未验证 提交 4646c0f3 编写于 作者: T Tao Luo 提交者: GitHub

Merge pull request #10144 from luotao1/tr_convert_init

tensorrt convert init
if(WITH_TESTING)
nv_test(test_tensorrt SRCS test_tensorrt.cc DEPS dynload_cuda device_context dynamic_loader)
nv_test(test_tensorrt_engine SRCS test_engine.cc engine.cc DEPS dynload_cuda)
endif()
nv_test(test_tensorrt SRCS test_tensorrt.cc DEPS dynload_cuda device_context dynamic_loader)
nv_test(test_tensorrt_engine SRCS test_engine.cc engine.cc DEPS dynload_cuda)
set(ENGINE_FILE ${CMAKE_CURRENT_SOURCE_DIR}/engine.cc)
add_subdirectory(convert)
nv_test(test_tensorrt_op_converter SRCS test_op_converter.cc mul_op.cc conv2d_op.cc DEPS ${FLUID_CORE_MODULES})
nv_test(test_tensorrt_activation_op SRCS test_activation_op.cc ${ENGINE_FILE} activation_op.cc
DEPS ${FLUID_CORE_MODULES} activation_op)
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace paddle {
namespace inference {
namespace tensorrt {
class ReluOpConverter : public OpConverter {
public:
ReluOpConverter() {}
void operator()(const framework::OpDesc& op) override {
LOG(INFO) << "convert a fluid relu op to tensorrt activation layer whose "
"type is Relu";
const nvinfer1::ITensor* input_tensor =
engine_->GetITensor(op.Input("X")[0]);
nvinfer1::IActivationLayer* layer = TRT_ENGINE_ADD_LAYER(
engine_, Activation, *const_cast<nvinfer1::ITensor*>(input_tensor),
nvinfer1::ActivationType::kRELU);
engine_->SetITensor(op.Output("Out")[0], layer->getOutput(0));
}
};
REGISTER_TRT_OP_CONVERTER(relu, ReluOpConverter);
} // namespace tensorrt
} // namespace inference
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace paddle {
namespace inference {
namespace tensorrt {
class Conv2dOpConverter : public OpConverter {
public:
Conv2dOpConverter() {}
void operator()(const framework::OpDesc& op) override {
LOG(INFO)
<< "convert a fluid conv2d op to tensorrt conv layer without bias";
}
};
REGISTER_TRT_OP_CONVERTER(conv2d, Conv2dOpConverter);
} // namespace tensorrt
} // namespace inference
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace paddle {
namespace inference {
namespace tensorrt {
class MulOpConverter : public OpConverter {
public:
MulOpConverter() {}
void operator()(const framework::OpDesc& op) override {
LOG(INFO) << "convert a fluid mul op to tensorrt fc layer without bias";
}
};
REGISTER_TRT_OP_CONVERTER(mul, MulOpConverter);
} // namespace tensorrt
} // namespace inference
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <unordered_map>
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
namespace paddle {
namespace inference {
namespace tensorrt {
/*
* Convert Op from Fluid to TensorRT Engine.
*/
class OpConverter {
public:
OpConverter() {}
virtual void operator()(const framework::OpDesc& op) {}
void Execute(const framework::OpDesc& op, TensorRTEngine* engine) {
std::string type = op.Type();
auto it = converters_.find(type);
PADDLE_ENFORCE(it != converters_.end(), "no OpConverter for optype [%s]",
type);
it->second->SetEngine(engine);
(*it->second)(op);
}
static OpConverter& Global() {
static auto* x = new OpConverter;
return *x;
}
template <typename T>
void Register(const std::string& key) {
converters_[key] = new T;
}
// convert fluid op to tensorrt layer
void ConvertOp(const framework::OpDesc& op, TensorRTEngine* engine) {
OpConverter::Global().Execute(op, engine);
}
// convert fluid block to tensorrt network
void ConvertBlock(const framework::BlockDesc& block, TensorRTEngine* engine) {
for (auto op : block.AllOps()) {
OpConverter::Global().Execute(*op, engine);
}
}
void SetEngine(TensorRTEngine* engine) { engine_ = engine; }
virtual ~OpConverter() {}
// TensorRT engine
TensorRTEngine* engine_{nullptr};
private:
// registered op converter map, whose key is the fluid op type, and value is
// the pointer position of corresponding OpConverter class.
