提交 46ccfc01 编写于 作者: G gongweibao

Merge branch 'develop', remote-tracking branch 'upstream/develop' into convert

......@@ -30,7 +30,8 @@ RUN apt-get update && \
python-numpy python-matplotlib gcc g++ \
automake locales clang-format-3.8 swig doxygen cmake \
liblapack-dev liblapacke-dev libboost-dev \
clang-3.8 llvm-3.8 libclang-3.8-dev && \
clang-3.8 llvm-3.8 libclang-3.8-dev \
net-tools && \
apt-get clean -y
# Install Go
......
......@@ -59,6 +59,11 @@ context_projection
.. autoclass:: paddle.v2.layer.context_projection
:noindex:
row_conv
--------
.. autoclass:: paddle.v2.layer.row_conv
:noindex:
Image Pooling Layer
===================
......@@ -346,6 +351,12 @@ sampling_id
.. autoclass:: paddle.v2.layer.sampling_id
:noindex:
multiplex
---------
.. autoclass:: paddle.v2.layer.multiplex
:noindex:
Slicing and Joining Layers
==========================
......@@ -441,3 +452,19 @@ eos
---
.. autoclass:: paddle.v2.layer.eos
:noindex:
Miscs
=====
dropout
--------------
.. autoclass:: paddle.v2.layer.dropout
:noindex:
Activation with learnable parameter
===================================
prelu
--------
.. autoclass:: paddle.v2.layer.prelu
:noindex:
......@@ -125,11 +125,3 @@ simple_attention
:members: simple_attention
:noindex:
Miscs
=====
dropout_layer
--------------
.. automodule:: paddle.v2.networks
:members: dropout_layer
:noindex:
......@@ -8,6 +8,7 @@ add_subdirectory(gserver)
add_subdirectory(pserver)
add_subdirectory(trainer)
add_subdirectory(scripts)
add_subdirectory(strings)
# Do not build go directory until go cmake is working smoothly.
# if(CMAKE_Go_COMPILER)
......
......@@ -41,6 +41,7 @@ SET(SWIG_MODULE_swig_paddle_EXTRA_DEPS
paddle_network
paddle_proto
${external_project_dependencies}
${RDMA_LIBS}
)
IF(APPLE)
......@@ -73,6 +74,7 @@ SWIG_LINK_LIBRARIES(swig_paddle
${CMAKE_DL_LIBS}
${EXTERNAL_LIBS}
${CMAKE_THREAD_LIBS_INIT}
${RDMA_LD_FLAGS}
${START_END}
)
......
......@@ -28,6 +28,7 @@ if(WITH_TESTING)
add_simple_unittest(PadOpTest)
add_simple_unittest(MulOpTest)
add_simple_unittest(CosSimOpTest)
add_simple_unittest(RowConvOpTest)
endif()
endif()
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "RowConvOp.h"
#include <iostream>
#include "paddle/math/Vector.h"
namespace paddle {
template <>
void RowConv<DEVICE_TYPE_CPU>(CpuMatrix& out,
const CpuMatrix& in,
const CpuMatrix& filter,
const CpuIVector& seq) {
const int* starts = seq.getData();
const size_t numSeq = seq.getSize() - 1;
const size_t contextLength = filter.getHeight();
for (size_t i = 0; i < numSeq; ++i) {
size_t begin = starts[i];
size_t end = starts[i + 1];
for (size_t j = begin; j < end; ++j) {
MatrixPtr x;
MatrixPtr w;
if ((j + contextLength) < end) {
x = (const_cast<CpuMatrix&>(in)).subMatrix(j, contextLength);
w = (const_cast<CpuMatrix&>(filter)).subMatrix(0, contextLength);
} else {
x = (const_cast<CpuMatrix&>(in)).subMatrix(j, end - j);
w = (const_cast<CpuMatrix&>(filter)).subMatrix(0, end - j);
}
MatrixPtr y = out.subMatrix(j, 1);
y->addDotMulVMM(*x, *w);
}
}
}
template <>
void RowConvGrad<DEVICE_TYPE_CPU>(const CpuMatrix& outG,
const CpuMatrix& in,
const CpuMatrix& filter,
CpuMatrix& inG,
CpuMatrix& filterG,
const CpuIVector& seq) {
// gradient w.r.t filter
const int* starts = seq.getData();
const size_t numSeq = seq.getSize() - 1;
const size_t contextLength = filter.getHeight();
if (filterG) {
for (size_t i = 0; i < numSeq; ++i) {
size_t begin = starts[i];
size_t end = starts[i + 1];
size_t steps = end - begin;
for (size_t j = 0; j < contextLength && (begin + j) < end; ++j) {
MatrixPtr x =
(const_cast<CpuMatrix&>(in)).subMatrix(begin + j, steps - j);
MatrixPtr dy =
(const_cast<CpuMatrix&>(outG)).subMatrix(begin, steps - j);
MatrixPtr dw = filterG.subMatrix(j, 1);
dw->addDotMulVMM(*dy, *x);
}
}
}
// gradient w.r.t input feature
if (inG) {
for (size_t i = 0; i < numSeq; ++i) {
size_t begin = starts[i];
size_t end = starts[i + 1];
size_t steps = end - begin;
for (size_t j = 0; j < steps; ++j) {
MatrixPtr dx = inG.subMatrix(begin + j, 1);
for (size_t t = 0; t < contextLength; ++t) {
if (int(j - t) >= 0) {
MatrixPtr dy =
(const_cast<CpuMatrix&>(outG)).subMatrix(begin + j - t, 1);
MatrixPtr w = (const_cast<CpuMatrix&>(filter)).subMatrix(t, 1);
dx->addDotMul(*dy, *w, 1.0, 1.0);
}
}
}
}
}
}
/**
* \brief The row convolution is called lookahead convolution. It is firstly
* introduced in deep-speech2 system. The bidirectional RNN that learns
* representation for a sequence by performing a forward and a backward pass
* through the entire sequence. However, unlike unidirectional RNNs,
* bidirectional RNNs are challenging to deploy in an online and low-latency
* setting. The lookahead convolution incorporates information from future
* subsequences in a computationally efficient manner to improve unidirectional
* recurrent neural networks.
*
* The connection of row convolution is different form the 1D sequence
* convolution. Assumed that, the future context-length is k, that is to say,
* it can get the output at timestep t by using the the input feature from t-th
* timestep to (t+k)-th timestep. Assumed that the hidden dim of input
* activations are d, the activations r_t for the new layer at time-step t are:
*
*
* -- k + 1
* r(t,i) = > W(i,j) * h(t+j-1, i), for (1 <= i <= d)
* -- j = 1
*
*
* The weight shape is: (k + 1) x d
* Function Arguments:
*
* \param inputs[0] The input activations.
* \param inputs[0] The filter (or weight) and shape is (k+1) x d.
* \param outputs[1] The output activations.
*
* [1] Dario Amodei, etc. Deep Speech 2 : End-to-End Speech Recognition in
* English
* and Mandarin. https://arxiv.org/abs/1512.02595
*/
template <DeviceType Device>
class RowConvFunc : public FunctionBase {
public:
void init(const FuncConfig& config) override {}
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
// check
CHECK_EQ(2UL, inputs.size());
CHECK_EQ(1UL, outputs.size());
// TODO(qingqing): support ASSIGN_TO.
CHECK_EQ(outputs[0].getArgType(), ADD_TO);
CHECK(inputs[0].isSequenceArg() && outputs[0].isSequenceArg())
<< "SequenceArg required here.";
const auto in = dynamic_cast<const SequenceArg&>(inputs[0]);
auto out = dynamic_cast<const SequenceArg&>(outputs[0]);
auto w = inputs[1];
CHECK(in.data() && out.data() && in.getSequenceId().data());
CHECK_EQ(in.shape().ndims(), 2UL);
CHECK(in.shape() == out.shape());
CHECK_EQ(w.shape()[1], in.shape()[1]);
auto outMat = out.matrix<Device>();
const auto inMat = in.matrix<Device>();
const auto wMat = w.matrix<Device>();
const auto seqId = in.getSequenceId().vector<int, Device>();
RowConv<Device>(outMat, inMat, wMat, seqId);
}
};
/**
* \brief The backward of row convolution function. This function calculated
* the gradient w.r.t filter and the gradient w.r.t input activations(or data).
*
* Argument in this Function:
*
* \param inputs[0] The gradient w.r.t output activations.
* \param inputs[1] The input activations.
* \param inputs[2] The filter (or weight) and shape is (k+1) x d.
* \param outputs[0] The gradient w.r.t input activations.
* \param outputs[1] The gradient w.r.r filter.
*
* Abbreviation:
* w.r.t: with respect to.
