx, *input, *output_grad, strides, paddings, depthwiseConvFilterGrad(dev_ctx, *input, *output_grad, strides, paddings,
filter_grad); dilations, filter_grad);
} }
} }
}; };
......
...@@ -345,7 +345,7 @@ class DepthwiseConvTransposeKernel : public framework::OpKernel<T> { ...@@ -345,7 +345,7 @@ class DepthwiseConvTransposeKernel : public framework::OpKernel<T> {
math::DepthwiseConvInputGradFunctor<DeviceContext, T> math::DepthwiseConvInputGradFunctor<DeviceContext, T>
depthwiseConvInputGrad; depthwiseConvInputGrad;
depthwiseConvInputGrad(dev_ctx, *output, filter, *input, strides, paddings, depthwiseConvInputGrad(dev_ctx, *output, filter, *input, strides, paddings,
output); dilations, output);
} }
}; };
...@@ -367,10 +367,11 @@ class DepthwiseConvTransposeGradKernel : public framework::OpKernel<T> { ...@@ -367,10 +367,11 @@ class DepthwiseConvTransposeGradKernel : public framework::OpKernel<T> {
auto& dev_ctx = context.template device_context<DeviceContext>(); auto& dev_ctx = context.template device_context<DeviceContext>();
std::vector<int> strides = context.Attr<std::vector<int>>("strides"); std::vector<int> strides = context.Attr<std::vector<int>>("strides");
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings"); std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
if (input_grad) { if (input_grad) {
math::DepthwiseConvFunctor<DeviceContext, T> depthwiseConv; math::DepthwiseConvFunctor<DeviceContext, T> depthwiseConv;
depthwiseConv(dev_ctx, *output_grad, filter, strides, paddings, depthwiseConv(dev_ctx, *output_grad, filter, strides, paddings, dilations,
input_grad); input_grad);
} }
...@@ -382,7 +383,7 @@ class DepthwiseConvTransposeGradKernel : public framework::OpKernel<T> { ...@@ -382,7 +383,7 @@ class DepthwiseConvTransposeGradKernel : public framework::OpKernel<T> {
math::DepthwiseConvFilterGradFunctor<DeviceContext, T> math::DepthwiseConvFilterGradFunctor<DeviceContext, T>
depthwiseConvFilterGrad; depthwiseConvFilterGrad;
depthwiseConvFilterGrad(dev_ctx, *output_grad, *input, strides, paddings, depthwiseConvFilterGrad(dev_ctx, *output_grad, *input, strides, paddings,
filter_grad); dilations, filter_grad);
} }
} }
}; };
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <cmath>
#include <numeric>
#include <set>
#include <vector>
#include <cub/cub.cuh> // NOLINT
#include "paddle/fluid/framework/tensor.h"
namespace paddle {
namespace operators {
namespace detail {
template <typename T, size_t ElementCount>
struct Array {
public:
HOSTDEVICE inline Array() {}
HOSTDEVICE inline T& operator[](size_t index) { return data_[index]; }
HOSTDEVICE inline const T& operator[](size_t index) const {
return data_[index];
}
HOSTDEVICE constexpr inline size_t size() const { return ElementCount; }
template <typename VectorLikeType>
static inline Array<T, ElementCount> From(const VectorLikeType& vec) {
PADDLE_ENFORCE_EQ(vec.size(), ElementCount, "size not match");
size_t n = static_cast<size_t>(vec.size());
Array<T, ElementCount> ret;
for (size_t i = 0; i < n; ++i) ret[i] = vec[i];
return ret;
}
private:
T data_[ElementCount];
};
// reduce the last axis of 2d array
template <typename Tx, typename Ty, typename ReduceOp, typename TransformOp,
int BlockDim>
__global__ void ReduceKernel2D(const Tx* x, Ty* y, ReduceOp reducer,
TransformOp transformer, Ty init,
int reduce_num) {
__shared__ typename cub::BlockReduce<Ty, BlockDim>::TempStorage temp_storage;
int idx_x = blockIdx.x * reduce_num;
int idx_y = threadIdx.x;
Ty reduce_var = init;
for (int idx_y = threadIdx.x; idx_y < reduce_num; idx_y += BlockDim)
reduce_var = reducer(reduce_var, transformer(x[idx_x + idx_y]));
reduce_var =
cub::BlockReduce<Ty, BlockDim>(temp_storage).Reduce(reduce_var, reducer);
if (threadIdx.x == 0) {
y[blockIdx.x] = reduce_var;
}
}
template <typename Tx, typename Ty, typename ReduceOp, typename TransformOp,
int BlockDim, int Rank, int ReduceRank>
__global__ void ReduceKernel(const Tx* x, Ty* y, ReduceOp reducer,
TransformOp transformer, Ty init, int reduce_num,
Array<int, Rank> x_strides,
Array<int, ReduceRank> reduce_dim,
