From 48f3cbdf55dab0b1a3482f56455dd5047ebb18f8 Mon Sep 17 00:00:00 2001 From: minqiyang Date: Thu, 28 Mar 2019 12:04:40 +0800 Subject: [PATCH] Polish code test=develop --- .../fluid/layers/learning_rate_scheduler.py | 2 +- python/paddle/fluid/optimizer.py | 30 +++++++++++-------- 2 files changed, 19 insertions(+), 13 deletions(-) diff --git a/python/paddle/fluid/layers/learning_rate_scheduler.py b/python/paddle/fluid/layers/learning_rate_scheduler.py index 069ade5445..9c642712d2 100644 --- a/python/paddle/fluid/layers/learning_rate_scheduler.py +++ b/python/paddle/fluid/layers/learning_rate_scheduler.py @@ -350,7 +350,7 @@ def cosine_decay(learning_rate, step_each_epoch, epochs): following cosine decay strategy. decayed_lr = learning_rate * 0.5 * (math.cos(epoch * math.pi / epochs) + 1) - + Args: learning_rate(Variable|float): The initial learning rate. step_each_epoch(int): the number of steps in an epoch. diff --git a/python/paddle/fluid/optimizer.py b/python/paddle/fluid/optimizer.py index cea182db03..8fdc7f33ab 100644 --- a/python/paddle/fluid/optimizer.py +++ b/python/paddle/fluid/optimizer.py @@ -94,13 +94,18 @@ class Optimizer(object): if imperative_base.enabled(): # create learning rate Variable if isinstance(self._learning_rate, float): - self._learning_rate_map[framework.default_main_program( - )] = layers.create_global_var( - name=unique_name.generate("learning_rate"), - shape=[1], - value=float(self._learning_rate), - dtype='float32' if self._dtype is None else self._dtype, - persistable=True) + lr = self._global_learning_rate() + + if isinstance(lr, framework.Variable): + return + else: + self._learning_rate_map[framework.default_main_program( + )] = layers.create_global_var( + name=unique_name.generate("learning_rate"), + shape=[1], + value=float(self._learning_rate), + dtype='float32' if self._dtype is None else self._dtype, + persistable=True) # get learning rate Variable from LearningRateDecay elif isinstance(self._learning_rate, LearningRateDecay): self._learning_rate_map[framework.default_main_program( @@ -114,11 +119,12 @@ class Optimizer(object): if isinstance(lr, framework.Variable): return - - if not isinstance(self._learning_rate, float): - raise TypeError( - "learning rate variable is create outside optimizer," - "can not create new learning rate variable for new program") + else: + if not isinstance(self._learning_rate, float): + raise TypeError( + "learning rate variable is create outside optimizer," + "can not create new learning rate variable for new program" + ) # create learning rate in the current main program self._learning_rate_map[framework.default_main_program( -- GitLab