*/
template <DeviceType Device>
class RowConvGradFunc : public FunctionBase {
// TODO(qingqing): split into RowConvDataFunc and RowConvWeightFunc
public:
void init(const FuncConfig& config) override {}
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
// check
CHECK_EQ(3UL, inputs.size());
CHECK_EQ(2UL, outputs.size());
CHECK_EQ(outputs[0].getArgType(), ADD_TO);
CHECK_EQ(outputs[1].getArgType(), ADD_TO);
CHECK(inputs[0].isSequenceArg() && inputs[1].isSequenceArg() &&
outputs[0].isSequenceArg())
<< "SequenceArg required here.";
const auto outGrad = dynamic_cast<const SequenceArg&>(inputs[0]);
const auto in = dynamic_cast<const SequenceArg&>(inputs[1]);
const auto w = inputs[2];
auto inGrad = dynamic_cast<const SequenceArg&>(outputs[0]);
auto wGrad = outputs[1];
CHECK_EQ(in.shape().ndims(), 2UL);
CHECK(in.shape() == inGrad.shape());
CHECK(in.shape() == outGrad.shape());
CHECK_EQ(wGrad.shape()[1], in.shape()[1]);
const auto outGMat = outGrad.matrix<Device>();
const auto inMat = in.matrix<Device>();
const auto wMat = w.matrix<Device>();
auto inGMat = inGrad.data()
? inGrad.matrix<Device>()
: typename Tensor<real, Device>::Matrix(nullptr, 0, 0);
auto wGMat = wGrad.data()
? wGrad.matrix<Device>()
: typename Tensor<real, Device>::Matrix(nullptr, 0, 0);
const auto seqId = in.getSequenceId().vector<int, Device>();
RowConvGrad<Device>(outGMat, inMat, wMat, inGMat, wGMat, seqId);
}
};
REGISTER_TYPED_FUNC(RowConv, CPU, RowConvFunc);
REGISTER_TYPED_FUNC(RowConvGrad, CPU, RowConvGradFunc);
#ifndef PADDLE_ONLY_CPU
REGISTER_TYPED_FUNC(RowConv, GPU, RowConvFunc);
REGISTER_TYPED_FUNC(RowConvGrad, GPU, RowConvGradFunc);
#endif
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "Function.h"
namespace paddle {
/**
* \brief The forward of row convolution.
*
* \param[out] out The output data and shape is h x d. h is the sum of
* time steps of all samples in one mini-batch.
* \param[in] in The input data and shape is h x d.
* \param[in] filter The filter and shape is k x d. The lookahead step
* number plus one equals k.
* \param[in] seq The sequence start positions.
*
*/
template <DeviceType DType>
void RowConv(typename Tensor<real, DType>::Matrix& out,
const typename Tensor<real, DType>::Matrix& in,
const typename Tensor<real, DType>::Matrix& filter,
const typename Tensor<int, DType>::Vector& seq);
/**
* \brief The backward of row convolution.
*
* \param[in] outG The gradient w.r.t output data.
* \param[in] in The input data.
* \param[in] filter The filter.
* \param[out] inG The gradient w.r.t input data.
* \param[out] filterG The gradient w.r.t filter.
* \param[in] seq The sequence start positions.
*
*/
template <DeviceType DType>
void RowConvGrad(const typename Tensor<real, DType>::Matrix& outG,
const typename Tensor<real, DType>::Matrix& in,
const typename Tensor<real, DType>::Matrix& filter,
typename Tensor<real, DType>::Matrix& inG,
typename Tensor<real, DType>::Matrix& filterG,
const typename Tensor<int, DType>::Vector& seq);
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "hl_base.h"
#include "RowConvOp.h"
namespace paddle {
template<int BLOCK_H, int BLOCK_W>
__global__ void KeRowConv(real* y, const real* x, const real* w,
const int* starts, const int height, const int width,
const int numSeq, const int context) {
const int tidx = threadIdx.x;
const int tidy = threadIdx.y;
const int blky = blockDim.y;
const int gidx = blockIdx.x * blockDim.x;
__shared__ real sw[BLOCK_H][BLOCK_W];
for (int i = tidy; i < context; i += blky) {
sw[i][tidx] = gidx + tidx < width ? w[i*width + gidx + tidx] : 0.0;
}
__syncthreads();
for (int i = 0; i < numSeq; ++i) {
const int start = starts[i];
const int end = starts[i + 1];
const int steps = end - start;
for (int j = tidy; j < steps; j += blky) {
real sum = 0;
int off = (start + j) * width;
for (int t = 0; t < context; ++t) {
if ((start + j + t) < end) {
int xoff = off + t * width;
real xVal = gidx + tidx < width ? x[xoff + gidx + tidx] : 0.0;
sum += sw[t][tidx] * xVal;
}
}
if (gidx + tidx < width) {
y[off + gidx + tidx] += sum;
}
}
}
}
__global__ void KeRowConv2(real* y, const real* x, const real* w,
const int* starts, const int height, const int width,
const int numSeq, const int context) {
const int tidx = threadIdx.x;
const int tidy = threadIdx.y;
const int blky = blockDim.y;
const int gidx = blockIdx.x * blockDim.x;
for (int i = 0; i < numSeq; ++i) {
const int start = starts[i];
const int end = starts[i + 1];
const int steps = end - start;
for (int j = tidy; j < steps; j += blky) {
int off = (start + j) * width;
real sum = 0;
for (int t = 0; t < context && (start + j + t) < end; ++t) {
int xoff = off + t * width;
real xd = gidx + tidx < width ? x[xoff + gidx + tidx] : 0.0;
real wd = gidx + tidx < width ? w[t * width + gidx + tidx] : 0.0;
sum += wd * xd;
}
if (gidx + tidx < width) {
y[off + gidx + tidx] += sum;
}
}
}
}
template <>
void RowConv<DEVICE_TYPE_GPU>(GpuMatrix& out,
const GpuMatrix& in,
const GpuMatrix& filter,
const GpuIVector& seq) {
const size_t numSeq = seq.getSize() - 1;
const size_t contextLength = filter.getHeight();
const size_t height = in.getHeight();
const size_t width = in.getWidth();
real* y = out.getData();
const real* x = in.getData();
const real* w = filter.getData();
const int* starts = seq.getData();
dim3 dimBlock(32, 32);
dim3 dimGrid(DIVUP(width, dimBlock.x), 1);
if (contextLength <= 32) {
KeRowConv<32, 32><<<dimGrid, dimBlock, 0, STREAM_DEFAULT>>>
(y, x, w, starts, height, width, numSeq, contextLength);
} else {
KeRowConv2<<<dimGrid, dimBlock, 0, STREAM_DEFAULT>>>
(y, x, w, starts, height, width, numSeq, contextLength);
}
CHECK_SYNC("RowConv");
}
template<int BLOCK_H, int BLOCK_W, int CONTEXT>
__global__ void KeRowConvBwWeight(real* dw, const real* x, const real* dy,
const int* starts, const int height, const int width, const int numSeq,
const int context) {
const int tidx = threadIdx.x;
const int tidy = threadIdx.y;
const int blky = blockDim.y;
const int gidx = blockIdx.x * blockDim.x;
__shared__ real sh_x[BLOCK_W][BLOCK_H];
__shared__ real sh_dy[BLOCK_W][BLOCK_H + CONTEXT - 1];
__shared__ real sh_dw[CONTEXT][BLOCK_W];
if (tidy < context) {
sh_dw[tidy][tidx] = 0.0;
}
__syncthreads();
for (int i = 0; i < numSeq; ++i) {
const int start = starts[i];
const int end = starts[i + 1];
const int steps = end - start;
const int size = ((steps + BLOCK_H - 1)/BLOCK_H) * BLOCK_H;
for (int j = tidy; j < size; j += BLOCK_H) {
int xoff = gidx + tidx;
int yoff = start + j;
// transpose
sh_x[tidx][tidy] = (xoff < width && yoff < end) ? x[yoff * width + xoff] : 0.0;
sh_dy[tidx][tidy + context - 1] = (xoff < width && yoff < end) ? dy[yoff * width + xoff] : 0.0;
__syncthreads();
if (tidy < (context - 1)) {
yoff = yoff - context + 1;
sh_dy[tidx][tidy] = (xoff < width && yoff >= start) ? dy[yoff * width + xoff] : 0.0;
}
__syncthreads();
for (int t = 0; t < context; t++) {
real val = sh_x[tidy][tidx] * sh_dy[tidy][tidx + context - 1 - t];
__syncthreads();
// warp size and blockDim.x is 32.
val += __shfl_down(val, 16);
val += __shfl_down(val, 8);
val += __shfl_down(val, 4);
val += __shfl_down(val, 2);
val += __shfl_down(val, 1);
__syncthreads();
if (tidx == 0) {
sh_dw[t][tidy] += val;
}
__syncthreads();
}
}
}
for (int t = tidy; (t < context) && ((gidx + tidx) < width); t += blky) {
dw[t * width + gidx + tidx] += sh_dw[t][tidx];
}
}
template<int BLOCK_H, int BLOCK_W>
__global__ void KeRowConvBwWeight2(real* dw, const real* x, const real* dy,
const int* starts, const int height, const int width, const int numSeq,
const int context) {
const int tidx = threadIdx.x;
const int tidy = threadIdx.y;
const int gidx = blockIdx.x * blockDim.x;
__shared__ real sh_x[BLOCK_H][BLOCK_W];
__shared__ real sh_dy[BLOCK_H][BLOCK_W];
for (int i = 0; i < numSeq; ++i) {
const int start = starts[i];
const int end = starts[i + 1];
const int steps = end - start;
const int size = ((steps + BLOCK_H - 1)/BLOCK_H) * BLOCK_H;
for (int j = tidy; j < size; j += BLOCK_H) {
int xoff = gidx + tidx;
int yoff = start + j;
// transpose
sh_x[tidx][tidy] = (xoff < width && yoff < end) ? x[yoff * width + xoff] : 0.0;
__syncthreads();
for (int t = 0; t < context; t++) {
sh_dy[tidx][tidy] = (xoff < width && (yoff - t) >= start && yoff - t < end) ? dy[(yoff - t) * width + xoff] : 0.0;
__syncthreads();
real val = sh_x[tidy][tidx] * sh_dy[tidy][tidx];
__syncthreads();
// warp size and blockDim.x is 32.