Array<int, ReduceRank> reduce_strides,
Array<int, Rank - ReduceRank> left_dim,
Array<int, Rank - ReduceRank> left_strides) {
__shared__ typename cub::BlockReduce<Ty, BlockDim>::TempStorage temp_storage;
Array<int, Rank> sub_index;
int left_idx = blockIdx.x;
for (int i = 0; i < Rank - ReduceRank; ++i) {
sub_index[left_dim[i]] = left_idx / left_strides[i];
left_idx %= left_strides[i];
}
int reduce_idx = threadIdx.x;
for (int j = 0; j < ReduceRank; ++j) {
sub_index[reduce_dim[j]] = reduce_idx / reduce_strides[j];
reduce_idx %= reduce_strides[j];
}
int idx_x = 0;
for (int k = 0; k < Rank; ++k) idx_x += (sub_index[k] * x_strides[k]);
Ty reduce_var = static_cast<Ty>(transformer(x[idx_x]));
for (int i = threadIdx.x + BlockDim; i < reduce_num; i += BlockDim) {
int reduce_idx = i;
for (int j = 0; j < ReduceRank; ++j) {
sub_index[reduce_dim[j]] = reduce_idx / reduce_strides[j];
reduce_idx %= reduce_strides[j];
}
int idx_x = 0;
for (int k = 0; k < Rank; ++k) idx_x += (sub_index[k] * x_strides[k]);
reduce_var = static_cast<Ty>(reducer(reduce_var, transformer(x[idx_x])));
}
reduce_var =
cub::BlockReduce<Ty, BlockDim>(temp_storage).Reduce(reduce_var, reducer);
if (threadIdx.x == 0) {
y[blockIdx.x] = reduce_var;
}
}
static inline std::vector<int> GetStrides(const std::vector<int>& dims) {
int n = static_cast<int>(dims.size());
if (n == 0) return std::vector<int>();
std::vector<int> strides(n);
strides.back() = 1;
for (int i = n - 2; i >= 0; --i) {
strides[i] = strides[i + 1] * dims[i + 1];
}
return strides;
}
static inline std::vector<int> GetStrides(const std::vector<int>& dims,
const std::vector<int>& idx) {
int n = static_cast<int>(idx.size());
if (n == 0) return std::vector<int>();
std::vector<int> strides(n);
strides.back() = 1;
for (int i = n - 2; i >= 0; --i) {
strides[i] = strides[i + 1] * dims[idx[i + 1]];
}
return strides;
}
constexpr int kMaxBlockDim = 512;
static inline int GetDesiredBlockDim(int block_dim) {
return block_dim >= kMaxBlockDim
? kMaxBlockDim
: (1 << static_cast<int>(std::log2(block_dim)));
}
template <typename Tx, typename Ty, int BlockDim, typename ReduceOp,
typename TransformOp>
static void TensorReduceImpl(
const Tx* x_data, Ty* y_data, const platform::Place& place,
const ReduceOp& reducer, const TransformOp& transformer, const Ty& init,
int left_num, int reduce_num, const std::vector<int>& x_strides,
const std::vector<int>& reduce_dim, const std::vector<int>& reduce_strides,
const std::vector<int>& left_dim, const std::vector<int>& left_strides,
cudaStream_t stream) {
#define CUB_RANK_CASE(i, ...) \
case i: { \
constexpr auto kRank = i; \
switch (reduce_rank) { __VA_ARGS__; } \
} break
#define CUB_REDUCE_RANK_CASE(i, ...) \
case i: { \
constexpr auto kReduceRank = i; \
ReduceKernel<Tx, Ty, ReduceOp, TransformOp, BlockDim, kRank, \
kReduceRank><<<left_num, BlockDim, 0, stream>>>( \
x_data, y_data, reducer, transformer, init, reduce_num, \
Array<int, kRank>::From(x_strides), \
Array<int, kReduceRank>::From(reduce_dim), \
Array<int, kReduceRank>::From(reduce_strides), \
Array<int, kRank - kReduceRank>::From(left_dim), \
Array<int, kRank - kReduceRank>::From(left_strides)); \
} break
int rank = x_strides.size();
int reduce_rank = reduce_strides.size();
if (rank == reduce_rank) {
cub::TransformInputIterator<Ty, TransformOp, const Tx*> trans_x(
x_data, transformer);
size_t temp_storage_bytes = 0;
cub::DeviceReduce::Reduce(nullptr, temp_storage_bytes, trans_x, y_data,
reduce_num, reducer, init, stream);
framework::Tensor tmp;
auto* temp_storage = tmp.mutable_data<uint8_t>(
framework::make_ddim({static_cast<int64_t>(temp_storage_bytes)}),
place);
cub::DeviceReduce::Reduce(temp_storage, temp_storage_bytes, trans_x, y_data,
reduce_num, reducer, init, stream);
return;
}
if (rank == 2 && reduce_rank == 1 && reduce_dim[0] == 1) {
ReduceKernel2D<Tx, Ty, ReduceOp, TransformOp,
BlockDim><<<left_num, BlockDim, 0, stream>>>(
x_data, y_data, reducer, transformer, init, reduce_num);
return;
}
/*
if (rank == 3 && reduce_rank == 1 && reduce_dim[0] == 1) {
// TODO(liangdun): we can optimize 3d case which the 2nd axis is reduced.
