Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
4a9d21de
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4a9d21de
编写于
9月 24, 2020
作者:
Z
Zhong Hui
提交者:
GitHub
9月 24, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add GPU Kernels of Segment Ops, support, sum, max, min, mean
Add GPU Kernels of Segment Ops, support, sum, max, min, mean
上级
c0caf0e4
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
540 addition
and
0 deletion
+540
-0
paddle/fluid/operators/math/segment_pooling.cu
paddle/fluid/operators/math/segment_pooling.cu
+365
-0
paddle/fluid/operators/segment_pool_op.cu
paddle/fluid/operators/segment_pool_op.cu
+28
-0
paddle/fluid/operators/segment_pool_op.h
paddle/fluid/operators/segment_pool_op.h
+40
-0
paddle/fluid/platform/cuda_primitives.h
paddle/fluid/platform/cuda_primitives.h
+107
-0
未找到文件。
paddle/fluid/operators/math/segment_pooling.cu
0 → 100644
浏览文件 @
4a9d21de
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_div_op.h"
#include "paddle/fluid/operators/gather.cu.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/segment_pooling.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/gpu_launch_param_config.h"
#include "paddle/fluid/platform/macros.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
typename
Index
,
int
DimTileSize
>
__global__
void
SegmentMeanCustomKernel
(
const
Index
*
segment_ids
,
const
T
*
input
,
T
*
output
,
T
*
summed_ids
,
const
Index
input_length_size
,
const
Index
inner_dim_size
,
const
Index
output_length_size
,
const
Index
total_stripe_count
)
{
CUDA_KERNEL_LOOP
(
stripe_index
,
total_stripe_count
)
{
const
Index
segment_offset
=
stripe_index
%
inner_dim_size
;
const
Index
dim_index_base
=
stripe_index
/
inner_dim_size
*
Index
(
DimTileSize
);
const
Index
actual_height
=
min
(
Index
(
DimTileSize
),
input_length_size
-
dim_index_base
);
Index
first_segment_id
=
segment_ids
[
dim_index_base
];
Index
last_segment_id
=
-
1
;
if
(
dim_index_base
>
0
)
{
last_segment_id
=
segment_ids
[
dim_index_base
-
1
];
}
if
(
segment_offset
==
0
)
{
T
sum
=
T
(
0
);
for
(
Index
j
=
0
;
j
<
actual_height
;
j
++
)
{
Index
current_segment_id
=
segment_ids
[
dim_index_base
+
j
];
// Note(ZHUI): following check may cause
// cudaErrorLaunchOutOfResources.
// PADDLE_ENFORCE(current_segment_id >= last_segment_id,
// "the segment ids should be sorted, but got "
// "segment_ids[%d]:%d > segment_ids[%d]:%d.",
// dim_index_base + j - 1, dim_index_base + j,
// last_segment_id, current_segment_id);
if
(
j
>
0
&&
current_segment_id
>
last_segment_id
)
{
if
(
last_segment_id
==
first_segment_id
)
{
platform
::
CudaAtomicAdd
(
summed_ids
+
last_segment_id
,
sum
);
}
else
{
*
(
summed_ids
+
last_segment_id
)
=
sum
;
}
sum
=
T
(
0
);
}
sum
+=
T
(
1
);
last_segment_id
=
current_segment_id
;
}
platform
::
CudaAtomicAdd
(
summed_ids
+
last_segment_id
,
sum
);
}
// ensure last_segment_id is the largest
last_segment_id
=
output_length_size
;
__syncthreads
();
T
sum
=
T
(
0
);
for
(
Index
j
=
0
;
j
<
actual_height
;
j
++
)
{
Index
current_segment_id
=
segment_ids
[
dim_index_base
+
j
];
if
(
current_segment_id
>
last_segment_id
)
{
const
Index
output_index
=
last_segment_id
*
inner_dim_size
+
segment_offset
;
if
(
last_segment_id
==
first_segment_id
)
{
platform
::
CudaAtomicAdd
(
output
+
output_index
,
sum
/
*
(
summed_ids
+
last_segment_id
));
}
else
{
*
(
output
+
output_index
)
=
sum
/
*
(
summed_ids
+
last_segment_id
);
}
sum
=
T
(
0
);
}
sum
+=
input
[(
dim_index_base
+
j
)
*
inner_dim_size
+
segment_offset
];
last_segment_id
=
current_segment_id
;
}
const
Index
output_index
=
last_segment_id
*
inner_dim_size
+
segment_offset
;
platform
::
CudaAtomicAdd
(
output
+
output_index
,
sum
/
*
(
summed_ids
+
last_segment_id
));
}
}
template
<
typename
T
,
typename
Index
,
typename
Helper
,
typename
Pool
>
__global__
void
SegmentOpsKernel
(
const
Index
*
segment_ids
,
const
T
*
input
,
T
*
output
,
Helper
h
,
Pool
pool
)
{
CUDA_KERNEL_LOOP
(
stripe_index
,
h
.