val += __shfl_down(val, 16);
val += __shfl_down(val, 8);
val += __shfl_down(val, 4);
val += __shfl_down(val, 2);
val += __shfl_down(val, 1);
__syncthreads();
if (tidx == 0 && (gidx + tidy) < width) {
dw[t*width + gidx + tidy] += val;
}
}
}
}
}
template<int BLOCK_H, int BLOCK_W>
__global__ void KeRowConvBwData(real* dx, const real* w, const real* dy,
const int* starts, const int height, const int width, const int numSeq,
const int context) {
const int tidx = threadIdx.x;
const int tidy = threadIdx.y;
const int blky = blockDim.y;
const int gidx = blockIdx.x * blockDim.x;
__shared__ real sw[BLOCK_H][BLOCK_W];
for (int i = tidy; i < context; i += blky) {
sw[i][tidx] = gidx + tidx < width ? w[i*width + gidx + tidx] : 0.0;
}
__syncthreads();
for (int i = 0; i < numSeq; ++i) {
const int start = starts[i];
const int end = starts[i + 1];
const int steps = end - start;
for (int j = tidy; j < steps; j += blky) {
real sum = 0;
int off = (start + j) * width;
for (int t = 0; t < context && (j - t) >= 0; ++t) {
int dyOff = off - t * width;
real dyVal = gidx + tidx < width ? dy[dyOff + gidx + tidx] : 0.0;
sum += sw[t][tidx] * dyVal;
}
if (gidx + tidx < width) {
dx[off + gidx + tidx] += sum;
}
}
}
}
__global__ void KeRowConvBwData2(real* dx, const real* w, const real* dy,
const int* starts, const int height, const int width, const int numSeq,
const int context) {
const int tidx = threadIdx.x;
const int tidy = threadIdx.y;
const int blky = blockDim.y;
const int gidx = blockIdx.x * blockDim.x;
for (int i = 0; i < numSeq; ++i) {
const int start = starts[i];
const int end = starts[i + 1];
const int steps = end - start;
for (int j = tidy; j < steps; j += blky) {
real sum = 0;
int off = (start + j) * width;
for (int t = 0; t < context && (j - t) >= 0; ++t) {
int dyOff = off - t * width;
real dyVal = gidx + tidx < width ? dy[dyOff + gidx + tidx] : 0.0;
real wVal = gidx + tidx < width ? w[t * width + gidx + tidx] : 0.0;
sum += wVal * dyVal;
}
if (gidx + tidx < width) {
dx[off + gidx + tidx] += sum;
}
}
}
}
template <>
void RowConvGrad<DEVICE_TYPE_GPU>(const GpuMatrix& outG,
const GpuMatrix& in,
const GpuMatrix& filter,
GpuMatrix& inG,
GpuMatrix& filterG,
const GpuIVector& seq) {
const size_t numSeq = seq.getSize() - 1;
const size_t contextLength = filter.getHeight();
const size_t height = in.getHeight();
const size_t width = in.getWidth();
const real* dy = outG.getData();
const real* x = in.getData();
const real* w = filter.getData();
const int* starts = seq.getData();
if (filterG) {
dim3 dimBlock(32, 32);
dim3 dimGrid(DIVUP(width, dimBlock.x), 1);
real* dw = filterG.getData();
if (contextLength <= 32) {
KeRowConvBwWeight<32, 32, 32>
<<<dimGrid, dimBlock, 0, STREAM_DEFAULT>>>
(dw, x, dy, starts, height, width, numSeq, contextLength);
} else {
KeRowConvBwWeight2<32, 32>
<<<dimGrid, dimBlock, 0, STREAM_DEFAULT>>>
(dw, x, dy, starts, height, width, numSeq, contextLength);
}
}
if (inG) {
real* dx = inG.getData();
dim3 dimBlock2(32, 32);
dim3 dimGrid2(DIVUP(width, dimBlock2.x), 1);
if (contextLength <= 64) {
KeRowConvBwData<32, 64>
<<<dimGrid2, dimBlock2, 0, STREAM_DEFAULT>>>
(dx, w, dy, starts, height, width, numSeq, contextLength);
} else {
KeRowConvBwData2
<<<dimGrid2, dimBlock2, 0, STREAM_DEFAULT>>>
(dx, w, dy, starts, height, width, numSeq, contextLength);
}
}
CHECK_SYNC("RowConvGrad");
}
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "FunctionTest.h"
namespace paddle {
void testRowConvFw(size_t batchSize, size_t dim, size_t contextLength) {
FunctionCompare test("RowConv", FuncConfig());
test.addSequence(SequenceIdArg(TensorShape{batchSize}));
test.addInputs(SequenceArg(VALUE_TYPE_FLOAT, TensorShape{batchSize, dim}));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{contextLength, dim}));
test.addOutputs(SequenceArg(VALUE_TYPE_FLOAT, TensorShape{batchSize, dim}),
ADD_TO);
test.run();
}
void testRowConvBw(size_t batchSize, size_t dim, size_t contextLength) {
FunctionCompare test("RowConvGrad", FuncConfig());
test.addSequence(SequenceIdArg(TensorShape{batchSize}));
test.addInputs(SequenceArg(VALUE_TYPE_FLOAT, TensorShape{batchSize, dim}));
test.addInputs(SequenceArg(VALUE_TYPE_FLOAT, TensorShape{batchSize, dim}));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{contextLength, dim}));
test.addOutputs(SequenceArg(VALUE_TYPE_FLOAT, TensorShape{batchSize, dim}),
ADD_TO);
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{contextLength, dim}),
ADD_TO);
test.run();
}
TEST(RowConv, real) {
for (size_t numSamples : {17, 129, 2020}) {
for (size_t dim : {16, 512, 2560}) {
for (size_t context : {3, 19, 65}) {
VLOG(3) << " numSamples=" << numSamples << " dim=" << dim
<< " context length=" << context;
testRowConvFw(numSamples, dim, context);
testRowConvBw(numSamples, dim, context);
}
}
}
}
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "RowConvLayer.h"
#include "paddle/utils/Stat.h"
namespace paddle {
REGISTER_LAYER(row_conv, RowConvLayer);
bool RowConvLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
/* Initialize the basic parent class */
Layer::init(layerMap, parameterMap);
contexLength_ = config_.inputs(0).row_conv_conf().context_length();
CHECK_EQ(inputLayers_.size(), 1UL);
weight_.reset(new Weight(contexLength_, getSize(), parameters_[0]));
createFunction(forward_, "RowConv", FuncConfig());
createFunction(backward_, "RowConvGrad", FuncConfig());
return true;
}
void RowConvLayer::forward(PassType passType) {
Layer::forward(passType);
MatrixPtr input = getInputValue(0);
size_t height = input->getHeight();
size_t width = input->getWidth();
CHECK_EQ(width, getSize());
resetOutput(height, width);
const auto startPos = getInput(0).sequenceStartPositions->getVector(useGpu_);
MatrixPtr w = weight_->getW();
wDims_ = TensorShape({w->getHeight(), w->getWidth()});
MatrixPtr outV = getOutputValue();
BufferArgs inputs;
BufferArgs outputs;
inputs.addArg(*getInputValue(0), *startPos);
inputs.addArg(*w, wDims_);
outputs.addArg(*getOutputValue(), *startPos, ADD_TO);
{
REGISTER_TIMER_INFO("RowConvForward", getName().c_str());
forward_[0]->calc(inputs, outputs);
}
/* activation */ {
REGISTER_TIMER_INFO("FwAtvTimer", getName().c_str());
forwardActivation();
}
}
void RowConvLayer::backward(const UpdateCallback& callback) {
/* Do derivation */ {
REGISTER_TIMER_INFO("BpAvtTimer", getName().c_str());
backwardActivation();
}
const auto startPos = getInput(0).sequenceStartPositions->getVector(useGpu_);
BufferArgs inputs;
BufferArgs outputs;
inputs.addArg(*getOutputGrad(), *startPos);
inputs.addArg(*getInputValue(0), *startPos);
inputs.addArg(*weight_->getW(), wDims_);
MatrixPtr inGrad = getInputGrad(0);
MatrixPtr wGrad = weight_->getWGrad();
size_t h = getInputValue(0)->getHeight();
size_t w = getInputValue(0)->getWidth();
outputs.addArg(
inGrad ? (*inGrad) : *(Matrix::create(nullptr, h, w, false, useGpu_)),
*startPos,
ADD_TO);
outputs.addArg(
wGrad ? (*wGrad)
: *(Matrix::create(nullptr, contexLength_, w, false, useGpu_)),
wDims_,
ADD_TO);
{
REGISTER_TIMER_INFO("RowConvBackward", getName().c_str());
backward_[0]->calc(inputs, outputs);
}
{
REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
weight_->getParameterPtr()->incUpdate(callback);
}
}
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "Layer.h"
namespace paddle {
/**
* \brief Row Convolution Layer.