// Currently, it is handled by code below, but inefficient
return;
}
*/
switch (rank) {
CUB_RANK_CASE(2, CUB_REDUCE_RANK_CASE(1););
CUB_RANK_CASE(3, CUB_REDUCE_RANK_CASE(1); CUB_REDUCE_RANK_CASE(2););
CUB_RANK_CASE(4, CUB_REDUCE_RANK_CASE(1); CUB_REDUCE_RANK_CASE(2);
CUB_REDUCE_RANK_CASE(3););
CUB_RANK_CASE(5, CUB_REDUCE_RANK_CASE(1); CUB_REDUCE_RANK_CASE(2);
CUB_REDUCE_RANK_CASE(3); CUB_REDUCE_RANK_CASE(4););
CUB_RANK_CASE(6, CUB_REDUCE_RANK_CASE(1); CUB_REDUCE_RANK_CASE(2);
CUB_REDUCE_RANK_CASE(3); CUB_REDUCE_RANK_CASE(4);
CUB_REDUCE_RANK_CASE(5););
CUB_RANK_CASE(7, CUB_REDUCE_RANK_CASE(1); CUB_REDUCE_RANK_CASE(2);
CUB_REDUCE_RANK_CASE(3); CUB_REDUCE_RANK_CASE(4);
CUB_REDUCE_RANK_CASE(5); CUB_REDUCE_RANK_CASE(6););
CUB_RANK_CASE(8, CUB_REDUCE_RANK_CASE(1); CUB_REDUCE_RANK_CASE(2);
CUB_REDUCE_RANK_CASE(3); CUB_REDUCE_RANK_CASE(4);
CUB_REDUCE_RANK_CASE(5); CUB_REDUCE_RANK_CASE(6););
CUB_RANK_CASE(9, CUB_REDUCE_RANK_CASE(1); CUB_REDUCE_RANK_CASE(2);
CUB_REDUCE_RANK_CASE(3); CUB_REDUCE_RANK_CASE(4);
CUB_REDUCE_RANK_CASE(5); CUB_REDUCE_RANK_CASE(6);
CUB_REDUCE_RANK_CASE(7); CUB_REDUCE_RANK_CASE(8););
}
#undef CUB_REDUCE_RANK_CASE
#undef CUB_RANK_CASE
}
} // namespace detail
template <typename Tx, typename Ty, typename ReduceOp, typename TransformOp>
void TensorReduce(const framework::Tensor& x, framework::Tensor* y,
std::vector<int> origin_reduce_dims, const Ty& init,
const ReduceOp& reducer, const TransformOp& transformer,
cudaStream_t stream) {
auto x_dim = framework::vectorize2int(x.dims());
std::vector<int> new_x_dim, new_reduce_dims;
int is_reduced = 0;
for (auto e : origin_reduce_dims) {
auto pos = e >= 0 ? e : e + x_dim.size();
is_reduced |= 1 << e;
}
for (int i = 0; i < x_dim.size(); i++) {
if ((i == 0) || (((is_reduced >> i) ^ (is_reduced >> (i - 1))) & 1)) {
new_x_dim.push_back(x_dim[i]);
if ((is_reduced >> i) & 1)
new_reduce_dims.push_back(new_x_dim.size() - 1);
} else {
new_x_dim[new_x_dim.size() - 1] *= x_dim[i];
}
}
x_dim = new_x_dim;
origin_reduce_dims = new_reduce_dims;
int x_rank = static_cast<int>(x_dim.size());
std::set<int> left_set, reduce_set;
for (int i = 0; i < x_rank; ++i) left_set.insert(i);
for (auto e : origin_reduce_dims) {
left_set.erase(e);
reduce_set.insert(e);
}
std::vector<int> reduce_dim(reduce_set.begin(), reduce_set.end());
std::vector<int> left_dim(left_set.begin(), left_set.end());
std::vector<int> x_strides = detail::GetStrides(x_dim);
std::vector<int> reduce_strides = detail::GetStrides(x_dim, reduce_dim);
std::vector<int> left_strides = detail::GetStrides(x_dim, left_dim);
int reduce_num = reduce_strides[0] * x_dim[reduce_dim[0]];
int left_num = 1;
if (left_dim.size()) left_num = left_strides[0] * x_dim[left_dim[0]];
std::vector<int> y_dim(left_dim.size());
for (int i = 0; i < left_dim.size(); ++i) {
y_dim[i] = x_dim[left_dim[i]];
}
auto x_data = x.data<Tx>();
auto y_data = y->mutable_data<Ty>(x.place());
if (reduce_num == 1) return;
#define CUB_BLOCK_DIM_CASE(block_dim) \
case block_dim: { \
constexpr auto kBlockDim = block_dim; \
detail::TensorReduceImpl<Tx, Ty, block_dim, ReduceOp, TransformOp>( \
x_data, y_data, x.place(), reducer, transformer, init, left_num, \
reduce_num, x_strides, reduce_dim, reduce_strides, left_dim, \
left_strides, stream); \
} break
switch (detail::GetDesiredBlockDim(reduce_num)) {
CUB_BLOCK_DIM_CASE(512);
CUB_BLOCK_DIM_CASE(256);
CUB_BLOCK_DIM_CASE(128);
CUB_BLOCK_DIM_CASE(64);
CUB_BLOCK_DIM_CASE(32);
CUB_BLOCK_DIM_CASE(16);
CUB_BLOCK_DIM_CASE(8);
CUB_BLOCK_DIM_CASE(4);
CUB_BLOCK_DIM_CASE(2);
}
#undef CUB_BLOCK_DIM_CASE
}
} // namespace operators
} // namespace paddle
...@@ -15,6 +15,7 @@ limitations under the License. */ ...@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once #pragma once
#include <time.h> #include <time.h>
#include <atomic>
#include <chrono> // NOLINT #include <chrono> // NOLINT
#include <condition_variable> // NOLINT #include <condition_variable> // NOLINT
......
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#pragma once #pragma once
#include <time.h> #include <time.h>
#include <condition_variable> // NOLINT
#include <functional> #include <functional>
#include <string> #include <string>
......
...@@ -14,6 +14,7 @@ ...@@ -14,6 +14,7 @@
#pragma once #pragma once
#include <atomic>
#include <set> #include <set>
#include <string> #include <string>
#include <thread> // NOLINT #include <thread> // NOLINT
......
...@@ -89,7 +89,7 @@ class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -89,7 +89,7 @@ class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<bool>("use_mkldnn", "(bool, default false). Used by MKLDNN.") AddAttr<bool>("use_mkldnn", "(bool, default false). Used by MKLDNN.")
.SetDefault(false); .SetDefault(false);
AddComment(string::Sprintf(R"DOC( AddComment(string::Sprintf(R"DOC(
Limited Elementwise %s Operator Elementwise %s Operator
The equation is: The equation is:
......
