From 482314e3b1a7f869daca7de302eab0b53abd91cf Mon Sep 17 00:00:00 2001 From: Yu Yang Date: Fri, 13 Apr 2018 17:09:39 +0800 Subject: [PATCH] Add CRF unittest --- .../tests/book/test_label_semantic_roles.py | 11 +- .../tests/unittests/test_parallel_executor.py | 145 ++++++++++++++++++ 2 files changed, 150 insertions(+), 6 deletions(-) diff --git a/python/paddle/fluid/tests/book/test_label_semantic_roles.py b/python/paddle/fluid/tests/book/test_label_semantic_roles.py index 4d8bca4d24..d9cd76952e 100644 --- a/python/paddle/fluid/tests/book/test_label_semantic_roles.py +++ b/python/paddle/fluid/tests/book/test_label_semantic_roles.py @@ -12,17 +12,16 @@ # See the License for the specific language governing permissions and # limitations under the License. +import contextlib import math - import numpy as np +import os +import time +import unittest + import paddle import paddle.dataset.conll05 as conll05 import paddle.fluid as fluid -from paddle.fluid.initializer import init_on_cpu -import contextlib -import time -import unittest -import os word_dict, verb_dict, label_dict = conll05.get_dict() word_dict_len = len(word_dict) diff --git a/python/paddle/fluid/tests/unittests/test_parallel_executor.py b/python/paddle/fluid/tests/unittests/test_parallel_executor.py index 95845ea4de..83d22fd799 100644 --- a/python/paddle/fluid/tests/unittests/test_parallel_executor.py +++ b/python/paddle/fluid/tests/unittests/test_parallel_executor.py @@ -505,3 +505,148 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase): train_loss, test_loss, atol=1e-8), "Train loss: " + str(train_loss) + "\n Test loss:" + str(test_loss)) + + +import paddle.dataset.conll05 as conll05 +import paddle.fluid as fluid + +word_dict, verb_dict, label_dict = conll05.get_dict() +word_dict_len = len(word_dict) +label_dict_len = len(label_dict) +pred_dict_len = len(verb_dict) +mark_dict_len = 2 +word_dim = 32 +mark_dim = 5 +hidden_dim = 512 +depth = 8 +mix_hidden_lr = 1e-3 +embedding_name = 'emb' + + +def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark, + **ignored): + # 8 features + predicate_embedding = fluid.layers.embedding( + input=predicate, + size=[pred_dict_len, word_dim], + dtype='float32', + param_attr='vemb') + + mark_embedding = fluid.layers.embedding( + input=mark, size=[mark_dict_len, mark_dim], dtype='float32') + + word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2] + emb_layers = [ + fluid.layers.embedding( + size=[word_dict_len, word_dim], + input=x, + param_attr=fluid.ParamAttr( + name=embedding_name, trainable=False)) for x in word_input + ] + emb_layers.append(predicate_embedding) + emb_layers.append(mark_embedding) + + hidden_0_layers = [ + fluid.layers.fc(input=emb, size=hidden_dim, act='tanh') + for emb in emb_layers + ] + + hidden_0 = fluid.layers.sums(input=hidden_0_layers) + + lstm_0 = fluid.layers.dynamic_lstm( + input=hidden_0, + size=hidden_dim, + candidate_activation='relu', + gate_activation='sigmoid', + cell_activation='sigmoid') + + # stack L-LSTM and R-LSTM with direct edges + input_tmp = [hidden_0, lstm_0] + + for i in range(1, depth): + mix_hidden = fluid.layers.sums(input=[ + fluid.layers.fc(input=input_tmp[0], size=hidden_dim, act='tanh'), + fluid.layers.fc(input=input_tmp[1], size=hidden_dim, act='tanh') + ]) + + lstm = fluid.layers.dynamic_lstm( + input=mix_hidden, + size=hidden_dim, + candidate_activation='relu', + gate_activation='sigmoid', + cell_activation='sigmoid', + is_reverse=((i % 2) == 1)) + + input_tmp = [mix_hidden, lstm] + + feature_out = fluid.layers.sums(input=[ + fluid.layers.fc(input=input_tmp[0], size=label_dict_len, act='tanh'), + fluid.layers.fc(input=input_tmp[1], size=label_dict_len, act='tanh') + ]) + + return feature_out + + +class TestCRFModel(unittest.TestCase): + def test_all(self): + main = fluid.Program() + startup = fluid.Program() + with fluid.program_guard(main, startup): + word = fluid.layers.data( + name='word_data', shape=[1], dtype='int64', lod_level=1) + predicate = fluid.layers.data( + name='verb_data', shape=[1], dtype='int64', lod_level=1) + ctx_n2 = fluid.layers.data( + name='ctx_n2_data', shape=[1], dtype='int64', lod_level=1) + ctx_n1 = fluid.layers.data( + name='ctx_n1_data', shape=[1], dtype='int64', lod_level=1) + ctx_0 = fluid.layers.data( + name='ctx_0_data', shape=[1], dtype='int64', lod_level=1) + ctx_p1 = fluid.layers.data( + name='ctx_p1_data', shape=[1], dtype='int64', lod_level=1) + ctx_p2 = fluid.layers.data( + name='ctx_p2_data', shape=[1], dtype='int64', lod_level=1) + mark = fluid.layers.data( + name='mark_data', shape=[1], dtype='int64', lod_level=1) + feature_out = db_lstm(**locals()) + target = fluid.layers.data( + name='target', shape=[1], dtype='int64', lod_level=1) + crf_cost = fluid.layers.linear_chain_crf( + input=feature_out, + label=target, + param_attr=fluid.ParamAttr( + name='crfw', learning_rate=1e-1)) + avg_cost = fluid.layers.mean(crf_cost) + + sgd_optimizer = fluid.optimizer.SGD( + learning_rate=fluid.layers.exponential_decay( + learning_rate=0.01, + decay_steps=100000, + decay_rate=0.5, + staircase=True)) + sgd_optimizer.minimize(avg_cost) + + train_data = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.conll05.test(), buf_size=8192), + batch_size=16) + + place = fluid.CUDAPlace(0) + exe = fluid.Executor(place) + exe.run(startup) + + pe = fluid.ParallelExecutor(use_cuda=True, loss_name=avg_cost.name) + + feeder = fluid.DataFeeder( + feed_list=[ + word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, predicate, + mark, target + ], + place=fluid.CPUPlace()) + + data = train_data() + for i in xrange(10): + cur_batch = next(data) + print map(numpy.array, + pe.run(feed_dict=feeder.feed(cur_batch), + fetch_list=[avg_cost.name]))[0] -- GitLab