*/
class RowConvLayer : public Layer {
public:
explicit RowConvLayer(const LayerConfig& config) : Layer(config) {}
~RowConvLayer() {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
protected:
// Row convolution weight, context_lenght_ * fan_out.
// fan_out is the size of output feature.
std::unique_ptr<Weight> weight_;
// The step number to look ahead plus one equals contexLength_.
size_t contexLength_;
TensorShape wDims_;
};
} // namespace paddle
......@@ -1705,6 +1705,26 @@ TEST(Layer, TransLayer) {
}
}
TEST(Layer, RowConvLayer) {
const int context = 3;
const int size = 512;
TestConfig config;
config.layerConfig.set_type("row_conv");
config.layerConfig.set_size(size);
config.layerConfig.set_active_type("sigmoid");
config.inputDefs.push_back(
{INPUT_SEQUENCE_DATA, "layer_0", size, context * size});
LayerInputConfig* input = config.layerConfig.add_inputs();
RowConvConfig* conv = input->mutable_row_conv_conf();
conv->set_context_length(context);
for (auto useGpu : {false, true}) {
testLayerGrad(config, "row_conv", 100, false, useGpu, false);
}
}
int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv);
initMain(argc, argv);
......
......@@ -632,7 +632,7 @@ void Argument::printValueString(std::ostream& stream,
const std::string& prefix) const {
std::unordered_map<std::string, std::string> out;
getValueString(&out);
for (auto field : {"value", "id", "sequence pos", "sub-sequence pos"}) {
for (auto field : {"value", "ids", "sequence pos", "sub-sequence pos"}) {
auto it = out.find(field);
if (it != out.end()) {
stream << prefix << field << ":\n" << it->second;
......
......@@ -383,20 +383,23 @@ void SocketClient::TcpClient(const std::string &serverAddr, int serverPort) {
setOption(sockfd);
/// Now connect to the server
int retry_second = 0;
int error = 0;
int retry_count = 0;
do {
error = connect(sockfd, (sockaddr *)&serv_addr, sizeof(serv_addr));
if (error == ECONNREFUSED) {
if (connect(sockfd, (sockaddr *)&serv_addr, sizeof(serv_addr)) == 0) {
break;
}
if (errno == ECONNREFUSED) {
LOG(WARNING) << "connection refused by pserver, try again!";
if (retry_second++ >= 7) {
if (retry_count++ >= 7) {
LOG(FATAL) << "connection refused by pserver, maybe pserver failed!";
}
std::this_thread::sleep_for(std::chrono::seconds(1));
} else {
PCHECK(error >= 0) << "ERROR connecting to " << serverAddr;
PCHECK(errno != 0) << "ERROR connecting to " << serverAddr << ":"
<< serverPort << "errorno: " << errno;
}
} while (error == ECONNREFUSED);
} while (errno == ECONNREFUSED);
channel_.reset(new SocketChannel(sockfd, serverAddr));
tcpRdma_ = F_TCP;
......
cc_library(stringpiece SRCS stringpiece.cc)
cc_test(stringpiece_test SRCS stringpiece_test.cc DEPS stringpiece glog gflags)
/*
Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include "paddle/strings/stringpiece.h"
#include <string.h>
#include <algorithm>
#include <iosfwd>
#include <stdexcept>
namespace paddle {
StringPiece::StringPiece() : data_(NULL), size_(0) {}
StringPiece::StringPiece(const char* d, size_t n) : data_(d), size_(n) {
if (d == NULL && n != 0)
throw std::invalid_argument(
"StringPiece requires len to be 0 for NULL data");
}
StringPiece::StringPiece(const char* s) : data_(s) {
size_ = (s == NULL) ? 0 : strlen(s);
}
StringPiece::StringPiece(const std::string& s)
: data_(s.data()), size_(s.size()) {}
char StringPiece::operator[](size_t n) const {
if (n >= len())
throw std::invalid_argument("index out of StringPiece length");
return data_[n];
}
int Compare(StringPiece a, StringPiece b) {
const size_t min_len = (a.len() < b.len()) ? a.len() : b.len();
int r = memcmp(a.data(), b.data(), min_len);
if (r == 0) {
if (a.len() < b.len())
return -1;
else if (a.len() > b.len())
return 1;
}
return r;
}
bool operator==(StringPiece x, StringPiece y) {
return ((x.len() == y.len()) &&
(x.data() == y.data() || memcmp(x.data(), y.data(), x.len()) == 0));
}
bool operator!=(StringPiece x, StringPiece y) { return !(x == y); }
bool operator<(StringPiece x, StringPiece y) { return Compare(x, y) < 0; }
bool operator>(StringPiece x, StringPiece y) { return Compare(x, y) > 0; }
bool operator<=(StringPiece x, StringPiece y) { return Compare(x, y) <= 0; }
bool operator>=(StringPiece x, StringPiece y) { return Compare(x, y) >= 0; }
bool HasPrefix(StringPiece s, StringPiece x) {
return ((s.len() >= x.len()) && (memcmp(s.data(), x.data(), x.len()) == 0));
}
bool HasSuffix(StringPiece s, StringPiece x) {
return ((s.len() >= x.len()) &&
(memcmp(s.data() + (s.len() - x.len()), x.data(), x.len()) == 0));
}
StringPiece SkipPrefix(StringPiece s, size_t n) {
if (n > s.len())
throw std::invalid_argument("Skip distance larger than StringPiece length");
return StringPiece(s.data() + n, s.len() - n);
}
StringPiece SkipSuffix(StringPiece s, size_t n) {
if (n > s.len())
throw std::invalid_argument("Skip distance larger than StringPiece length");
return StringPiece(s.data(), s.len() - n);
}
StringPiece TrimPrefix(StringPiece s, StringPiece x) {
return HasPrefix(s, x) ? SkipPrefix(s, x.len()) : s;
}
StringPiece TrimSuffix(StringPiece s, StringPiece x) {
return HasSuffix(s, x) ? SkipSuffix(s, x.len()) : s;
}
bool Contains(StringPiece s, StringPiece sub) {
return std::search(s.begin(), s.end(), sub.begin(), sub.end()) != s.end();
}
size_t Index(StringPiece s, StringPiece sub) {
auto e = std::search(s.begin(), s.end(), sub.begin(), sub.end());
return e != s.end() ? e - s.data() : StringPiece::npos;
}
size_t Find(StringPiece s, char c, size_t pos) {
if (pos >= s.len()) {
return StringPiece::npos;
}
const char* result =
reinterpret_cast<const char*>(memchr(s.data() + pos, c, s.len() - pos));
return result != nullptr ? result - s.data() : StringPiece::npos;
}
size_t RFind(StringPiece s, char c, size_t pos) {
if (s.len() == 0) return StringPiece::npos;
for (const char* p = s.data() + std::min(pos, s.len() - 1); p >= s.data();
p--) {
if (*p == c) {
return p - s.data();
}
}
return StringPiece::npos;
}
StringPiece SubStr(StringPiece s, size_t pos, size_t n) {
if (pos > s.len()) pos = s.len();
if (n > s.len() - pos) n = s.len() - pos;
return StringPiece(s.data() + pos, n);
}
std::ostream& operator<<(std::ostream& o, StringPiece piece) {
return o << piece.ToString();
}
} // namespace paddle
/*
Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#pragma once
#include <ostream>
#include <string>
namespace paddle {
// StringPiece points into a std::string object but doesn't own the
// string. It is for efficient access to strings. Like Go's string
// type. Not that StringPiece doesn't mutate the underlying string,
// so it is thread-safe given that the underlying string doesn't
// change. Because StringPiece contains a little data members, and
// its syntax is simple as it doesn't own/manage the string, it is
// cheap to construct StringPieces and pass them around.
class StringPiece {
public:
static const size_t npos = static_cast<size_t>(-1);
// We provide non-explicit singleton constructors so users can
// pass in a "const char*" or a "string" wherever a "StringPiece"
// is expected. These contructors ensure that if data_ is NULL,
// size_ is 0.