...@@ -32,7 +32,8 @@ class DepthwiseConvFunctor { ...@@ -32,7 +32,8 @@ class DepthwiseConvFunctor {
void operator()(const DeviceContext& context, const framework::Tensor& input, void operator()(const DeviceContext& context, const framework::Tensor& input,
const framework::Tensor& filter, const framework::Tensor& filter,
const std::vector<int>& strides, const std::vector<int>& strides,
const std::vector<int>& paddings, framework::Tensor* output); const std::vector<int>& paddings,
const std::vector<int>& dilations, framework::Tensor* output);
}; };
template <typename DeviceContext, typename T> template <typename DeviceContext, typename T>
...@@ -43,6 +44,7 @@ class DepthwiseConvInputGradFunctor { ...@@ -43,6 +44,7 @@ class DepthwiseConvInputGradFunctor {
const framework::Tensor& output_grad, const framework::Tensor& output_grad,
const std::vector<int>& strides, const std::vector<int>& strides,
const std::vector<int>& paddings, const std::vector<int>& paddings,
const std::vector<int>& dilations,
framework::Tensor* input_grad); framework::Tensor* input_grad);
}; };
...@@ -53,6 +55,7 @@ class DepthwiseConvFilterGradFunctor { ...@@ -53,6 +55,7 @@ class DepthwiseConvFilterGradFunctor {
const framework::Tensor& output_grad, const framework::Tensor& output_grad,
const std::vector<int>& strides, const std::vector<int>& strides,
const std::vector<int>& paddings, const std::vector<int>& paddings,
const std::vector<int>& dilations,
framework::Tensor* filter_grad); framework::Tensor* filter_grad);
}; };
......
...@@ -12,17 +12,64 @@ ...@@ -12,17 +12,64 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#include <vector>
#include "paddle/fluid/operators/cub_reduce.h"
#include "paddle/fluid/operators/reduce_mean_op.h" #include "paddle/fluid/operators/reduce_mean_op.h"
REGISTER_OP_CUDA_KERNEL(reduce_mean, namespace paddle {
ops::ReduceKernel<paddle::platform::CUDADeviceContext, namespace operators {
float, ops::MeanFunctor>,
ops::ReduceKernel<paddle::platform::CUDADeviceContext, template <typename T>
double, ops::MeanFunctor>, struct DivideFunctor {
ops::ReduceKernel<paddle::platform::CUDADeviceContext, HOSTDEVICE explicit inline DivideFunctor(int n) : n_inv((T)(1.0 / n)) {}
int, ops::MeanFunctor>,
ops::ReduceKernel<paddle::platform::CUDADeviceContext, HOSTDEVICE inline T operator()(const T& x) const { return x * n_inv; }
int64_t, ops::MeanFunctor>);
private:
T n_inv;
};
template <typename T>
class ReduceMeanKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
bool reduce_all = context.Attr<bool>("reduce_all");
auto* input = context.Input<Tensor>("X");
auto* output = context.Output<Tensor>("Out");
auto dims = context.Attr<std::vector<int>>("dim");
bool keep_dim = context.Attr<bool>("keep_dim");
std::vector<int> reduce_dims;
if (reduce_all) {
reduce_dims.resize(input->dims().size());
for (int i = 0; i < reduce_dims.size(); ++i) reduce_dims[i] = i;
} else {
for (auto e : dims) {
reduce_dims.push_back(e >= 0 ? e : e + input->dims().size());
}
}
int reduce_num = 1;
for (int i = 0; i < reduce_dims.size(); ++i) {
reduce_num *= input->dims()[reduce_dims[i]];
}
auto stream = context.cuda_device_context().stream();
TensorReduce<T, T, cub::Sum, DivideFunctor<T>>(
*input, output, reduce_dims, static_cast<T>(0), cub::Sum(),
DivideFunctor<T>(reduce_num), stream);
}
};
} // namespace operators
} // namespace paddle
REGISTER_OP_CUDA_KERNEL(reduce_mean, ops::ReduceMeanKernel<float>,
ops::ReduceMeanKernel<double>,
ops::ReduceMeanKernel<int>,
ops::ReduceMeanKernel<int64_t>);
REGISTER_OP_CUDA_KERNEL( REGISTER_OP_CUDA_KERNEL(
reduce_mean_grad, ops::ReduceGradKernel<paddle::platform::CUDADeviceContext, reduce_mean_grad, ops::ReduceGradKernel<paddle::platform::CUDADeviceContext,
float, ops::MeanGradFunctor>, float, ops::MeanGradFunctor>,
......
...@@ -12,17 +12,59 @@ ...@@ -12,17 +12,59 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#include "paddle/fluid/operators/cub_reduce.h"
#include "paddle/fluid/operators/reduce_sum_op.h" #include "paddle/fluid/operators/reduce_sum_op.h"
REGISTER_OP_CUDA_KERNEL(reduce_sum, namespace paddle {
ops::ReduceKernel<paddle::platform::CUDADeviceContext, namespace operators {
float, ops::SumFunctor>,
ops::ReduceKernel<paddle::platform::CUDADeviceContext, template <typename T>
double, ops::SumFunctor>, struct IdentityFunctor {
ops::ReduceKernel<paddle::platform::CUDADeviceContext, HOSTDEVICE explicit inline IdentityFunctor() {}
int, ops::SumFunctor>,
ops::ReduceKernel<paddle::platform::CUDADeviceContext, HOSTDEVICE inline T operator()(const T& x) const { return x; }
int64_t, ops::SumFunctor>); };
template <typename T>
class ReduceSumKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
bool reduce_all = context.Attr<bool>("reduce_all");
auto* input = context.Input<Tensor>("X");
auto* output = context.Output<Tensor>("Out");
auto dims = context.Attr<std::vector<int>>("dim");
bool keep_dim = context.Attr<bool>("keep_dim");
std::vector<int> reduce_dims;
if (reduce_all) {
reduce_dims.resize(input->dims().size());
for (int i = 0; i < reduce_dims.size(); ++i) reduce_dims[i] = i;
} else {
for (auto e : dims) {
reduce_dims.push_back(e >= 0 ? e : e + input->dims().size());
}
}
int reduce_num = 1;
for (int i = 0; i < reduce_dims.size(); ++i) {
reduce_num *= input->dims()[reduce_dims[i]];
}
auto stream = context.cuda_device_context().stream();
TensorReduce<T, T, cub::Sum, IdentityFunctor<T>>(
*input, output, reduce_dims, static_cast<T>(0), cub::Sum(),
IdentityFunctor<T>(), stream);
}
};
} // namespace operators
} // namespace paddle
REGISTER_OP_CUDA_KERNEL(reduce_sum, ops::ReduceSumKernel<float>,
ops::ReduceSumKernel<double>, ops::ReduceSumKernel<int>,
ops::ReduceSumKernel<int64_t>);
REGISTER_OP_CUDA_KERNEL( REGISTER_OP_CUDA_KERNEL(
reduce_sum_grad, ops::ReduceGradKernel<paddle::platform::CUDADeviceContext, reduce_sum_grad, ops::ReduceGradKernel<paddle::platform::CUDADeviceContext,
float, ops::SumGradFunctor>, float, ops::SumGradFunctor>,
......
