Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
4977eb22
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4977eb22
编写于
11月 04, 2021
作者:
S
seemingwang
提交者:
GitHub
11月 04, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
use cache when sampling neighbors (#36961)
上级
d33e99fe
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
149 addition
and
42 deletion
+149
-42
paddle/fluid/distributed/service/graph_brpc_server.cc
paddle/fluid/distributed/service/graph_brpc_server.cc
+2
-2
paddle/fluid/distributed/table/common_graph_table.cc
paddle/fluid/distributed/table/common_graph_table.cc
+77
-3
paddle/fluid/distributed/table/common_graph_table.h
paddle/fluid/distributed/table/common_graph_table.h
+28
-11
paddle/fluid/distributed/test/graph_node_test.cc
paddle/fluid/distributed/test/graph_node_test.cc
+42
-26
未找到文件。
paddle/fluid/distributed/service/graph_brpc_server.cc
浏览文件 @
4977eb22
...
...
@@ -386,7 +386,7 @@ int32_t GraphBrpcService::graph_random_sample_neighboors(
size_t
node_num
=
request
.
params
(
0
).
size
()
/
sizeof
(
uint64_t
);
uint64_t
*
node_data
=
(
uint64_t
*
)(
request
.
params
(
0
).
c_str
());
int
sample_size
=
*
(
uint64_t
*
)(
request
.
params
(
1
).
c_str
());
std
::
vector
<
std
::
unique_ptr
<
char
[]
>>
buffers
(
node_num
);
std
::
vector
<
std
::
shared_ptr
<
char
>>
buffers
(
node_num
);
std
::
vector
<
int
>
actual_sizes
(
node_num
,
0
);
((
GraphTable
*
)
table
)
->
random_sample_neighboors
(
node_data
,
sample_size
,
buffers
,
actual_sizes
);
...
...
@@ -487,7 +487,7 @@ int32_t GraphBrpcService::sample_neighboors_across_multi_servers(
request2server
.
size
()
-
1
;
}
size_t
request_call_num
=
request2server
.
size
();
std
::
vector
<
std
::
unique_ptr
<
char
[]
>>
local_buffers
;
std
::
vector
<
std
::
shared_ptr
<
char
>>
local_buffers
;
std
::
vector
<
int
>
local_actual_sizes
;
std
::
vector
<
size_t
>
seq
;
std
::
vector
<
std
::
vector
<
uint64_t
>>
node_id_buckets
(
request_call_num
);
...
...
paddle/fluid/distributed/table/common_graph_table.cc
浏览文件 @
4977eb22
...
...
@@ -394,13 +394,87 @@ int32_t GraphTable::random_sample_nodes(int sample_size,
}
int32_t
GraphTable
::
random_sample_neighboors
(
uint64_t
*
node_ids
,
int
sample_size
,
std
::
vector
<
std
::
unique_ptr
<
char
[]
>>
&
buffers
,
std
::
vector
<
std
::
shared_ptr
<
char
>>
&
buffers
,
std
::
vector
<
int
>
&
actual_sizes
)
{
size_t
node_num
=
buffers
.
size
();
std
::
function
<
void
(
char
*
)
>
char_del
=
[](
char
*
c
)
{
delete
[]
c
;
};
std
::
vector
<
std
::
future
<
int
>>
tasks
;
if
(
use_cache
)
{
std
::
vector
<
std
::
vector
<
uint32_t
>>
seq_id
(
shard_end
-
shard_start
);
std
::
vector
<
std
::
vector
<
SampleKey
>>
id_list
(
shard_end
-
shard_start
);
size_t
index
;
for
(
size_t
idx
=
0
;
idx
<
node_num
;
++
idx
)
{
index
=
get_thread_pool_index
(
node_ids
[
idx
]);
seq_id
[
index
].
emplace_back
(
idx
);
id_list
[
index
].
emplace_back
(
node_ids
[
idx
],
sample_size
);
}
for
(
int
i
=
0
;
i
<
seq_id
.