StringPiece();
StringPiece(const char* d, size_t n);
StringPiece(const char* d);
StringPiece(const std::string& s);
const char* data() const { return data_; }
size_t len() const { return size_; }
char operator[](size_t n) const;
// StringPiece doesn't own the string, so both iterator and const
// iterator are const char* indeed.
typedef const char* const_iterator;
typedef const char* iterator;
iterator begin() const { return data_; }
iterator end() const { return data_ + size_; }
// Return a string that contains the copy of the referenced data.
std::string ToString() const { return std::string(data_, size_); }
private:
const char* data_;
size_t size_;
// Intentionally copyable
};
int Compare(StringPiece a, StringPiece b);
bool operator==(StringPiece x, StringPiece y);
bool operator!=(StringPiece x, StringPiece y);
bool operator<(StringPiece x, StringPiece y);
bool operator>(StringPiece x, StringPiece y);
bool operator<=(StringPiece x, StringPiece y);
bool operator>=(StringPiece x, StringPiece y);
bool HasPrefix(StringPiece s, StringPiece prefix);
bool HasSuffix(StringPiece s, StringPiece suffix);
StringPiece SkipPrefix(StringPiece s, size_t n);
StringPiece SkipSuffix(StringPiece s, size_t n);
// Skip the prefix (or suffix) if it matches with the string.
StringPiece TrimPrefix(StringPiece s, StringPiece prefix);
StringPiece TrimSuffix(StringPiece s, StringPiece suffix);
// Returns if s contains sub. Any s except for empty s contains an
// empty sub.
bool Contains(StringPiece s, StringPiece sub);
// Return the first occurrence of sub in s, or npos. If both s and
// sub is empty, it returns npos; otherwise, if only sub is empty, it
// returns 0.
size_t Index(StringPiece s, StringPiece sub);
// Return the first occurrence of c in s[pos:end], or npos.
size_t Find(StringPiece s, char c, size_t pos);
// Search range is [0..pos] inclusive. If pos == npos, search everything.
size_t RFind(StringPiece s, char c, size_t pos);
StringPiece SubStr(StringPiece s, size_t pos, size_t n);
// allow StringPiece to be logged
std::ostream& operator<<(std::ostream& o, StringPiece piece);
} // namespace paddle
/*
Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include "paddle/strings/stringpiece.h"
#include <sstream>
#include "gtest/gtest.h"
TEST(StringPiece, Construct) {
{
paddle::StringPiece s;
EXPECT_EQ(NULL, s.data());
EXPECT_EQ(0U, s.len());
}
{ EXPECT_THROW(paddle::StringPiece s(NULL, 10000U), std::invalid_argument); }
{
paddle::StringPiece s(NULL);
EXPECT_EQ(0U, s.len());
}
{
std::string a;
EXPECT_EQ(0U, a.size());
paddle::StringPiece s(a);
EXPECT_EQ(0U, s.len());
}
}
TEST(StringPiece, CopyAndAssign) {
paddle::StringPiece empty;
EXPECT_EQ(0U, empty.len());
paddle::StringPiece a("hello");
paddle::StringPiece b = a;
EXPECT_EQ(b.len(), strlen("hello"));
EXPECT_EQ(a, b);
std::string storage("hello");
paddle::StringPiece c(storage);
EXPECT_EQ(a, c);
EXPECT_NE(a.data(), c.data());
}
TEST(StringPiece, Compare) {
{
paddle::StringPiece a("hello");
paddle::StringPiece b("world");
EXPECT_TRUE(a != b);
EXPECT_FALSE(a == b);
EXPECT_TRUE(a < b);
EXPECT_TRUE(a <= b);
EXPECT_FALSE(a > b);
EXPECT_FALSE(a >= b);
EXPECT_LT(Compare(a, b), 0);
EXPECT_GT(Compare(b, a), 0);
}
{
paddle::StringPiece a, b;
EXPECT_TRUE(a == b);
EXPECT_FALSE(a != b);
EXPECT_FALSE(a < b);
EXPECT_FALSE(a > b);
EXPECT_TRUE(a <= b);
EXPECT_TRUE(a >= b);
EXPECT_EQ(0, Compare(a, b));
EXPECT_EQ(0, Compare(b, a));
}
}
TEST(StringPiece, ToString) {
{
paddle::StringPiece s;
EXPECT_EQ(std::string(""), s.ToString());
}
{
paddle::StringPiece s(NULL);
EXPECT_EQ(std::string(""), s.ToString());
}
{
paddle::StringPiece s("hello");
EXPECT_EQ(std::string("hello"), s.ToString());
}
}
TEST(StringPiece, HasPrefixSuffix) {
using paddle::HasPrefix;
using paddle::HasSuffix;
{
paddle::StringPiece s;
EXPECT_FALSE(HasPrefix(s, "something"));
EXPECT_TRUE(HasPrefix(s, ""));
EXPECT_FALSE(HasSuffix(s, "something"));
EXPECT_TRUE(HasSuffix(s, ""));
}
{
paddle::StringPiece s("app");
EXPECT_TRUE(HasPrefix(s, ""));
EXPECT_TRUE(HasPrefix(s, "a"));
EXPECT_TRUE(HasPrefix(s, "ap"));
EXPECT_TRUE(HasPrefix(s, "app"));
EXPECT_TRUE(HasSuffix(s, ""));
EXPECT_TRUE(HasSuffix(s, "p"));
EXPECT_TRUE(HasSuffix(s, "pp"));
EXPECT_TRUE(HasSuffix(s, "app"));
}
}
TEST(StringPiece, SkipPrefixSuffix) {
using paddle::SkipPrefix;
using paddle::SkipSuffix;
{
paddle::StringPiece s;
EXPECT_EQ("", SkipPrefix(s, 0));
EXPECT_THROW(SkipPrefix(s, 1), std::invalid_argument);
EXPECT_EQ("", SkipSuffix(s, 0));
EXPECT_THROW(SkipSuffix(s, 1), std::invalid_argument);
}
{
paddle::StringPiece s("app");
EXPECT_EQ("app", SkipPrefix(s, 0));
EXPECT_EQ("pp", SkipPrefix(s, 1));
EXPECT_EQ("p", SkipPrefix(s, 2));
EXPECT_EQ("", SkipPrefix(s, 3));
EXPECT_THROW(SkipPrefix(s, 4), std::invalid_argument);
EXPECT_EQ("app", SkipSuffix(s, 0));
EXPECT_EQ("ap", SkipSuffix(s, 1));
EXPECT_EQ("a", SkipSuffix(s, 2));
EXPECT_EQ("", SkipSuffix(s, 3));
EXPECT_THROW(SkipSuffix(s, 4), std::invalid_argument);
}
}
TEST(StringPiece, TrimPrefixSuffix) {
using paddle::TrimPrefix;
using paddle::TrimSuffix;
{
paddle::StringPiece s;
EXPECT_EQ("", TrimPrefix(s, ""));
EXPECT_EQ("", TrimPrefix(s, "something"));
EXPECT_EQ("", TrimSuffix(s, ""));
EXPECT_EQ("", TrimSuffix(s, "something"));
}
{
paddle::StringPiece s("app");
EXPECT_EQ("app", TrimPrefix(s, ""));
EXPECT_EQ("pp", TrimPrefix(s, "a"));
EXPECT_EQ("p", TrimPrefix(s, "ap"));
EXPECT_EQ("", TrimPrefix(s, "app"));
EXPECT_EQ("app", TrimPrefix(s, "something"));
EXPECT_EQ("app", TrimSuffix(s, ""));
EXPECT_EQ("ap", TrimSuffix(s, "p"));
EXPECT_EQ("a", TrimSuffix(s, "pp"));
EXPECT_EQ("", TrimSuffix(s, "app"));
EXPECT_EQ("app", TrimSuffix(s, "something"));
}
}
TEST(StringPiece, Contains) {
using paddle::Contains;
{
paddle::StringPiece s;
EXPECT_FALSE(Contains(s, ""));
EXPECT_FALSE(Contains(s, "something"));
}
{
paddle::StringPiece s("app");
EXPECT_TRUE(Contains(s, ""));
EXPECT_TRUE(Contains(s, "a"));
EXPECT_TRUE(Contains(s, "p"));
EXPECT_TRUE(Contains(s, "ap"));
EXPECT_TRUE(Contains(s, "pp"));