...@@ -77,9 +77,11 @@ class ScaleOpVarTypeInference : public framework::VarTypeInference { ...@@ -77,9 +77,11 @@ class ScaleOpVarTypeInference : public framework::VarTypeInference {
auto out_var_name = op_desc.Output("Out").front(); auto out_var_name = op_desc.Output("Out").front();
auto *out_var = block->FindVarRecursive(out_var_name); auto *out_var = block->FindVarRecursive(out_var_name);
if (in_var_name != out_var_name) {
out_var->SetType(in_var.GetType()); out_var->SetType(in_var.GetType());
out_var->SetDataType(in_var.GetDataType()); out_var->SetDataType(in_var.GetDataType());
} }
}
}; };
class ScaleGradMaker : public framework::SingleGradOpDescMaker { class ScaleGradMaker : public framework::SingleGradOpDescMaker {
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <thread> // NOLINT
#include <vector>
#include "paddle/fluid/framework/channel.h"
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/concurrency/channel_util.h"
#include <boost/tokenizer.hpp>
namespace paddle {
namespace operators {
static constexpr char kX[] = "X";
static constexpr char kCaseToExecute[] = "case_to_execute";
static constexpr char kOutputs[] = "Out";
static constexpr char kCases[] = "cases";
static constexpr char kCasesBlock[] = "sub_block";
class SelectOp : public framework::OperatorBase {
public:
SelectOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: framework::OperatorBase(type, inputs, outputs, attrs) {}
private:
enum class SelectOpCaseType {
DEFAULT = 0,
SEND = 1,
RECEIVE = 2,
};
struct SelectOpCase {
int caseIndex;
SelectOpCaseType caseType;
std::string channelName;
std::string varName;
SelectOpCase() {}
SelectOpCase(int caseIndex, SelectOpCaseType caseType,
std::string channelName, std::string varName)
: caseIndex(caseIndex),
caseType(caseType),
channelName(channelName),
varName(varName) {}
};
void RunImpl(const framework::Scope &scope,
const platform::Place &dev_place) const override {
std::vector<std::string> casesConfigs =
Attr<std::vector<std::string>>(kCases);
framework::BlockDesc *casesBlock =
Attr<framework::BlockDesc *>(kCasesBlock);
framework::Scope &casesBlockScope = scope.NewScope();
std::string caseToExecuteVarName = Input(kCaseToExecute);
framework::Variable *caseToExecuteVar =
casesBlockScope.FindVar(caseToExecuteVarName);
// Construct cases from "conditional_block_op"(s) in the casesBlock
std::vector<std::shared_ptr<SelectOpCase>> cases =
ParseAndShuffleCases(&casesConfigs);
// Get all unique channels involved in select
std::set<framework::ChannelHolder *> channelsSet;
for (auto c : cases) {
if (!c->channelName.empty()) {
auto channelVar = scope.FindVar(c->channelName);
framework::ChannelHolder *ch =
channelVar->GetMutable<framework::ChannelHolder>();
if (channelsSet.find(ch) == channelsSet.end()) {
channelsSet.insert(ch);
}
}
}
// Order all channels by their pointer address
std::vector<framework::ChannelHolder *> channels(channelsSet.begin(),
channelsSet.end());
std::sort(channels.begin(), channels.end());
// Poll all cases
int32_t caseToExecute = pollCases(&scope, &cases, channels);
// At this point, the case to execute has already been determined,
// so we can proceed with executing the cases block
framework::LoDTensor *caseToExecuteTensor =
caseToExecuteVar->GetMutable<framework::LoDTensor>();
caseToExecuteTensor->data<int32_t>()[0] = caseToExecute;
// Execute the cases block, only one case will be executed since we set the
// case_to_execute value to the index of the case we want to execute
framework::Executor executor(dev_place);
framework::ProgramDesc *program = casesBlock->Program();
executor.Run(*program, &casesBlockScope, casesBlock->ID(),
false /*create_local_scope*/);
}
/**
* Goes through all operators in the casesConfigs and processes
* "conditional_block" operators. These operators are mapped to our
* SelectOpCase objects. We randomize the case orders, and set the
* default case (if any exists) as the last case)
* @param casesBlock
* @return
*/
std::vector<std::shared_ptr<SelectOpCase>> ParseAndShuffleCases(
std::vector<std::string> *casesConfigs) const {
std::vector<std::shared_ptr<SelectOpCase>> cases;
std::shared_ptr<SelectOpCase> defaultCase;
if (casesConfigs != nullptr) {
boost::char_delimiters_separator<char> sep(false, ",", "");
for (std::vector<std::string>::iterator itr = casesConfigs->begin();
itr < casesConfigs->end(); ++itr) {
std::string caseConfig = *itr;
boost::tokenizer<> tokens(caseConfig, sep);
boost::tokenizer<>::iterator tok_iter = tokens.begin();
PADDLE_ENFORCE(tok_iter != tokens.end(), "Cannot get case index");
std::string caseIndexString = *tok_iter;
int caseIndex = std::stoi(caseIndexString);
++tok_iter;
PADDLE_ENFORCE(tok_iter != tokens.end(), "Cannot get case type");
std::string caseTypeString = *tok_iter;
SelectOpCaseType caseType = (SelectOpCaseType)std::stoi(caseTypeString);
std::string caseChannel;
std::string caseChannelVar;
++tok_iter;
if (caseType != SelectOpCaseType::DEFAULT) {
PADDLE_ENFORCE(tok_iter != tokens.end(), "Cannot get case channel");
caseChannel = *tok_iter;
++tok_iter;
PADDLE_ENFORCE(tok_iter != tokens.end(),
"Cannot get case channel variable");
caseChannelVar = *tok_iter;
}
auto c = std::make_shared<SelectOpCase>(caseIndex, caseType,
caseChannel, caseChannelVar);
if (caseType == SelectOpCaseType::DEFAULT) {
PADDLE_ENFORCE(defaultCase == nullptr,
"Select can only contain one default case.");
defaultCase = c;
} else {
cases.push_back(c);
}
}
}
// Randomly sort cases, with default case being last
std::random_shuffle(cases.begin(), cases.end());
if (defaultCase != nullptr) {
cases.push_back(defaultCase);
}
return cases;
}
/**
* This method will recursively poll the cases and determines if any case
* condition is true.