total_stripe_count
)
{
Index
segment_offset
,
dim_index_base
,
actual_height
;
Index
inner_dim_size
=
h
.
inner_dim_size
;
h
.
calculate
(
stripe_index
,
segment_offset
,
dim_index_base
,
actual_height
);
T
minmax
=
pool
.
initial
();
Index
first_segment_id
=
segment_ids
[
dim_index_base
];
// -1 is for the start value when interval_id = 0
Index
last_segment_id
=
-
1
;
if
(
dim_index_base
>
0
)
{
last_segment_id
=
segment_ids
[
dim_index_base
-
1
];
}
for
(
Index
j
=
0
;
j
<
actual_height
;
j
++
)
{
Index
current_segment_id
=
segment_ids
[
dim_index_base
+
j
];
// ensure the segment_ids is sorted.
PADDLE_ENFORCE
(
current_segment_id
>=
last_segment_id
,
"The segment ids should be sorted, but got "
"segment_ids[%d]:%d > segment_ids[%d]:%d."
,
dim_index_base
+
j
-
1
,
dim_index_base
+
j
,
last_segment_id
,
current_segment_id
);
if
(
current_segment_id
>
last_segment_id
)
{
// reset the interval value which do not have corresponding ids.
for
(
Index
interval_id
=
last_segment_id
+
1
;
interval_id
<
current_segment_id
;
++
interval_id
)
{
*
(
output
+
interval_id
*
inner_dim_size
+
segment_offset
)
=
0
;
}
// don't update result when j=0
if
(
j
>
0
)
{
const
Index
output_index
=
last_segment_id
*
inner_dim_size
+
segment_offset
;
if
(
last_segment_id
==
first_segment_id
)
{
pool
.
atomic
(
output
+
output_index
,
minmax
);
}
else
{
*
(
output
+
output_index
)
=
minmax
;
}
minmax
=
pool
.
initial
();
}
}
pool
.
compute
(
input
[(
dim_index_base
+
j
)
*
inner_dim_size
+
segment_offset
],
&
minmax
);
last_segment_id
=
current_segment_id
;
}
const
Index
output_index
=
last_segment_id
*
inner_dim_size
+
segment_offset
;
pool
.
atomic
(
output
+
output_index
,
minmax
);
}
}
template
<
typename
T
,
typename
Index
,
typename
Helper
>
__global__
void
SegmentIndexGradKernel
(
const
Index
*
segment_ids
,
const
T
*
input
,
const
T
*
output
,
const
T
*
out_grad
,
T
*
in_grad
,
Helper
h
)
{
CUDA_KERNEL_LOOP
(
stripe_index
,
h
.
total_stripe_count
)
{
Index
segment_offset
,
dim_index_base
,
actual_height
;
h
.
calculate
(
stripe_index
,
segment_offset
,
dim_index_base
,
actual_height
);
for
(
Index
j
=
0
;
j
<
actual_height
;
j
++
)
{
Index
current_segment_id
=
segment_ids
[
dim_index_base
+
j
];
Index
input_index
=
(
dim_index_base
+
j
)
*
h
.
inner_dim_size
+
segment_offset
;
Index
output_index
=
current_segment_id
*
h
.
inner_dim_size
+
segment_offset
;
if
(
input
[
input_index
]
==
output
[
output_index
])
{
in_grad
[
input_index
]
=
out_grad
[
output_index
];
}
}
}
}
template
<
class
T
>
class
MaxPool
{
public:
DEVICE
inline
T
initial
()
{
return
static_cast
<
T
>
(
-
FLT_MAX
);
}
DEVICE
inline
void
compute
(
const
T
&
x
,
T
*
y
)
{
*
y
=
*
y
>
x
?