EXPECT_TRUE(Contains(s, "app"));
EXPECT_FALSE(Contains(s, "something"));
}
}
TEST(StringPiece, Index) {
using paddle::Index;
auto npos = paddle::StringPiece::npos;
{
paddle::StringPiece s;
EXPECT_EQ(npos, Index(s, ""));
EXPECT_EQ(npos, Index(s, "something"));
}
{
paddle::StringPiece s("app");
EXPECT_EQ(0U, Index(s, ""));
EXPECT_EQ(0U, Index(s, "a"));
EXPECT_EQ(1U, Index(s, "p"));
EXPECT_EQ(0U, Index(s, "ap"));
EXPECT_EQ(1U, Index(s, "pp"));
EXPECT_EQ(0U, Index(s, "app"));
EXPECT_EQ(npos, Index(s, "something"));
}
}
TEST(StringPiece, Find) {
using paddle::Find;
auto npos = paddle::StringPiece::npos;
{
paddle::StringPiece s;
EXPECT_EQ(npos, Find(s, 'a', 0U));
}
{
paddle::StringPiece s("app");
EXPECT_EQ(0U, Find(s, 'a', 0U));
EXPECT_EQ(1U, Find(s, 'p', 0U));
EXPECT_EQ(1U, Find(s, 'p', 1U));
EXPECT_EQ(2U, Find(s, 'p', 2U));
EXPECT_EQ(npos, Find(s, 'z', 2U));
}
}
TEST(StringPiece, RFind) {
using paddle::RFind;
auto npos = paddle::StringPiece::npos;
{
paddle::StringPiece s;
EXPECT_EQ(npos, RFind(s, 'a', 0U));
}
{
paddle::StringPiece s("app");
EXPECT_EQ(2U, RFind(s, 'p', 2U));
EXPECT_EQ(0U, RFind(s, 'a', 2U));
EXPECT_EQ(1U, RFind(s, 'p', 1U));
EXPECT_EQ(0U, RFind(s, 'a', 0));
EXPECT_EQ(npos, RFind(s, 'z', 2U));
}
}
TEST(StringPiece, SubStr) {
using paddle::SubStr;
{
paddle::StringPiece s;
EXPECT_EQ("", SubStr(s, 0, 0));
EXPECT_EQ("", SubStr(s, 0, 1));
EXPECT_EQ("", SubStr(s, 1, 0));
}
{
paddle::StringPiece s("app");
EXPECT_EQ("", SubStr(s, 0, 0));
EXPECT_EQ("", SubStr(s, 1, 0));
EXPECT_EQ("", SubStr(s, 2, 0));
EXPECT_EQ("", SubStr(s, 3, 0));
EXPECT_EQ("a", SubStr(s, 0, 1));
EXPECT_EQ("p", SubStr(s, 1, 1));
EXPECT_EQ("p", SubStr(s, 2, 1));
EXPECT_EQ("", SubStr(s, 3, 1));
EXPECT_EQ("ap", SubStr(s, 0, 2));
EXPECT_EQ("pp", SubStr(s, 1, 2));
EXPECT_EQ("p", SubStr(s, 2, 2));
EXPECT_EQ("", SubStr(s, 3, 2));
EXPECT_EQ("app", SubStr(s, 0, 3));
EXPECT_EQ("pp", SubStr(s, 1, 3));
EXPECT_EQ("p", SubStr(s, 2, 3));
EXPECT_EQ("", SubStr(s, 3, 3));
}
}
TEST(StringPiece, StreamOutput) {
using paddle::StringPiece;
std::stringstream o;
o << StringPiece();
EXPECT_EQ("", o.str());
o << StringPiece("hello");
EXPECT_EQ("hello", o.str());
o << StringPiece();
EXPECT_EQ("hello", o.str());
}
......@@ -194,6 +194,10 @@ message MaxOutConfig {
required uint32 groups = 2;
}
message RowConvConfig {
required uint32 context_length = 1;
}
message ProjectionConfig {
required string type = 1;
required string name = 2;
......@@ -279,6 +283,7 @@ message LayerInputConfig {
optional SppConfig spp_conf = 12;
optional PriorBoxConfig priorbox_conf = 13;
optional PadConfig pad_conf = 14;
optional RowConvConfig row_conv_conf = 15;
}
message LayerConfig {
......
......@@ -73,7 +73,6 @@ To use this from paddle_trainer, paddle_trainer should be called with
--config_args=extension_module_name=[MODULE_NAME]
'''
import copy
import logging
import os
......@@ -1731,9 +1730,10 @@ class ParameterReluLayer(LayerBase):
def __init__(self, name, inputs, partial_sum=1, **args):
super(ParameterReluLayer, self).__init__(
name, self.layer_type, 0, inputs=inputs, **args)
config_assert(len(self.inputs) == 1)
config_assert(self.input_layer.size % partial_sum == 0)
input_layer = self.get_input_layer(0)
config_assert(len(self.inputs) == 1, "prelu layer has only one input.")
config_assert(input_layer.size % partial_sum == 0,
"a wrong setting for partial_sum")
self.set_layer_size(input_layer.size)
self.create_input_parameter(0, input_layer.size / partial_sum)
......@@ -2081,6 +2081,23 @@ class MaxOutLayer(LayerBase):
g_layer_map[input_layer.name].width, out_channels)
@config_layer('row_conv')
class RowConvLayer(LayerBase):
def __init__(self, name, inputs, context_length, **xargs):
super(RowConvLayer, self).__init__(
name, 'maxout', 0, inputs=inputs, **xargs)
config_assert(
len(self.inputs) == 1,
'TransLayer must have one and only one input')
input_layer = self.get_input_layer(0)
row_conv_conf = self.config.inputs[0].row_conv_conf
row_conv_conf.context_length = context_length
self.set_layer_size(input_layer.size)
psize = context_length * input_layer.size
dims = [context_length, input_layer.size]
self.create_input_parameter(0, psize, dims)
# key: cost type
# value: cost class
g_cost_map = {}
......@@ -3546,11 +3563,7 @@ def update_g_config():
return g_config
def begin_parse(config_arg_str=''):
'''
@param config_arg_str: a string of the form var1=val1,var2=val2. It will be
passed to config script as a dictionary CONFIG_ARGS
'''
def begin_parse():
init_config_environment()
for hook in _parse_config_hooks:
hook()
......@@ -3568,8 +3581,12 @@ def begin_parse(config_arg_str=''):
def parse_config(trainer_config, config_arg_str):
begin_parse(config_arg_str)
'''
@param config_arg_str: a string of the form var1=val1,var2=val2. It will be
passed to config script as a dictionary CONFIG_ARGS
'''
begin_parse()
config_args = {}
if config_arg_str:
......
......@@ -31,31 +31,31 @@ except ImportError:
import copy
__all__ = [
"full_matrix_projection",
"AggregateLevel",
"ExpandLevel",
"identity_projection",
"dotmul_projection",
"dotmul_operator",
"repeat_layer",
"seq_reshape_layer",
"table_projection",
"mixed_layer",
"data_layer",
"embedding_layer",
"fc_layer",
"grumemory",
"pooling_layer",
"lstmemory",
"last_seq",
"first_seq",
"cos_sim",
"hsigmoid",
"conv_projection",
"mse_cost",
"regression_cost",
'full_matrix_projection',
'AggregateLevel',
'ExpandLevel',
'identity_projection',
'dotmul_projection',
'dotmul_operator',
'repeat_layer',
'seq_reshape_layer',
'table_projection',
'mixed_layer',
'data_layer',
'embedding_layer',
'fc_layer',
'grumemory',
'pooling_layer',
'lstmemory',
'last_seq',
'first_seq',
'cos_sim',
'hsigmoid',
'conv_projection',
'mse_cost',
'regression_cost',
'classification_cost',
"LayerOutput",
'LayerOutput',
'img_conv_layer',
'img_pool_layer',
'batch_norm_layer',
......@@ -121,6 +121,9 @@ __all__ = [
'smooth_l1_cost',
'layer_support',
'multiplex_layer',
'row_conv_layer',
'dropout_layer',
'prelu_layer',
]
......@@ -129,26 +132,26 @@ class LayerType(object):
Layer type enumerations.