* If none of the cases conditions are true (and there is no default case),
* then block
* the thread. The thread may be woken up by a channel operation, at which
* point we
* execute the case.
* @param scope
* @param cases
* @param channels
* @return
*/
int32_t pollCases(const framework::Scope *scope,
std::vector<std::shared_ptr<SelectOpCase>> *cases,
std::vector<framework::ChannelHolder *> channels) const {
// Lock all involved channels
lockChannels(channels);
std::atomic<int> caseToExecute(-1);
std::vector<std::shared_ptr<SelectOpCase>>::iterator it = cases->begin();
while (it != cases->end()) {
std::shared_ptr<SelectOpCase> c = *it;
auto chVar = scope->FindVar(c->channelName);
framework::ChannelHolder *ch =
chVar->GetMutable<framework::ChannelHolder>();
switch (c->caseType) {
case SelectOpCaseType::SEND:
PADDLE_ENFORCE(!ch->IsClosed(), "Cannot send to a closed channel");
if (ch->CanSend()) {
// We can send to channel directly, send the data to channel
// and execute case
auto chVar = scope->FindVar(c->varName);
concurrency::ChannelSend(ch, chVar);
caseToExecute = c->caseIndex;
}
break;
case SelectOpCaseType::RECEIVE:
if (ch->CanReceive()) {
// We can receive from channel directly, send the data to channel
// and execute case
auto chVar = scope->FindVar(c->varName);
concurrency::ChannelReceive(ch, chVar);
caseToExecute = c->caseIndex;
}
break;
case SelectOpCaseType::DEFAULT:
caseToExecute = c->caseIndex;
break;
}
if (caseToExecute != -1) {
// We found a case to execute, stop looking at other case statements
break;
}
++it;
}
if (caseToExecute == -1) {
// None of the cases are eligible to execute, enqueue current thread
// into all the sending/receiving queue of each involved channel
std::atomic<bool> completed(false);
std::recursive_mutex mutex;
std::unique_lock<std::recursive_mutex> lock{mutex};
// std::condition_variable_any selectCond;
auto selectCond = std::make_shared<std::condition_variable_any>();
std::recursive_mutex callbackMutex;
pushThreadOnChannelQueues(scope, cases, selectCond, &caseToExecute,
&completed, &callbackMutex);
// TODO(thuan): Atomically unlock all channels and sleep current thread
unlockChannels(channels);
selectCond->wait(lock, [&completed]() { return completed.load(); });
// Select has been woken up by case operation
lockChannels(channels);
removeThreadOnChannelQueues(scope, cases);
if (caseToExecute == -1) {
// Recursively poll cases, since we were woken up by a channel close
// TODO(thuan): Need to test if this is a valid case
unlockChannels(channels);
return pollCases(scope, cases, channels);
}
}
// At this point, caseToExecute != -1, and we can proceed with executing
// the case block
unlockChannels(channels);
return caseToExecute;
}
void lockChannels(std::vector<framework::ChannelHolder *> chs) const {
std::vector<framework::ChannelHolder *>::iterator it = chs.begin();
while (it != chs.end()) {
framework::ChannelHolder *ch = *it;
ch->Lock();
++it;
}
}
void unlockChannels(std::vector<framework::ChannelHolder *> chs) const {
std::vector<framework::ChannelHolder *>::reverse_iterator it = chs.rbegin();
while (it != chs.rend()) {
framework::ChannelHolder *ch = *it;
ch->Unlock();
++it;
}
}
void pushThreadOnChannelQueues(
const framework::Scope *scope,
std::vector<std::shared_ptr<SelectOpCase>> *cases,
std::shared_ptr<std::condition_variable_any> rCond,
std::atomic<int> *caseToExecute, std::atomic<bool> *completed,
std::recursive_mutex *callbackMutex) const {
std::vector<std::shared_ptr<SelectOpCase>>::iterator it = cases->begin();
while (it != cases->end()) {
std::shared_ptr<SelectOpCase> c = *it;
auto chVar = scope->FindVar(c->channelName);
framework::ChannelHolder *ch =
chVar->GetMutable<framework::ChannelHolder>();
std::function<bool(framework::ChannelAction channelAction)> cb =
[&caseToExecute, &completed, &callbackMutex,
c](framework::ChannelAction channelAction) {
std::lock_guard<std::recursive_mutex> lock{*callbackMutex};
bool canProcess = false;
if (!(*completed)) {
// If the channel wasn't closed, we set the caseToExecute index
// as this current case
if (channelAction != framework::ChannelAction::CLOSE) {
*caseToExecute = c->caseIndex;
}
// This will allow our conditional variable to break out of wait
*completed = true;
canProcess = true;
}
return canProcess;
};
switch (c->caseType) {
case SelectOpCaseType::SEND: {
auto chOutputVar = scope->FindVar(c->varName);
concurrency::ChannelAddToSendQ(ch, this, chOutputVar, rCond, cb);
break;
}
case SelectOpCaseType::RECEIVE: {
auto chOutputVar = scope->FindVar(c->varName);
concurrency::ChannelAddToReceiveQ(ch, this, chOutputVar, rCond, cb);
break;
}
default:
break;
}
++it;
}
}
void removeThreadOnChannelQueues(
const framework::Scope *scope,
std::vector<std::shared_ptr<SelectOpCase>> *cases) const {
std::vector<std::shared_ptr<SelectOpCase>>::iterator it = cases->begin();
while (it != cases->end()) {
std::shared_ptr<SelectOpCase> c = *it;
auto chVar = scope->FindVar(c->channelName);
framework::ChannelHolder *ch =
chVar->GetMutable<framework::ChannelHolder>();
switch (c->caseType) {
case SelectOpCaseType::SEND: {
ch->RemoveFromSendQ(this);
break;
}
case SelectOpCaseType::RECEIVE: {
ch->RemoveFromReceiveQ(this);
break;
}
default:
break;
}
++it;
}
}
};
class SelectOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput(kX,
"A set of variables, which are required by operators inside the "
"cases of Select Op")
.AsDuplicable();
AddInput(kCaseToExecute,
"(Int) The variable the sets the index of the case to execute, "
"after evaluating the channels being sent to and received from")
.AsDuplicable();
AddOutput(kOutputs,
"A set of variables, which will be assigned with values "
"generated by the operators inside the cases of Select Op.")