size
();
i
++
)
{
if
(
seq_id
[
i
].
size
()
==
0
)
continue
;
tasks
.
push_back
(
_shards_task_pool
[
i
]
->
enqueue
([
&
,
i
,
this
]()
->
int
{
uint64_t
node_id
;
std
::
vector
<
std
::
pair
<
SampleKey
,
SampleResult
>>
r
;
auto
response
=
scaled_lru
->
query
(
i
,
id_list
[
i
].
data
(),
id_list
[
i
].
size
(),
r
);
int
index
=
0
;
uint32_t
idx
;
std
::
vector
<
SampleResult
>
sample_res
;
std
::
vector
<
SampleKey
>
sample_keys
;
auto
&
rng
=
_shards_task_rng_pool
[
i
];
for
(
size_t
k
=
0
;
k
<
id_list
[
i
].
size
();
k
++
)
{
if
(
index
<
r
.
size
()
&&
r
[
index
].
first
.
node_key
==
id_list
[
i
][
k
].
node_key
)
{
idx
=
seq_id
[
i
][
k
];
actual_sizes
[
idx
]
=
r
[
index
].
second
.
actual_size
;
buffers
[
idx
]
=
r
[
index
].
second
.
buffer
;
index
++
;
}
else
{
node_id
=
id_list
[
i
][
k
].
node_key
;
Node
*
node
=
find_node
(
node_id
);
idx
=
seq_id
[
i
][
k
];
int
&
actual_size
=
actual_sizes
[
idx
];
if
(
node
==
nullptr
)
{
actual_size
=
0
;
continue
;
}
std
::
shared_ptr
<
char
>
&
buffer
=
buffers
[
idx
];
std
::
vector
<
int
>
res
=
node
->
sample_k
(
sample_size
,
rng
);
actual_size
=
res
.
size
()
*
(
Node
::
id_size
+
Node
::
weight_size
);
int
offset
=
0
;
uint64_t
id
;
float
weight
;
char
*
buffer_addr
=
new
char
[
actual_size
];
if
(
response
==
LRUResponse
::
ok
)
{
sample_keys
.
emplace_back
(
node_id
,
sample_size
);
sample_res
.
emplace_back
(
actual_size
,
buffer_addr
);
buffer
=
sample_res
.
back
().
buffer
;
}
else
{
buffer
.
reset
(
buffer_addr
,
char_del
);
}
for
(
int
&
x
:
res
)
{
id
=
node
->
get_neighbor_id
(
x
);
weight
=
node
->
get_neighbor_weight
(
x
);
memcpy
(
buffer_addr
+
offset
,
&
id
,
Node
::
id_size
);
offset
+=
Node
::
id_size
;
memcpy
(
buffer_addr
+
offset
,
&
weight
,
Node
::
weight_size
);
offset
+=
Node
::
weight_size
;
}
}
}
if
(
sample_res
.
size
())
{
scaled_lru
->
insert
(
i
,
sample_keys
.
data
(),
sample_res
.
data
(),
sample_keys
.
size
());
}
return
0
;
}));
}
for
(
auto
&
t
:
tasks
)
{
t
.
get
();
}
return
0
;
}
for
(
size_t
idx
=
0
;
idx
<
node_num
;
++
idx
)
{
uint64_t
&
node_id
=
node_ids
[
idx
];
std
::
unique_ptr
<
char
[]
>
&
buffer
=
buffers
[
idx
];
std
::
shared_ptr
<
char
>
&
buffer
=
buffers
[
idx
];
int
&
actual_size
=
actual_sizes
[
idx
];
int
thread_pool_index
=
get_thread_pool_index
(
node_id
);
...
...