"""
DATA = "data"
MIXED_LAYER = "mixed"
LSTMEMORY = "lstmemory"
GRUMEMORY = "gated_recurrent"
SEQUENCE_LAST_INSTANCE = "seqlastins"
SEQUENCE_FIRST_INSTANCE = "seqfirstins"
SEQUENCE_RESHAPE = "seqreshape"
POOLING_MAX = "max"
DATA = 'data'
MIXED_LAYER = 'mixed'
LSTMEMORY = 'lstmemory'
GRUMEMORY = 'gated_recurrent'
SEQUENCE_LAST_INSTANCE = 'seqlastins'
SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
SEQUENCE_RESHAPE = 'seqreshape'
POOLING_MAX = 'max'
POOLING_AVG = 'average'
FC_LAYER = "fc"
FC_LAYER = 'fc'
COST = 'cost'
COSINE_SIM_VEC = 'cos_vm'
COSINE_SIM = 'cos'
HSIGMOID = 'hsigmoid'
CONV_LAYER = "conv"
CONVTRANS_LAYER = "convt"
EXCONV_LAYER = "exconv"
EXCONVTRANS_LAYER = "exconvt"
CUDNNCONV_LAYER = "cudnn_conv"
POOL_LAYER = "pool"
CONV_LAYER = 'conv'
CONVTRANS_LAYER = 'convt'
EXCONV_LAYER = 'exconv'
EXCONVTRANS_LAYER = 'exconvt'
CUDNNCONV_LAYER = 'cudnn_conv'
POOL_LAYER = 'pool'
BATCH_NORM_LAYER = 'batch_norm'
NORM_LAYER = 'norm'
SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
......@@ -188,25 +191,28 @@ class LayerType(object):
SPP_LAYER = "spp"
PAD_LAYER = "pad"
MULTIPLEX_LAYER = "multiplex"
ROW_CONV_LAYER = "row_conv"
PRINT_LAYER = "print"
PRIORBOX_LAYER = "priorbox"
PRINT_LAYER = 'print'
PRIORBOX_LAYER = 'priorbox'
CTC_LAYER = "ctc"
WARP_CTC_LAYER = "warp_ctc"
CRF_LAYER = "crf"
CRF_DECODING_LAYER = "crf_decoding"
CTC_LAYER = 'ctc'
WARP_CTC_LAYER = 'warp_ctc'
CRF_LAYER = 'crf'
CRF_DECODING_LAYER = 'crf_decoding'
NCE_LAYER = 'nce'
RANK_COST = "rank-cost"
LAMBDA_COST = "lambda_cost"
HUBER = "huber"
CROSS_ENTROPY = "multi-class-cross-entropy"
CROSS_ENTROPY_WITH_SELFNORM = "multi_class_cross_entropy_with_selfnorm"
SOFT_BIN_CLASS_CROSS_ENTROPY = "soft_binary_class_cross_entropy"
MULTI_BIN_LABEL_CROSS_ENTROPY = "multi_binary_label_cross_entropy"
SUM_COST = "sum_cost"
SMOOTH_L1 = "smooth_l1"
RANK_COST = 'rank-cost'
LAMBDA_COST = 'lambda_cost'
HUBER = 'huber'
CROSS_ENTROPY = 'multi-class-cross-entropy'
CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
SUM_COST = 'sum_cost'
SMOOTH_L1 = 'smooth_l1'
PRELU = 'prelu'
@staticmethod
def is_layer_type(type_name):
......@@ -3768,7 +3774,6 @@ def beam_search(step,
assert generated_input_index != -1
gipt = input[generated_input_index]
assert isinstance(gipt, BaseGeneratedInput)
gipt.bos_id = bos_id
gipt.eos_id = eos_id
......@@ -3788,7 +3793,6 @@ def beam_search(step,
predict = gipt.after_real_step(step(*args))
eos_layer(input=predict, eos_id=eos_id, name=eos_name)
return predict
tmp = recurrent_group(
......@@ -3860,7 +3864,6 @@ def classification_cost(input,
label,
weight=None,
name=None,
top_k=None,
evaluator=classification_error_evaluator,
layer_attr=None):
"""
......@@ -3875,8 +3878,6 @@ def classification_cost(input,
:param weight: The weight affects the cost, namely the scale of cost.
It is an optional argument.
:type weight: LayerOutput
:param top_k: number k in top-k error rate
:type top_k: int
:param evaluator: Evaluator method.
:param layer_attr: layer's extra attribute.
:type layer_attr: ExtraLayerAttribute
......@@ -3904,7 +3905,7 @@ def classification_cost(input,
assert isinstance(e.for_classification, bool)
assert e.for_classification
e(name=e.__name__, input=input, label=label, weight=weight, top_k=top_k)
e(name=e.__name__, input=input, label=label, weight=weight)
if not isinstance(evaluator, collections.Sequence):
evaluator = [evaluator]
......@@ -4725,7 +4726,7 @@ def ctc_layer(input,
fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
should also be num_classes + 1.
The simple usage:
The example usage is:
.. code-block:: python
......@@ -4812,7 +4813,7 @@ def warp_ctc_layer(input,
- As a native 'softmax' activation is interated to the warp-ctc library,
'linear' activation is expected instead in the 'input' layer.
The simple usage:
The example usage is:
.. code-block:: python
......@@ -4873,7 +4874,7 @@ def crf_layer(input,
A layer for calculating the cost of sequential conditional random
field model.
The simple usage:
The example usage is:
.. code-block:: python
......@@ -4947,7 +4948,7 @@ def crf_decoding_layer(input,
this layer will also calculate error. output.value[i] is 1 for incorrect
decoding or 0 for correct decoding.
The simple usage:
The example usage is:
.. code-block:: python
......@@ -5140,7 +5141,7 @@ def rank_cost(left,
- :math:`o_i` and :math:`o_j`: the left output and right output.
Their dimension is one.
The simple usage:
The example usage is:
.. code-block:: python
......@@ -5197,7 +5198,7 @@ def lambda_cost(input,
"""
lambdaCost for lambdaRank LTR approach.
The simple usage:
The example usage is:
.. code-block:: python
......@@ -5255,6 +5256,8 @@ def cross_entropy(input,
"""
A loss layer for multi class entropy.
The example usage is:
.. code-block:: python
cost = cross_entropy(input=input_layer,
......@@ -5301,6 +5304,8 @@ def cross_entropy_with_selfnorm(input,
A loss layer for multi class entropy with selfnorm.
Input should be a vector of positive numbers, without normalization.
The example usage is:
.. code-block:: python
cost = cross_entropy_with_selfnorm(input=input_layer,
......@@ -5342,6 +5347,8 @@ def sum_cost(input, name=None, layer_attr=None):
"""
A loss layer which calculate the sum of the input as loss
The example usage is:
.. code-block:: python
cost = sum_cost(input=input_layer)
......@@ -5371,6 +5378,8 @@ def huber_cost(input, label, name=None, coeff=1.0, layer_attr=None):
"""
A loss layer for huber loss.
The example usage is:
.. code-block:: python
cost = huber_cost(input=input_layer,
......@@ -5411,6 +5420,8 @@ def multi_binary_label_cross_entropy(input,
"""
A loss layer for multi binary label cross entropy.
The example usage is:
.. code-block:: python
cost = multi_binary_label_cross_entropy(input=input_layer,
......@@ -5470,6 +5481,8 @@ def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
More details can be found by referring to `Fast R-CNN
<https://arxiv.org/pdf/1504.08083v2.pdf>`_
The example usage is:
.. code-block:: python
cost = smooth_l1_cost(input=input_layer,
......@@ -5519,6 +5532,8 @@ def multiplex_layer(input, name=None, layer_attr=None):
where, y is output. :math:`x_{k}` is the k-th input layer and
:math:`k = x_{0}[i] + 1`.
The example usage is:
.. code-block:: python
maxid = multiplex_layer(input=layers)
......@@ -5551,3 +5566,155 @@ def multiplex_layer(input, name=None, layer_attr=None):
layer_type=LayerType.MULTIPLEX_LAYER,
parents=input,
size=l.config.size)
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
"""
@TODO(yuyang18): Add comments.
:param name:
:param input:
:param dropout_rate:
:return:
"""
return addto_layer(
name=name,
input=input,
act=LinearActivation(),
bias_attr=False,
layer_attr=ExtraAttr(drop_rate=dropout_rate))
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
context_len,
act=None,
name=None,
param_attr=None,
layer_attr=None):
"""
The row convolution is called lookahead convolution. It is firstly
introduced in paper of `Deep Speech 2: End-toEnd Speech Recognition
in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .
The bidirectional RNN that learns representation for a sequence by
performing a forward and a backward pass through the entire sequence.
However, unlike unidirectional RNNs, bidirectional RNNs are challenging
to deploy in an online and low-latency setting. The lookahead convolution
incorporates information from future subsequences in a computationally
efficient manner to improve unidirectional recurrent neural networks.
The connection of row convolution is different form the 1D sequence
convolution. Assumed that, the future context-length is k, that is to say,
it can get the output at timestep t by using the the input feature from t-th
timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
activations are d, the activations r_t for the new layer at time-step t are:
.. math::
r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
\quad \text{for} \quad (1 \leq i \leq d)
Note:
The `context_len` is `k + 1`. That is to say, the lookahead step
number plus one equals context_len.
.. code-block:: python
row_conv = row_conv_layer(input=input_layer, context_len=3)
:param input: The input layer.
:type input: LayerOutput
:param context_len: The context length equals the lookahead step number
plus one.
:type context_len: int
:param act: Activation Type. Default is linear activation.
:type act: BaseActivation
:param param_attr: The Parameter Attribute. If None, the parameter will be
initialized smartly. It's better set it by yourself.
:type param_attr: ParameterAttribute
:param layer_attr: Extra Layer config.
:type layer_attr: ExtraLayerAttribute|None
:return: LayerOutput object.
:rtype: LayerOutput
"""
assert isinstance(input, LayerOutput)
assert context_len > 0, "the context_len must be greatet than 0."
Layer(
inputs=[Input(input.name, **param_attr.attr)],
name=name,
context_length=context_len,
type=LayerType.ROW_CONV_LAYER,
active_type=act.name,
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
name=None,
partial_sum=1,
param_attr=None,
layer_attr=None):
"""
The Parameter Relu activation that actives outputs with a learnable weight.
Reference:
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf
.. math::
z_i &\\quad if \\quad z_i > 0 \\\\
a_i * z_i &\\quad \\mathrm{otherwise}
The example usage is:
.. code-block:: python
prelu = prelu_layer(input=layers, partial_sum=1)
:param name: Name of this layer.
:type name: basestring
:param input: The input layer.
:type input: LayerOutput
:param partial_sum: this parameter makes a group of inputs share a same weight.
- partial_sum = 1, indicates the element-wise activation: each element has a weight.
- partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share a same weight.
- partial_sum = number of outputs, indicates all elements share a same weight.
:type partial_sum: int
:param param_attr: The parameter attribute. See ParameterAttribute for details.
:type param_attr: ParameterAttribute|None
:param layer_attr: Extra layer configurations. Default is None.