.AsDuplicable();
AddAttr<std::vector<std::string>>(kCases,
"(String vector) Serialized list of"
"all cases in the select op. Each"
"case is serialized as: "
"'<index>,<type>,<channel>,<value>'"
"where type is 0 for default, 1 for"
"send, and 2 for receive"
"No channel and values are needed for"
"default cases.");
AddAttr<framework::BlockDesc *>(kCasesBlock,
"The cases block inside select_op");
AddComment(R"DOC(
)DOC");
}
};
// TODO(thuan): Implement Gradient Operator for SELECT_OP
} // namespace operators
} // namespace paddle
REGISTER_OPERATOR(select, paddle::operators::SelectOp,
paddle::framework::EmptyGradOpMaker,
paddle::operators::SelectOpMaker);
...@@ -32,7 +32,7 @@ class SumKernel : public framework::OpKernel<T> { ...@@ -32,7 +32,7 @@ class SumKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext &context) const override { void Compute(const framework::ExecutionContext &context) const override {
auto in_vars = context.MultiInputVar("X"); auto in_vars = context.MultiInputVar("X");
int N = in_vars.size(); size_t in_num = in_vars.size();
auto out_var = context.OutputVar("Out"); auto out_var = context.OutputVar("Out");
bool in_place = out_var == in_vars[0]; bool in_place = out_var == in_vars[0];
...@@ -53,7 +53,7 @@ class SumKernel : public framework::OpKernel<T> { ...@@ -53,7 +53,7 @@ class SumKernel : public framework::OpKernel<T> {
auto &place = auto &place =
*context.template device_context<DeviceContext>().eigen_device(); *context.template device_context<DeviceContext>().eigen_device();
// If in_place, just skip the first tensor // If in_place, just skip the first tensor
for (int i = in_place ? 1 : 0; i < N; i++) { for (size_t i = in_place ? 1 : 0; i < in_num; i++) {
if (in_vars[i]->IsType<framework::LoDTensor>()) { if (in_vars[i]->IsType<framework::LoDTensor>()) {
auto &in_t = in_vars[i]->Get<framework::LoDTensor>(); auto &in_t = in_vars[i]->Get<framework::LoDTensor>();
if (in_t.numel() == 0) { if (in_t.numel() == 0) {
...@@ -101,13 +101,13 @@ class SumKernel : public framework::OpKernel<T> { ...@@ -101,13 +101,13 @@ class SumKernel : public framework::OpKernel<T> {
// Runtime InferShape // Runtime InferShape
size_t first_dim = 0; size_t first_dim = 0;
for (int i = 0; i < N; i++) { for (size_t i = 0; i < in_num; i++) {
auto &sel_row = get_selected_row(i); auto &sel_row = get_selected_row(i);
first_dim += sel_row.rows().size(); first_dim += sel_row.rows().size();
} }
std::vector<int64_t> in_dim; std::vector<int64_t> in_dim;
for (int i = 0; i < N; i++) { for (size_t i = 0; i < in_num; i++) {
auto &sel_row = get_selected_row(i); auto &sel_row = get_selected_row(i);
if (sel_row.rows().size() > 0) { if (sel_row.rows().size() > 0) {
in_dim = framework::vectorize(sel_row.value().dims()); in_dim = framework::vectorize(sel_row.value().dims());
...@@ -116,7 +116,8 @@ class SumKernel : public framework::OpKernel<T> { ...@@ -116,7 +116,8 @@ class SumKernel : public framework::OpKernel<T> {
} }
if (in_dim.empty()) { if (in_dim.empty()) {
VLOG(3) << "WARNING: all the inputs are empty"; VLOG(3) << "WARNING: all the inputs are empty";
in_dim = framework::vectorize(get_selected_row(N - 1).value().dims()); in_dim =
framework::vectorize(get_selected_row(in_num - 1).value().dims());
} else { } else {
in_dim[0] = static_cast<int64_t>(first_dim); in_dim[0] = static_cast<int64_t>(first_dim);
} }
...@@ -133,7 +134,7 @@ class SumKernel : public framework::OpKernel<T> { ...@@ -133,7 +134,7 @@ class SumKernel : public framework::OpKernel<T> {
math::SelectedRowsAddTo<DeviceContext, T> functor; math::SelectedRowsAddTo<DeviceContext, T> functor;
int64_t offset = 0; int64_t offset = 0;
for (int i = 0; i < N; i++) { for (size_t i = 0; i < in_num; i++) {
auto &sel_row = get_selected_row(i); auto &sel_row = get_selected_row(i);
if (sel_row.rows().size() == 0) { if (sel_row.rows().size() == 0) {
continue; continue;
......