*
y
:
x
;
}
DEVICE
inline
T
atomic
(
T
*
address
,
const
T
val
)
{
return
platform
::
CudaAtomicMax
(
address
,
val
);
}
};
template
<
class
T
>
class
MinPool
{
public:
DEVICE
inline
T
initial
()
{
return
static_cast
<
T
>
(
FLT_MAX
);
}
DEVICE
inline
void
compute
(
const
T
&
x
,
T
*
y
)
{
*
y
=
*
y
<
x
?
*
y
:
x
;
}
DEVICE
inline
T
atomic
(
T
*
address
,
const
T
val
)
{
return
platform
::
CudaAtomicMin
(
address
,
val
);
}
};
template
<
class
T
>
class
SumPool
{
public:
DEVICE
inline
T
initial
()
{
return
static_cast
<
T
>
(
0
);
}
DEVICE
inline
void
compute
(
const
T
&
x
,
T
*
y
)
{
*
y
=
*
y
+
x
;
}
DEVICE
inline
T
atomic
(
T
*
address
,
const
T
val
)
{
return
platform
::
CudaAtomicAdd
(
address
,
val
);
}
};
template
<
class
T
>
class
ArrangeHelper
{
public:
const
T
input_total_size
;
const
T
input_length_size
;
const
T
output_length_size
;
T
inner_dim_size
;
T
total_stripe_count
;
const
T
DimTileSize
=
8
;
ArrangeHelper
(
T
a
,
T
b
,
T
c
)
:
input_total_size
(
a
),
input_length_size
(
b
),
output_length_size
(
c
)
{
T
input_outer_dim_num_stripe
=
(
input_length_size
+
DimTileSize
-
1
)
/
DimTileSize
;
inner_dim_size
=
input_total_size
/
input_length_size
;
total_stripe_count
=
inner_dim_size
*
input_outer_dim_num_stripe
;
}
DEVICE
inline
void
calculate
(
T
stripe_index
,
T
&
segment_offset
,
T
&
dim_index_base
,
T
&
actual_height
)
{
segment_offset
=
stripe_index
%
inner_dim_size
;
dim_index_base
=
stripe_index
/
inner_dim_size
*
DimTileSize
;
actual_height
=
min
(
DimTileSize
,
input_length_size
-
dim_index_base
);
}
};
template
<
typename
T
,
typename
Index
>
void
SegmentPoolCUDAGradFunctor
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
segment_ids
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
out_grad
,
framework
::
Tensor
*
in_grad
,
const
std
::
string
pooltype
=
"SUM"
)
{
auto
h
=
ArrangeHelper
<
Index
>
(
input
.
numel
(),
segment_ids
.
dims
()[
0
],
output
.
dims
()[
0
]);
auto
config
=
platform
::
GetGpuLaunchConfig1D
(
ctx
,
h
.
total_stripe_count
);
if
(
pooltype
==
"MAX"
||
pooltype
==
"MIN"
)
{
SegmentIndexGradKernel
<
T
,
Index
,
ArrangeHelper
<
Index
>><<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
.
x
,
0
,
ctx
.
stream
()
>>>
(
segment_ids
.
data
<
Index
>
(),
input
.
data
<
T
>
(),
output
.
data
<
T
>
(),
out_grad
.
data
<
T
>
(),
in_grad
->
data
<
T
>
(),
h
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Unsupported segment pooling grad operation, Only MAX, MIN "
"available, but got %s."
