diff --git a/paddle/fluid/operators/expand_as_v2_op_xpu.cc b/paddle/fluid/operators/expand_as_v2_op_xpu.cc deleted file mode 100644 index 1c4055bde42982bf9a437af87302365b74a8dd3e..0000000000000000000000000000000000000000 --- a/paddle/fluid/operators/expand_as_v2_op_xpu.cc +++ /dev/null @@ -1,123 +0,0 @@ -/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#ifdef PADDLE_WITH_XPU - -#include "paddle/fluid/operators/expand_as_v2_op.h" - -namespace paddle { -namespace operators { - -template -class ExpandAsV2XPUKernel : public framework::OpKernel { - using XPUType = typename XPUTypeTrait::Type; - - public: - void Compute(const framework::ExecutionContext& context) const override { - auto rank = context.Input("X")->dims().size(); - auto target_shape = context.Attr>("target_shape"); - auto target_rank = target_shape.size(); - PADDLE_ENFORCE_GE(target_rank, - rank, - platform::errors::InvalidArgument( - "The rank (%d) of the input 'target_tensor' for " - "expand_as_v2 op must be greater than or equal to " - "the rank (%d) of the input 'x'.", - target_rank, - rank)); - PADDLE_ENFORCE_GE( - rank, - 1, - platform::errors::InvalidArgument("The rank (%d) of the input 'x' for " - "expand_as_v2 op must be positive.", - rank)); - PADDLE_ENFORCE_LE(target_rank, - MAX_RANK_SUPPORTED, - platform::errors::InvalidArgument( - "The rank (%d) of the input 'target_tensor' for " - "expand_as_v2 op must be less than or equal to %d.", - target_rank, - MAX_RANK_SUPPORTED)); - ExpandAs(context); - } - - protected: - void ExpandAs(const framework::ExecutionContext& context) const { - auto* in0 = context.Input("X"); - auto in_dims = in0->dims(); - auto target_shape = context.Attr>("target_shape"); - auto vec_in_dims = phi::vectorize(in_dims); - auto diff = target_shape.size() - vec_in_dims.size(); - vec_in_dims.insert(vec_in_dims.begin(), diff, 1); - - for (size_t i = 0; i < vec_in_dims.size(); ++i) { - PADDLE_ENFORCE_NE(target_shape[i], - 0, - platform::errors::InvalidArgument( - "The value of target shape cannot be zero.")); - if (vec_in_dims[i] != 1) { - PADDLE_ENFORCE_EQ( - vec_in_dims[i], - target_shape[i], - platform::errors::InvalidArgument( - "The value (%d) of the non-singleton dimension does not match" - " the corresponding value (%d) in " - "target tensor for expand_as_v2 op.", - vec_in_dims[i], - target_shape[i])); - } - } - auto* out0 = context.Output("Out"); - framework::DDim out_dims = phi::make_ddim(target_shape); - out0->Resize(out_dims); - out0->mutable_data(context.GetPlace()); - auto& in0_shape = vec_in_dims; - auto out0_shape = phi::vectorize(out_dims); - - const auto& dev_ctx = - context.template device_context(); - int r = XPU_SUCCESS; - - if (std::is_same::value) { - auto in0_data = reinterpret_cast(in0->data()); - auto out0_data = reinterpret_cast(out0->data()); - r = xpu::broadcast( - dev_ctx.x_context(), in0_data, out0_data, in0_shape, out0_shape); - } else { - auto in0_data = reinterpret_cast(in0->data()); - auto out0_data = reinterpret_cast(out0->data()); - r = xpu::broadcast( - dev_ctx.x_context(), in0_data, out0_data, in0_shape, out0_shape); - } - PADDLE_ENFORCE_EQ( - r, - XPU_SUCCESS, - platform::errors::External("XPU API(broadcast) return wrong " - "value[%d %s] in ExpandAsV2XPUKernel.", - r, - XPUAPIErrorMsg[r])); - } -}; - -} // namespace operators -} // namespace paddle - -namespace ops = paddle::operators; -REGISTER_OP_XPU_KERNEL(expand_as_v2, - ops::ExpandAsV2XPUKernel, - ops::ExpandAsV2XPUKernel, - ops::ExpandAsV2XPUKernel, - ops::ExpandAsV2XPUKernel, - ops::ExpandAsV2XPUKernel); - -#endif diff --git a/paddle/phi/kernels/xpu/expand_as_kernel.cc b/paddle/phi/kernels/xpu/expand_as_kernel.cc new file mode 100644 index 0000000000000000000000000000000000000000..3ff46d64e96b782a66b9e7dc94eaced6bb388fe1 --- /dev/null +++ b/paddle/phi/kernels/xpu/expand_as_kernel.cc @@ -0,0 +1,121 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/phi/kernels/expand_as_kernel.h" + +#include "paddle/phi/backends/xpu/enforce_xpu.h" +#include "paddle/phi/core/kernel_registry.h" + +#define MAX_RANK_SUPPORTED 6 + +namespace phi { + +template +void ExpandAs(const Context& context, + const DenseTensor& in0, + const std::vector& target_shape, + DenseTensor* out0) { + using XPUType = typename XPUTypeTrait::Type; + auto in_dims = in0.dims(); + auto vec_in_dims = phi::vectorize(in_dims); + auto diff = target_shape.size() - vec_in_dims.size(); + vec_in_dims.insert(vec_in_dims.begin(), diff, 1); + + for (size_t i = 0; i < vec_in_dims.size(); ++i) { + PADDLE_ENFORCE_NE(target_shape[i], + 0, + phi::errors::InvalidArgument( + "The value of target shape cannot be zero.")); + if (vec_in_dims[i] != 1) { + PADDLE_ENFORCE_EQ( + vec_in_dims[i], + target_shape[i], + phi::errors::InvalidArgument( + "The value (%d) of the non-singleton dimension does not match" + " the corresponding value (%d) in " + "target tensor for expand_as_v2 op.", + vec_in_dims[i], + target_shape[i])); + } + } + phi::DDim out_dims = phi::make_ddim(target_shape); + out0->Resize(out_dims); + context.template Alloc(out0); + auto& in0_shape = vec_in_dims; + auto out0_shape = phi::vectorize(out_dims); + + int r = XPU_SUCCESS; + + if (std::is_same::value) { + auto in0_data = reinterpret_cast(in0.data()); + auto out0_data = reinterpret_cast(out0->data()); + r = xpu::broadcast( + context.x_context(), in0_data, out0_data, in0_shape, out0_shape); + } else { + auto in0_data = reinterpret_cast(in0.data()); + auto out0_data = reinterpret_cast(out0->data()); + r = xpu::broadcast( + context.x_context(), in0_data, out0_data, in0_shape, out0_shape); + } + PADDLE_ENFORCE_EQ( + r, + XPU_SUCCESS, + phi::errors::External("XPU API(broadcast) return wrong " + "value[%d %s] in ExpandAsV2XPUKernel.", + r, + XPUAPIErrorMsg[r])); +} + +template +void ExpandAsKernel(const Context& ctx, + const DenseTensor& x, + const paddle::optional& y, + const std::vector& target_shape, + DenseTensor* out) { + auto rank = x.dims().size(); + auto target_rank = target_shape.size(); + PADDLE_ENFORCE_GE(target_rank, + rank, + phi::errors::InvalidArgument( + "The rank (%d) of the input 'target_tensor' for " + "expand_as_v2 op must be greater than or equal to " + "the rank (%d) of the input 'x'.", + target_rank, + rank)); + PADDLE_ENFORCE_GE( + rank, + 1, + phi::errors::InvalidArgument("The rank (%d) of the input 'x' for " + "expand_as_v2 op must be positive.", + rank)); + PADDLE_ENFORCE_LE(target_rank, + MAX_RANK_SUPPORTED, + phi::errors::InvalidArgument( + "The rank (%d) of the input 'target_tensor' for " + "expand_as_v2 op must be less than or equal to %d.", + target_rank, + MAX_RANK_SUPPORTED)); + ExpandAs(ctx, x, target_shape, out); +} +} // namespace phi + +PD_REGISTER_KERNEL(expand_as, + XPU, + ALL_LAYOUT, + phi::ExpandAsKernel, + float, + phi::dtype::float16, + bool, + int, + int64_t) {}