@@ -419,7 +493,7 @@ int32_t GraphTable::random_sample_neighboors(
uint64_t
id
;
float
weight
;
char
*
buffer_addr
=
new
char
[
actual_size
];
buffer
.
reset
(
buffer_addr
);
buffer
.
reset
(
buffer_addr
,
char_del
);
for
(
int
&
x
:
res
)
{
id
=
node
->
get_neighbor_id
(
x
);
weight
=
node
->
get_neighbor_weight
(
x
);
...
...
paddle/fluid/distributed/table/common_graph_table.h
浏览文件 @
4977eb22
...
...
@@ -80,6 +80,10 @@ enum LRUResponse { ok = 0, blocked = 1, err = 2 };
struct
SampleKey
{
uint64_t
node_key
;
size_t
sample_size
;
SampleKey
(
uint64_t
_node_key
,
size_t
_sample_size
)
:
node_key
(
_node_key
),
sample_size
(
_sample_size
)
{
// std::cerr<<"in constructor of samplekey\n";
}
bool
operator
==
(
const
SampleKey
&
s
)
const
{
return
node_key
==
s
.
node_key
&&
sample_size
==
s
.
sample_size
;
}
...
...
@@ -94,15 +98,13 @@ struct SampleKeyHash {
class
SampleResult
{
public:
size_t
actual_size
;
char
*
buffer
;
SampleResult
(
size_t
_actual_size
,
char
*
_buffer
)
:
actual_size
(
_actual_size
)
{
buffer
=
new
char
[
actual_size
];
memcpy
(
buffer
,
_buffer
,
actual_size
);
}
~
SampleResult
()
{
// std::cout<<"in SampleResult deconstructor\n";
delete
[]
buffer
;
}
std
::
shared_ptr
<
char
>
buffer
;
SampleResult
(
size_t
_actual_size
,
std
::
shared_ptr
<
char
>
&
_buffer
)
:
actual_size
(
_actual_size
),
buffer
(
_buffer
)
{}
SampleResult
(
size_t
_actual_size
,
char
*
_buffer
)
:
actual_size
(
_actual_size
),
buffer
(
_buffer
,
[](
char
*
p
)
{
delete
[]
p
;
})
{}
~
SampleResult
()
{}
};
template
<
typename
K
,
typename
V
>
...
...
@@ -364,7 +366,7 @@ class ScaledLRU {
class
GraphTable
:
public
SparseTable
{
public:
GraphTable
()
{}
GraphTable
()
{
use_cache
=
false
;
}
virtual
~
GraphTable
()
{}
virtual
int32_t
pull_graph_list
(
int
start
,
int
size
,
std
::
unique_ptr
<
char
[]
>
&
buffer
,
...
...
@@ -373,7 +375,7 @@ class GraphTable : public SparseTable {
virtual
int32_t
random_sample_neighboors
(
uint64_t
*
node_ids
,
int
sample_size
,
std
::
vector
<
std
::
unique_ptr
<
char
[]
>>
&
buffers
,
std
::
vector
<
std
::
shared_ptr
<
char
>>
&
buffers
,
std
::
vector
<
int
>
&
actual_sizes
);
int32_t
random_sample_nodes
(
int
sample_size
,
std
::
unique_ptr
<
char
[]
>
&
buffers
,
...
...
@@ -431,6 +433,18 @@ class GraphTable : public SparseTable {
size_t
get_server_num
()
{
return
server_num
;
}
virtual
int32_t
make_neigh_sample_cache
(
size_t
size_limit
,
size_t
ttl
)
{
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
if
(
use_cache
==
false
)
{
scaled_lru
.
reset
(
new
ScaledLRU
<
SampleKey
,
SampleResult
,
SampleKeyHash
>
(
shard_end
-
shard_start
,
size_limit
,
ttl
));
use_cache
=
true
;
}
}
return
0
;
}
protected:
std
::
vector
<
GraphShard
>
shards
;
size_t
shard_start
,
shard_end
,
server_num
,
shard_num_per_server
,
shard_num
;
...
...