,
pooltype
));
}
}
template
<
typename
T
>
__global__
void
SimpleDiv
(
T
*
x
,
const
T
*
y
,
const
int
len
,
const
int
dim
)
{
for
(
int
i
=
blockIdx
.
x
;
i
<
len
;
i
+=
gridDim
.
x
)
{
__shared__
T
y_i
;
auto
base
=
i
*
dim
;
if
(
threadIdx
.
x
==
0
)
{
y_i
=
y
[
i
];
}
__syncthreads
();
for
(
int
j
=
threadIdx
.
x
;
j
<
dim
;
j
+=
blockDim
.
x
)
{
x
[
base
+
j
]
/=
y_i
;
}
}
}
template
<
typename
T
,
typename
IndexT
>
class
SegmentPoolFunctor
<
platform
::
CUDADeviceContext
,
T
,
IndexT
>
{
public:
void
operator
()(
const
platform
::
CUDADeviceContext
&
ctx
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
segment_ids
,
framework
::
Tensor
*
output
,
framework
::
Tensor
*
summed_ids
=
nullptr
,
const
std
::
string
pooltype
=
"SUM"
)
{
auto
h
=
ArrangeHelper
<
IndexT
>
(
input
.
numel
(),
segment_ids
.
dims
()[
0
],
output
->
dims
()[
0
]);
auto
config
=
platform
::
GetGpuLaunchConfig1D
(
ctx
,
h
.
total_stripe_count
);
if
(
pooltype
==
"MEAN"
)
{
SegmentMeanCustomKernel
<
T
,
IndexT
,
IndexT
(
8
)
><<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
.
x
,
0
,
ctx
.
stream
()
>>>
(
segment_ids
.
data
<
IndexT
>
(),
input
.
data
<
T
>
(),
output
->
data
<
T
>
(),
summed_ids
->
data
<
T
>
(),
h
.
input_length_size
,
h
.
inner_dim_size
,
h
.
output_length_size
,
h
.
total_stripe_count
);
}
else
if
(
pooltype
==
"SUM"
)
{
SumPool
<
T
>
pool
;
SegmentOpsKernel
<
T
,
IndexT
,
ArrangeHelper
<
IndexT
>
,
SumPool
<
T
>><<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
.
x
,
0
,
ctx
.
stream
()
>>>
(
segment_ids
.
data
<
IndexT
>
(),
input
.
data
<
T
>
(),
output
->
data
<
T
>
(),
h
,
pool
);
}
else
if
(
pooltype
==
"MAX"
)
{
MaxPool
<
T
>
pool
;
SegmentOpsKernel
<
T
,
IndexT
,
ArrangeHelper
<
IndexT
>
,
MaxPool
<
T
>><<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
.
x
,
0
,
ctx
.
stream
()
>>>
(
segment_ids
.
data
<
IndexT
>
(),
input
.
data
<
T
>
(),
output
->
data
<
T
>
(),
h
,
pool
);
}
else
if
(
pooltype
==
"MIN"
)
{
MinPool
<
T
>
pool
;
SegmentOpsKernel
<
T
,
IndexT
,
ArrangeHelper
<
IndexT
>
,
MinPool
<
T
>><<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
.
x
,
0
,
ctx
.
stream
()
>>>
(
segment_ids
.
data
<
IndexT
>
(),
input
.
data
<
T
>
(),
output
->
data
<
T
>
(),
h
,
pool
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Unsupported segment pooling operation, Only MEAN, SUM, MAX, MIN "
"available, but got %s."
,
pooltype
));
}
}
};
template
<
typename
T
,
typename
IndexT
>
class
SegmentPoolGradFunctor
<
platform
::
CUDADeviceContext
,
T
,
IndexT
>
{
public:
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
out_grad
,
const
framework
::
Tensor
&
segments
,
framework
::
Tensor
*
in_grad
,
const
framework
::
Tensor
*
summed_ids
=
nullptr
,
const
std
::
string
pooltype
=
"SUM"
)
{
if
(
pooltype
==
"MAX"
||
pooltype
==
"MIN"
)
{
SegmentPoolCUDAGradFunctor
<
T
,
IndexT
>
(
context
,
input
,
segments
,
output
,
out_grad
,
in_grad
,
pooltype
);
}
else
if
(
pooltype
==
"MEAN"
)
{
framework
::
Tensor
mean_grad
;
mean_grad
.
mutable_data
<
T
>
(
input
.
dims
(),
context
.
GetPlace
());
framework
::
TensorCopy
(
out_grad
,
context
.