:type layer_attr: ExtraLayerAttribute|None
:return: LayerOutput object.
:rtype: LayerOutput
"""
assert isinstance(input, LayerOutput), 'prelu_layer only accepts one input'
assert isinstance(param_attr, ParameterAttribute)
l = Layer(
name=name,
type=LayerType.PRELU,
inputs=Input(input.name, **param_attr.attr),
partial_sum=partial_sum,
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name=name,
layer_type=LayerType.PRELU,
parents=input,
size=l.config.size)
......@@ -26,10 +26,10 @@ from paddle.trainer.config_parser import *
__all__ = [
'sequence_conv_pool', 'simple_lstm', "simple_img_conv_pool",
"img_conv_bn_pool", 'dropout_layer', 'lstmemory_group', 'lstmemory_unit',
'small_vgg', 'img_conv_group', 'vgg_16_network', 'gru_unit', 'gru_group',
'simple_gru', 'simple_attention', 'simple_gru2', 'bidirectional_gru',
'text_conv_pool', 'bidirectional_lstm', 'inputs', 'outputs'
"img_conv_bn_pool", 'lstmemory_group', 'lstmemory_unit', 'small_vgg',
'img_conv_group', 'vgg_16_network', 'gru_unit', 'gru_group', 'simple_gru',
'simple_attention', 'simple_gru2', 'bidirectional_gru', 'text_conv_pool',
'bidirectional_lstm', 'inputs', 'outputs'
]
######################################################
......@@ -1366,29 +1366,6 @@ def simple_attention(encoded_sequence,
input=scaled, pooling_type=SumPooling(), name="%s_pooling" % name)
############################################################################
# Miscs #
############################################################################
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
"""
@TODO(yuyang18): Add comments.
:param name:
:param input:
:param dropout_rate:
:return:
"""
return addto_layer(
name=name,
input=input,
act=LinearActivation(),
bias_attr=False,
layer_attr=ExtraAttr(drop_rate=dropout_rate))
def inputs(layers, *args):
"""
Declare the inputs of network. The order of input should be as same as
......
......@@ -5,6 +5,7 @@ last_first_seq test_expand_layer test_ntm_layers test_hsigmoid
img_layers img_trans_layers util_layers simple_rnn_layers unused_layers test_cost_layers
test_rnn_group shared_fc shared_lstm shared_gru test_cost_layers_with_weight
test_spp_layer test_bilinear_interp test_maxout test_bi_grumemory math_ops
test_seq_concat_reshape test_pad test_smooth_l1 test_multiplex_layer)
test_seq_concat_reshape test_pad test_smooth_l1 test_multiplex_layer
test_prelu_layer test_row_conv)
export whole_configs=(test_split_datasource)
type: "nn"
layers {
name: "input"
type: "data"
size: 300
active_type: ""
}
layers {
name: "__prelu_layer_0__"
type: "prelu"
size: 300
active_type: ""
inputs {
input_layer_name: "input"
input_parameter_name: "___prelu_layer_0__.w0"
}
}
parameters {
name: "___prelu_layer_0__.w0"
size: 300
initial_mean: 0.0
initial_std: 0.057735026919
initial_strategy: 0
initial_smart: true
}
input_layer_names: "input"
output_layer_names: "__prelu_layer_0__"
sub_models {
name: "root"
layer_names: "input"
layer_names: "__prelu_layer_0__"
input_layer_names: "input"
output_layer_names: "__prelu_layer_0__"
is_recurrent_layer_group: false
}
type: "nn"
layers {
name: "data"
type: "data"
size: 2560
active_type: ""
}
layers {
name: "__row_conv_layer_0__"
type: "maxout"
size: 2560
active_type: "relu"
inputs {
input_layer_name: "data"
input_parameter_name: "___row_conv_layer_0__.w0"
row_conv_conf {
context_length: 19
}
}
}
parameters {
name: "___row_conv_layer_0__.w0"
size: 48640
initial_mean: 0.0
initial_std: 0.229415733871
dims: 19
dims: 2560
initial_strategy: 0
initial_smart: true
}
input_layer_names: "data"
output_layer_names: "__row_conv_layer_0__"
sub_models {
name: "root"
layer_names: "data"
layer_names: "__row_conv_layer_0__"
input_layer_names: "data"
output_layer_names: "__row_conv_layer_0__"
is_recurrent_layer_group: false
}
from paddle.trainer_config_helpers import *
data = data_layer(name='input', size=300)
prelu = prelu_layer(input=data)
outputs(prelu)
from paddle.trainer_config_helpers import *
settings(batch_size=1000, learning_rate=1e-5)
data = data_layer(name='data', size=2560)
row_conv = row_conv_layer(input=data, context_len=19, act=ReluActivation())
outputs(row_conv)
......@@ -13,7 +13,7 @@
# limitations under the License.
"""
`paddle.v2.layer` is a part of model config packages in paddle.v2. In API v2,
we want to make Paddle a plain Python package. The model config package defined
we want to make Paddle a plain Python package. The model config package defines
the way how to configure a neural network topology in Paddle Python code.
The primary usage shows below.
......@@ -30,7 +30,6 @@ The primary usage shows below.
# use prediction instance where needed.
parameters = paddle.parameters.create(cost)
"""
import collections
import copy
import re
......@@ -44,9 +43,10 @@ __all__ = ['data', 'parse_network']
def __need_to_keep__(name):
if name in ['StaticInput', 'LayerType', 'layer_support']:
return False
return True
return name in [
'StaticInput', 'SubsequenceInput', 'GeneratedInput', 'LayerType',
'layer_support'
]
def __need_to_wrap__(name):
......@@ -54,6 +54,8 @@ def __need_to_wrap__(name):
def __convert_name__(inname):
if __need_to_keep__(inname):
return inname
if inname == 'maxid_layer':
return 'max_id'
elif inname.endswith('memory') or inname.endswith(
......@@ -74,8 +76,6 @@ def __convert_name__(inname):
for name in v1_layers.__all__:
obj = getattr(v1_layers, name)
if not __need_to_keep__(name):
continue
new_name = __convert_name__(name)
if callable(obj) and __need_to_wrap__(name):
globals()[new_name] = __convert_to_v2__(obj, new_name, __name__)
......@@ -107,7 +107,7 @@ __data_layer__.__doc__ = __map_data_docstr__(v1_layers.data_layer.__doc__)
data = __convert_to_v2__(__data_layer__, 'name', __name__)
def __get_used_layers__(output_layers, extra_layers=None):
def __get_used_layers__(output_layers):
layer_names = set()
parents = {}
......@@ -132,6 +132,13 @@ def __get_used_layers__(output_layers, extra_layers=None):
add_parent(mem.layer_name, mem.boot_layer_name)
add_parent(mem.link_name, mem.layer_name)
if sub_model.HasField('generator'):
# according to the implementation of text generation
# in recurrent layer group, the generated word must be
# the first out link
add_parent(sub_model.out_links[0].layer_name,
sub_model.generator.eos_layer_name)
def dfs_travel(layer_name):
if layer_name in layer_names:
return
......@@ -247,8 +254,8 @@ def __trim_submodel__(old_submodel, layer_names, input_layer_names,
def parse_network(output_layers, extra_layers=None):
if not isinstance(output_layers, collections.Sequence):
output_layers = [output_layers]
if extra_layers is not None and not isinstance(extra_layers,
collections.Sequence):
if extra_layers is not None:
if not isinstance(extra_layers, collections.Sequence):
extra_layers = [extra_layers]
else:
extra_layers = []
......@@ -262,18 +269,29 @@ def parse_network(output_layers, extra_layers=None):
model_config = ModelConfig()
model_config.type = cp.g_config.model_config.type
for layer in output_layers:
model_config.output_layer_names.append(layer.full_name)
output_layer_names.add(layer.full_name)
for l in cp.g_config.model_config.layers:
if l.name not in layer_names:
continue
model_config.layers.extend([l])
if l.type == 'data':
if l.name in model_config.output_layer_names:
"""
In text generation, the outlink to save the generated word
indices is a data_layer defined in recurrent_group. This
data_layer is sure to be the output of the network in text
generation task, so this statement excludes such a special
data_layer from being inputs of the network, otherwise an error
will occur during data feeding.
"""
continue
model_config.input_layer_names.append(l.name)
input_layer_names.add(l.name)
for layer in output_layers:
model_config.output_layer_names.append(layer.full_name)
output_layer_names.add(layer.full_name)
for e in cp.g_config.model_config.evaluators:
if e.name in evaluator_names:
model_config.evaluators.extend([e])
......
......@@ -31,7 +31,6 @@ class Topology(object):
def __init__(self, layers, extra_layers=None):
def __check__(layers):
if not isinstance(layers, collections.Sequence):
__check_layer_type__(layers)
layers = [layers]
for layer in layers:
__check_layer_type__(layer)
......@@ -91,6 +90,7 @@ class Topology(object):
[('image', dense_vector(768)), ('label', integer_value(10))]
"""
data_layers = self.data_layers()
return [(nm, data_layers[nm].data_type)
for nm in self.proto().input_layer_names]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册