@@ -446,6 +460,9 @@ class GraphTable : public SparseTable {
std
::
vector
<
std
::
shared_ptr
<::
ThreadPool
>>
_shards_task_pool
;
std
::
vector
<
std
::
shared_ptr
<
std
::
mt19937_64
>>
_shards_task_rng_pool
;
std
::
shared_ptr
<
ScaledLRU
<
SampleKey
,
SampleResult
,
SampleKeyHash
>>
scaled_lru
;
bool
use_cache
;
mutable
std
::
mutex
mutex_
;
};
}
// namespace distributed
...
...
paddle/fluid/distributed/test/graph_node_test.cc
浏览文件 @
4977eb22
...
...
@@ -440,6 +440,29 @@ void RunBrpcPushSparse() {
0
,
std
::
vector
<
uint64_t
>
(
1
,
10240001024
),
4
,
vs
);
pull_status
.
wait
();
ASSERT_EQ
(
0
,
vs
[
0
].
size
());
paddle
::
distributed
::
GraphTable
*
g
=
(
paddle
::
distributed
::
GraphTable
*
)
pserver_ptr_
->
table
(
0
);
size_t
ttl
=
6
;
g
->
make_neigh_sample_cache
(
4
,
ttl
);
int
round
=
5
;
while
(
round
--
)
{
vs
.
clear
();
pull_status
=
worker_ptr_
->
batch_sample_neighboors
(
0
,
std
::
vector
<
uint64_t
>
(
1
,
37
),
1
,
vs
);
pull_status
.
wait
();
for
(
int
i
=
0
;
i
<
ttl
;
i
++
)
{
std
::
vector
<
std
::
vector
<
std
::
pair
<
uint64_t
,
float
>>>
vs1
;
pull_status
=
worker_ptr_
->
batch_sample_neighboors
(
0
,
std
::
vector
<
uint64_t
>
(
1
,
37
),
1
,
vs1
);
pull_status
.
wait
();
ASSERT_EQ
(
vs
[
0
].
size
(),
vs1
[
0
].
size
());
for
(
int
j
=
0
;
j
<
vs
[
0
].
size
();
j
++
)
{
ASSERT_EQ
(
vs
[
0
][
j
].
first
,
vs1
[
0
][
j
].
first
);
}
}
}
std
::
vector
<
distributed
::
FeatureNode
>
nodes
;
pull_status
=
worker_ptr_
->
pull_graph_list
(
0
,
0
,
0
,
1
,
1
,
nodes
);
...
...
@@ -611,58 +634,51 @@ void RunBrpcPushSparse() {
}
void
testCache
()
{
::
paddle
::
distributed
::
ScaledLRU
<
::
paddle
::
distributed
::
SampleKey
,
std
::
shared_ptr
<::
paddle
::
distributed
::
SampleResult
>
,
::
paddle
::
distributed
::
ScaledLRU
<::
paddle
::
distributed
::
SampleKey
,
::
paddle
::
distributed
::
SampleResult
,
::
paddle
::
distributed
::
SampleKeyHash
>
st
(
1
,
2
,
4
);
std
::
shared_ptr
<::
paddle
::
distributed
::
SampleResult
>
sp
;
char
*
str
=
(
char
*
)
"54321"
;
char
*
str
=
new
char
[
7
]
;
strcpy
(
str
,
"54321"
)
;
::
paddle
::
distributed
::
SampleResult
*
result
=
new
::
paddle
::
distributed
::
SampleResult
(
5
,
str
);
::
paddle
::
distributed
::
SampleKey
skey
=
{
6
,
1
};
sp
.
reset
(
result
);
std
::
vector
<
std
::
pair
<::
paddle
::
distributed
::
SampleKey
,
std
::
shared_ptr
<::
paddle
::
distributed
::
SampleResult
>
>>
paddle
::
distributed
::
SampleResult
>>
r
;
st
.
query
(
0
,
&
skey
,
1
,
r
);
ASSERT_EQ
((
int
)
r
.
size
(),
0
);
st
.