...@@ -22,8 +22,6 @@ ...@@ -22,8 +22,6 @@
namespace paddle { namespace paddle {
DEFINE_int32(tensorrt_engine_batch_size, 1, "the batch_size of TensorRT"); DEFINE_int32(tensorrt_engine_batch_size, 1, "the batch_size of TensorRT");
DEFINE_int32(tensorrt_max_batch_size, 1, "TensorRT maximum batch size");
DEFINE_int32(tensorrt_workspace_size, 16 << 20, "TensorRT workspace size");
namespace operators { namespace operators {
...@@ -34,6 +32,8 @@ class TensorRTEngineOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -34,6 +32,8 @@ class TensorRTEngineOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput("Ys", "A list of outputs").AsDuplicable(); AddOutput("Ys", "A list of outputs").AsDuplicable();
AddAttr<std::string>("subgraph", "the subgraph."); AddAttr<std::string>("subgraph", "the subgraph.");
AddAttr<std::string>("engine_uniq_key", "unique key for the TRT engine."); AddAttr<std::string>("engine_uniq_key", "unique key for the TRT engine.");
AddAttr<int>("max_batch_size", "the maximum batch size.");
AddAttr<int>("workspace_size", "the workspace size.");
AddComment("TensorRT engine operator."); AddComment("TensorRT engine operator.");
} }
}; };
......
...@@ -28,8 +28,6 @@ ...@@ -28,8 +28,6 @@
namespace paddle { namespace paddle {
DECLARE_int32(tensorrt_engine_batch_size); DECLARE_int32(tensorrt_engine_batch_size);
DECLARE_int32(tensorrt_max_batch_size);
DECLARE_int32(tensorrt_workspace_size);
namespace operators { namespace operators {
...@@ -92,14 +90,14 @@ class TensorRTEngineKernel : public framework::OpKernel<T> { ...@@ -92,14 +90,14 @@ class TensorRTEngineKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& context) const override { void Compute(const framework::ExecutionContext& context) const override {
auto engine_name = context.Attr<std::string>("engine_uniq_key"); auto engine_name = context.Attr<std::string>("engine_uniq_key");
int max_batch_size = context.Attr<int>("max_batch_size");
if (!Singleton<TRT_EngineManager>::Global().HasEngine(engine_name)) { if (!Singleton<TRT_EngineManager>::Global().HasEngine(engine_name)) {
Prepare(context); Prepare(context);
} }
auto* engine = Singleton<TRT_EngineManager>::Global().Get(engine_name); auto* engine = Singleton<TRT_EngineManager>::Global().Get(engine_name);
auto input_names = context.op().Inputs("Xs"); auto input_names = context.op().Inputs("Xs");
PADDLE_ENFORCE(!input_names.empty(), "should pass more than one inputs"); PADDLE_ENFORCE(!input_names.empty(), "should pass more than one inputs");
PADDLE_ENFORCE_LE(FLAGS_tensorrt_engine_batch_size, PADDLE_ENFORCE_LE(FLAGS_tensorrt_engine_batch_size, max_batch_size);
FLAGS_tensorrt_max_batch_size);
std::vector<std::string> output_maps = std::vector<std::string> output_maps =
context.Attr<std::vector<std::string>>("output_name_mapping"); context.Attr<std::vector<std::string>>("output_name_mapping");
...@@ -173,8 +171,9 @@ class TensorRTEngineKernel : public framework::OpKernel<T> { ...@@ -173,8 +171,9 @@ class TensorRTEngineKernel : public framework::OpKernel<T> {
// Get the ProgramDesc and pass to convert. // Get the ProgramDesc and pass to convert.
framework::proto::BlockDesc block_desc; framework::proto::BlockDesc block_desc;
block_desc.ParseFromString(context.Attr<std::string>("subgraph")); block_desc.ParseFromString(context.Attr<std::string>("subgraph"));
int max_batch = FLAGS_tensorrt_max_batch_size; int max_batch_size = context.Attr<int>("max_batch_size");
auto max_workspace = FLAGS_tensorrt_workspace_size; int workspace_size = context.Attr<int>("workspace_size");
auto params = context.Attr<std::vector<std::string>>("parameters"); auto params = context.Attr<std::vector<std::string>>("parameters");
std::unordered_set<std::string> parameters; std::unordered_set<std::string> parameters;
for (const auto& param : params) { for (const auto& param : params) {
...@@ -186,7 +185,7 @@ class TensorRTEngineKernel : public framework::OpKernel<T> { ...@@ -186,7 +185,7 @@ class TensorRTEngineKernel : public framework::OpKernel<T> {
// TODO(Superjomn) replace this with a different stream // TODO(Superjomn) replace this with a different stream
auto* engine = Singleton<TRT_EngineManager>::Global().Create( auto* engine = Singleton<TRT_EngineManager>::Global().Create(
max_batch, max_workspace, nullptr /*engine hold its own stream*/, max_batch_size, workspace_size, nullptr /*engine hold its own stream*/,
context.Attr<std::string>("engine_uniq_key"), context.Attr<std::string>("engine_uniq_key"),
boost::get<platform::CUDAPlace>(context.GetPlace()).device); boost::get<platform::CUDAPlace>(context.GetPlace()).device);
......
此差异已折叠。
...@@ -21,7 +21,6 @@ limitations under the License. */ ...@@ -21,7 +21,6 @@ limitations under the License. */
#include <utility> #include <utility>
#include <vector> #include <vector>
#include "paddle/fluid/framework/channel.h"
#include "paddle/fluid/framework/executor.h" #include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h" #include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h" #include "paddle/fluid/framework/framework.pb.h"
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册
新手
引导
客服 返回
顶部