提交 4760f285 编写于 作者: Y Yibing Liu

Add the argsort operator

上级 e0a8c584
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/argsort_op.h"
namespace paddle {
namespace operators {
class ArgsortOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of ArgsortOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of ArgsortOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Indices"),
"Output(Indices) of ArgsortOp should not be null.");
auto in_dims = ctx->GetInputDim("X");
int axis = static_cast<int>(ctx->Attrs().Get<int>("axis"));
auto num_dims = in_dims.size();
PADDLE_ENFORCE(axis < num_dims,
"Attr(axis) %d of ArgsortOp is out of bounds for Input(X) "
"dimension %d.",
axis, num_dims);
PADDLE_ENFORCE(axis >= 0 || axis == -1,
"Attr(axis) %d of ArgsortOp must be nonnegative or equal to "
"-1.",
axis);
ctx->SetOutputDim("Out", in_dims);
ctx->SetOutputDim("Indices", in_dims);
ctx->ShareLoD("X", "Out");
ctx->ShareLoD("X", "Indices");
}
};
class ArgsortOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor) The input of Argsort op.");
AddOutput("Out", "(Tensor) The sorted tensor of Argsort op.");
AddOutput("Indices",
"(Tensor) The indices of a tensor giving the sorted order.");
AddComment(R"DOC(
Argsort operator
Performs sorting on the input tensor along the given axis and outputs two
tensors, Output(Out) and Output(Indices). They reserve the same shape
with Input(X), and Output(Out) represents the sorted tensor while
Output(Indices) gives the sorted order along the given axis Attr(axis).
)DOC");
AddAttr<int>("axis",
"(int, default -1) The axis along which to sort the tensor, "
"default -1, the last dimension.")
.SetDefault(-1);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(argsort, ops::ArgsortOp, ops::ArgsortOpMaker,
paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(argsort,
ops::ArgsortKernel<paddle::platform::CPUPlace, float>,
ops::ArgsortKernel<paddle::platform::CPUPlace, double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <iostream>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
template <typename DeviceContext, typename T>
class ArgsortKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input = ctx.Input<Tensor>("X");
auto* output = ctx.Output<Tensor>("Out");
auto* indices = ctx.Output<Tensor>("Indices");
int axis = static_cast<int>(ctx.Attr<int>("axis"));
auto in_dims = input->dims();
axis = (axis == -1) ? (in_dims.size() - 1) : axis;
const T* in_data = input->data<T>();
T* out_data = output->mutable_data<T>(ctx.GetPlace());
int64_t* idx_data = indices->mutable_data<int64_t>(ctx.GetPlace());
int64_t part_dims_prod = input->numel() / in_dims[axis];
for (int64_t i = 0; i < part_dims_prod; ++i) {
int64_t idx = i;
std::vector<int64_t> idx_vec(in_dims.size(), 0);
for (int64_t dim = in_dims.size() - 1; dim >= 0; --dim) {
if (dim != axis) {
idx_vec[dim] = idx % in_dims[dim];
idx /= in_dims[dim];
}
}
std::vector<std::pair<T, int64_t>> in_vec;
std::vector<int64_t> org_index_vec(in_dims[axis], 0);
for (int64_t j = 0; j < in_dims[axis]; ++j) {
idx_vec[axis] = j;
int64_t index = idx_vec[0];
for (int64_t dim = 0; dim < in_dims.size() - 1; ++dim) {
index = index * in_dims[dim + 1] + idx_vec[dim + 1];
}
in_vec.push_back(std::pair<T, int64_t>(in_data[index], j));
org_index_vec[j] = index;
}
std::sort(
in_vec.begin(), in_vec.end(),
[](const std::pair<T, int64_t>& v1, const std::pair<T, int64_t>& v2) {
return v1.first < v2.first;
});
for (size_t j = 0; j < org_index_vec.size(); ++j) {
int64_t index = org_index_vec[j];
out_data[index] = in_vec[j].first;
idx_data[index] = in_vec[j].second;
}
}
}
};
} // namespace operators
} // namespace paddle
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
class TestArgsortOp(OpTest):
def setUp(self):
self.init_axis()
x = np.random.random((2, 3, 4, 5)).astype("float32")
self.indices = np.argsort(x, kind='quicksort', axis=self.axis)
self.out = np.sort(x, kind='quicksort', axis=self.axis)
self.op_type = "argsort"
self.inputs = {'X': x}
self.attrs = {'axis': self.axis}
self.outputs = {'Indices': self.indices, 'Out': self.out}
def init_axis(self):
self.axis = -1
def test_check_output(self):
self.check_output()
class TestArgsortOpAxis0(TestArgsortOp):
def init_axis(self):
self.axis = 0
class TestArgsortOpAxis1(TestArgsortOp):
def init_axis(self):
self.axis = 1
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册