GetPlace
(),
context
,
&
mean_grad
);
int
len
=
output
.
dims
()[
0
];
int
dim
=
output
.
numel
()
/
len
;
auto
config
=
platform
::
GetGpuLaunchConfig1D
(
context
,
len
);
SimpleDiv
<
T
><<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
.
x
,
0
,
context
.
stream
()
>>>
(
mean_grad
.
data
<
T
>
(),
summed_ids
->
data
<
T
>
(),
len
,
dim
);
GPUGather
<
T
,
IndexT
>
(
context
,
mean_grad
,
segments
,
in_grad
);
}
else
if
(
pooltype
==
"SUM"
)
{
GPUGather
<
T
,
IndexT
>
(
context
,
out_grad
,
segments
,
in_grad
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Unsupported segment pooling operation, Only MEAN, SUM, MAX, MIN "
"available, but got %s."
,
pooltype
));
}
}
};
using
CUDA
=
paddle
::
platform
::
CUDADeviceContext
;
template
class
SegmentPoolFunctor
<
CUDA
,
float
,
int
>;
template
class
SegmentPoolFunctor
<
CUDA
,
float
,
int64_t
>;
template
class
SegmentPoolFunctor
<
CUDA
,
double
,
int
>;
template
class
SegmentPoolFunctor
<
CUDA
,
double
,
int64_t
>;
template
class
SegmentPoolGradFunctor
<
CUDA
,
float
,
int
>;
template
class
SegmentPoolGradFunctor
<
CUDA
,
float
,
int64_t
>;
template
class
SegmentPoolGradFunctor
<
CUDA
,
double
,
int
>;
template
class
SegmentPoolGradFunctor
<
CUDA
,
double
,
int64_t
>;
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/segment_pool_op.cu
0 → 100644
浏览文件 @
4a9d21de
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/gather.cu.h"
#include "paddle/fluid/operators/segment_pool_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/gpu_launch_param_config.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
segment_pool
,
ops
::
SegmentPoolKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
SegmentPoolKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
segment_pool_grad
,
ops
::
SegmentPoolGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
SegmentPoolGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/segment_pool_op.h
浏览文件 @
4a9d21de
...
...
@@ -63,6 +63,46 @@ void SegmentKernelLaunchHelper(const framework::ExecutionContext& context) {
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
set_zero
(
dev_ctx
,
output
,
static_cast
<
T
>
(
0
));
}
#ifdef PADDLE_WITH_CUDA
if
(
!
cpu_place
)
{
Tensor
length
;
length
.
mutable_data
<
IndexT
>
(
framework
::
make_ddim
({
1
}),
platform
::
CPUPlace
());
IndexT
*
length_data
=
length
.
data
<
IndexT
>
();
const
IndexT
*
segment_ids
=
segment
->
data
<
IndexT
>
();
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaMemcpy
(
length_data
,
segment_ids
+
num_indices
-
1
,
sizeof
(
IndexT
),
cudaMemcpyDeviceToHost
));
IndexT
length_host
=
length_data
[
0
];
length_host
++
;
PADDLE_ENFORCE_GT
(
length_host
,
0
,
platform
::
errors
::
InvalidArgument
(
"Segment ids must be >= 0, but got last id %d"
,
length_data
[
0
]));
auto
dims
=
input
->
dims
();
dims
[
0
]
=
static_cast
<
int64_t
>
(
length_host
);
output
->
Resize
({
dims
});
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
init_value
=
0
;
if
(
pooltype
==
"MAX"
)
{
init_value
=
static_cast
<
T
>
(
-
FLT_MAX
);
}
else
if
(
pooltype
==
"MIN"
)
{
init_value
=
static_cast
<
T
>
(
FLT_MAX
);
}
math
::
SetConstant
<
DeviceContext
,
T
>
setconst
;
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
setconst
(
dev_ctx
,
output
,
static_cast
<
T
>
(
init_value
));
// the gpu kernel of mean pool record the counts of segment_ids
if
(
pooltype
==
"MEAN"
)
{
summed_ids
=
context
.
Output
<
Tensor
>
(
"SummedIds"
);
summed_ids
->
Resize
({
dims
[
0
],
1
});
summed_ids
->
mutable_data
<
T
>
(
context
.
GetPlace
());
setconst
(
dev_ctx
,
summed_ids
,
static_cast
<
T
>
(
1e-12
));
}
}
#endif
SegmentPoolFunctor
<
DeviceContext
,
T
,
IndexT
>
pool
;
...
...
paddle/fluid/platform/cuda_primitives.h
浏览文件 @
4a9d21de
...