insert
(
0
,
&
skey
,
&
sp
,
1
);
st
.
insert
(
0
,
&
skey
,
result
,
1
);
for
(
int
i
=
0
;
i
<
st
.
get_ttl
();
i
++
)
{
st
.
query
(
0
,
&
skey
,
1
,
r
);
ASSERT_EQ
((
int
)
r
.
size
(),
1
);
char
*
p
=
(
char
*
)
r
[
0
].
second
.
get
()
->
buffer
;
for
(
int
j
=
0
;
j
<
r
[
0
].
second
.
get
()
->
actual_size
;
j
++
)
ASSERT_EQ
(
p
[
j
],
str
[
j
]);
char
*
p
=
(
char
*
)
r
[
0
].
second
.
buffer
.
get
();
for
(
int
j
=
0
;
j
<
r
[
0
].
second
.
actual_size
;
j
++
)
ASSERT_EQ
(
p
[
j
],
str
[
j
]);
r
.
clear
();
}
st
.
query
(
0
,
&
skey
,
1
,
r
);
ASSERT_EQ
((
int
)
r
.
size
(),
0
);
str
=
(
char
*
)
"342cd4321"
;
str
=
new
char
[
10
];
strcpy
(
str
,
"54321678"
);
result
=
new
::
paddle
::
distributed
::
SampleResult
(
strlen
(
str
),
str
);
std
::
shared_ptr
<::
paddle
::
distributed
::
SampleResult
>
sp1
;
sp1
.
reset
(
result
);
st
.
insert
(
0
,
&
skey
,
&
sp1
,
1
);
st
.
insert
(
0
,
&
skey
,
result
,
1
);
for
(
int
i
=
0
;
i
<
st
.
get_ttl
()
/
2
;
i
++
)
{
st
.
query
(
0
,
&
skey
,
1
,
r
);
ASSERT_EQ
((
int
)
r
.
size
(),
1
);
char
*
p
=
(
char
*
)
r
[
0
].
second
.
get
()
->
buffer
;
for
(
int
j
=
0
;
j
<
r
[
0
].
second
.
get
()
->
actual_size
;
j
++
)
ASSERT_EQ
(
p
[
j
],
str
[
j
]);
char
*
p
=
(
char
*
)
r
[
0
].
second
.
buffer
.
get
();
for
(
int
j
=
0
;
j
<
r
[
0
].
second
.
actual_size
;
j
++
)
ASSERT_EQ
(
p
[
j
],
str
[
j
]);
r
.
clear
();
}
str
=
(
char
*
)
"343332d4321"
;
str
=
new
char
[
18
];
strcpy
(
str
,
"343332d4321"
);
result
=
new
::
paddle
::
distributed
::
SampleResult
(
strlen
(
str
),
str
);
std
::
shared_ptr
<::
paddle
::
distributed
::
SampleResult
>
sp2
;
sp2
.
reset
(
result
);
st
.
insert
(
0
,
&
skey
,
&
sp2
,
1
);
st
.
insert
(
0
,
&
skey
,
result
,
1
);
for
(
int
i
=
0
;
i
<
st
.
get_ttl
();
i
++
)
{
st
.
query
(
0
,
&
skey
,
1
,
r
);
ASSERT_EQ
((
int
)
r
.
size
(),
1
);
char
*
p
=
(
char
*
)
r
[
0
].
second
.
get
()
->
buffer
;
for
(
int
j
=
0
;
j
<
r
[
0
].
second
.
get
()
->
actual_size
;
j
++
)
ASSERT_EQ
(
p
[
j
],
str
[
j
]);
char
*
p
=
(
char
*
)
r
[
0
].
second
.
buffer
.
get
();
for
(
int
j
=
0
;
j
<
r
[
0
].
second
.
actual_size
;
j
++
)
ASSERT_EQ
(
p
[
j
],
str
[
j
]);
r
.
clear
();
}
st
.
query
(
0
,
&
skey
,
1
,
r
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录