...
@@ -128,5 +128,112 @@ CUDA_ATOMIC_WRAPPER(Add, float16) {
}
#endif
// For atomicMax
USE_CUDA_ATOMIC
(
Max
,
int
);
USE_CUDA_ATOMIC
(
Max
,
unsigned
int
);
// CUDA API uses unsigned long long int, we cannot use uint64_t here.
// It because unsigned long long int is not necessarily uint64_t
USE_CUDA_ATOMIC
(
Max
,
unsigned
long
long
int
);
// NOLINT
CUDA_ATOMIC_WRAPPER
(
Max
,
int64_t
)
{
// Here, we check long long int must be int64_t.
static_assert
(
sizeof
(
int64_t
)
==
sizeof
(
long
long
int
),
// NOLINT
"long long should be int64"
);
return
CudaAtomicMax
(
reinterpret_cast
<
unsigned
long
long
int
*>
(
address
),
// NOLINT
static_cast
<
unsigned
long
long
int
>
(
val
));
// NOLINT
}
CUDA_ATOMIC_WRAPPER
(
Max
,
float
)
{
if
(
*
address
>=
val
)
{
return
;
}
int
*
const
address_as_i
=
(
int
*
)
address
;
int
old
=
*
address_as_i
,
assumed
;
do
{
assumed
=
old
;
if
(
__int_as_float
(
assumed
)
>=
val
)
{
break
;
}
old
=
atomicCAS
(
address_as_i
,
assumed
,
__float_as_int
(
val
));
}
while
(
assumed
!=
old
);
}
CUDA_ATOMIC_WRAPPER
(
Max
,
double
)
{
if
(
*
address
>=
val
)
{
return
;
}
unsigned
long
long
int
*
const
address_as_ull
=
(
unsigned
long
long
int
*
)
address
;
unsigned
long
long
int
old
=
*
address_as_ull
,
assumed
;
do
{
assumed
=
old
;
if
(
__longlong_as_double
(
assumed
)
>=
val
)
{
break
;
}
old
=
atomicCAS
(
address_as_ull
,
assumed
,
__double_as_longlong
(
val
));
}
while
(
assumed
!=
old
);
}
// For atomicMin
USE_CUDA_ATOMIC
(
Min
,
int
);
USE_CUDA_ATOMIC
(
Min
,
unsigned
int
);
// CUDA API uses unsigned long long int, we cannot use uint64_t here.
// It because unsigned long long int is not necessarily uint64_t
USE_CUDA_ATOMIC
(
Min
,
unsigned
long
long
int
);
// NOLINT
CUDA_ATOMIC_WRAPPER
(
Min
,
int64_t
)
{
// Here, we check long long int must be int64_t.
static_assert
(
sizeof
(
int64_t
)
==
sizeof
(
long
long
int
),
// NOLINT
"long long should be int64"
);
return
CudaAtomicMin
(
reinterpret_cast
<
unsigned
long
long
int
*>
(
address
),
// NOLINT
static_cast
<
unsigned
long
long
int
>
(
val
));
// NOLINT
}
CUDA_ATOMIC_WRAPPER
(
Min
,
float
)
{
if
(
*
address
<=
val
)
{
return
;
}
int
*
const
address_as_i
=
(
int
*
)
address
;
int
old
=
*
address_as_i
,
assumed
;
do
{
assumed
=
old
;
if
(
__int_as_float
(
assumed
)
<=
val
)
{
break
;
}
old
=
atomicCAS
(
address_as_i
,
assumed
,
__float_as_int
(
val
));
}
while
(
assumed
!=
old
);
}
CUDA_ATOMIC_WRAPPER
(
Min
,
double
)
{
if
(
*
address
<=
val
)
{
return
;
}
unsigned
long
long
int
*
const
address_as_ull
=
(
unsigned
long
long
int
*
)
address
;
unsigned
long
long
int
old
=
*
address_as_ull
,
assumed
;
do
{
assumed
=
old
;
if
(
__longlong_as_double
(
assumed
)
<=
val
)
{
break
;
}
old
=
atomicCAS
(
address_as_ull
,
assumed
,
__double_as_longlong
(
val
));
}
while
(
assumed
!=
old
);
}
}
// namespace platform
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录