std::unordered_map<std::string, OpConverter*> converters_;
// fluid inference scope
framework::Scope* scope_{nullptr};
};
#define REGISTER_TRT_OP_CONVERTER(op_type__, Converter__) \
struct trt_##op_type__##_converter { \
trt_##op_type__##_converter() { \
OpConverter::Global().Register<Converter__>(#op_type__); \
} \
}; \
trt_##op_type__##_converter trt_##op_type__##_converter__;
} // namespace tensorrt
} // namespace inference
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/place.h"
USE_OP(relu);
namespace paddle {
namespace inference {
namespace tensorrt {
void compare(float input, float expect) {
framework::Scope scope;
platform::CUDAPlace place;
platform::CUDADeviceContext ctx(place);
// init fluid op and variable
auto x_var = scope.Var("X");
auto x_tensor = x_var->GetMutable<framework::LoDTensor>();
x_tensor->Resize({1, 1});
std::vector<float> init;
init.push_back(input);
framework::TensorFromVector(init, ctx, x_tensor);
auto out_var = scope.Var("Out");
auto out_tensor = out_var->GetMutable<framework::LoDTensor>();
out_tensor->Resize({1, 1});
out_tensor->mutable_data<float>(place);
framework::OpDesc op_desc;
op_desc.SetType("relu");
op_desc.SetInput("X", {"X"});
op_desc.SetOutput("Out", {"Out"});
auto relu_op = framework::OpRegistry::CreateOp(op_desc);
// run fluid op
relu_op->Run(scope, place);
std::vector<float> out1;
framework::TensorToVector(*out_tensor, ctx, &out1);
// init tensorrt op
cudaStream_t stream;
ASSERT_EQ(0, cudaStreamCreate(&stream));
TensorRTEngine* engine = new TensorRTEngine(1, 1 << 10, &stream);
engine->InitNetwork();
engine->DeclareInput("X", nvinfer1::DataType::kFLOAT,
nvinfer1::DimsCHW{1, 1, 1});
OpConverter op_converter;
op_converter.ConvertOp(op_desc, engine);
engine->DeclareOutput("Out");
engine->FreezeNetwork();
engine->SetInputFromCPU("X", &input, 1 * sizeof(float));
// run tensorrt op
engine->Execute(1);
float out2;
engine->GetOutputInCPU("Out", &out2, 1 * sizeof(float));
ASSERT_EQ(out1[0], out2);
ASSERT_EQ(out1[0], expect);
delete engine;
cudaStreamDestroy(stream);
}
TEST(OpConverter, ConvertRelu) {
compare(1, 1); // relu(1) = 1
compare(-5, 0); // relu(-5) = 0
}
} // namespace tensorrt
} // namespace inference
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace paddle {
namespace inference {
namespace tensorrt {
TEST(BlockConverter, ConvertBlock) {
framework::ProgramDesc prog;
auto* block = prog.MutableBlock(0);
auto* mul_op = block->AppendOp();
mul_op->SetType("mul");
auto* conv2d_op = block->AppendOp();
conv2d_op->SetType("conv2d");
OpConverter converter;
converter.ConvertBlock(*block, nullptr /*TensorRTEngine*/);
}
} // namespace tensorrt
} // namespace inference
} // namespace paddle
......@@ -80,8 +80,8 @@ nvinfer1::ITensor* TensorRTEngine::DeclareInput(const std::string& name,
PADDLE_ENFORCE(infer_network_ != nullptr, "should initnetwork first");
auto* input = infer_network_->addInput(name.c_str(), dtype, dim);
PADDLE_ENFORCE(input, "infer network add input %s failed", name);
buffer_sizes_[name] = kDataTypeSize[static_cast<int>(dtype)] * AccumDims(dim);
TensorRTEngine::SetITensor(name, input);
return input;
}
......@@ -99,6 +99,19 @@ void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer* layer, int offset,
buffer_sizes_[name] = 0;
}
void TensorRTEngine::DeclareOutput(const std::string& name) {
PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
name);
auto* output = TensorRTEngine::GetITensor(name);
PADDLE_ENFORCE(output != nullptr);
output->setName(name.c_str());
infer_network_->markOutput(*output);
// output buffers' size can only be decided latter, set zero here to mark this
// and will reset latter.
buffer_sizes_[name] = 0;
}
void* TensorRTEngine::GetOutputInGPU(const std::string& name) {
return buffer(name);
}
......@@ -110,7 +123,6 @@ void TensorRTEngine::GetOutputInCPU(const std::string& name, void* dst,
PADDLE_ENFORCE(it != buffer_sizes_.end());
PADDLE_ENFORCE_GT(it->second, 0);
PADDLE_ENFORCE_GE(max_size, it->second);
PADDLE_ENFORCE_EQ(0, cudaMemcpyAsync(dst, buffer(name), it->second,
cudaMemcpyDeviceToHost, *stream_));
}
......@@ -126,10 +138,24 @@ void*& TensorRTEngine::buffer(const std::string& name) {
void TensorRTEngine::SetInputFromCPU(const std::string& name, void* data,
size_t size) {
void* buf = buffer(name);
cudaMemcpyAsync(buf, data, size, cudaMemcpyHostToDevice, *stream_);
PADDLE_ENFORCE_EQ(
0, cudaMemcpyAsync(buf, data, size, cudaMemcpyHostToDevice, *stream_));
}
void TensorRTEngine::SetITensor(const std::string& name,
nvinfer1::ITensor* tensor) {
PADDLE_ENFORCE(tensor != nullptr);
PADDLE_ENFORCE_EQ(0, itensor_map_.count(name), "duplicate itensor name %s",
name);
itensor_map_[name] = tensor;
}
nvinfer1::ITensor* TensorRTEngine::GetITensor(const std::string& name) {
PADDLE_ENFORCE(itensor_map_.count(name), "no itensor %s", name);
return itensor_map_[name];
}
} // namespace tensorrt
} // namespace inference
} // namespace paddle
......@@ -80,6 +80,8 @@ class TensorRTEngine : public EngineBase {
// name.
void DeclareOutput(const nvinfer1::ILayer* layer, int offset,
const std::string& name);
// Set the itensor_map_[name] as the network's output, and set its name.
void DeclareOutput(const std::string& name);
// GPU memory address for an ITensor with specific name. One can operate on
// these memory directly for acceleration, for example, output the converted
......@@ -98,6 +100,10 @@ class TensorRTEngine : public EngineBase {
// LOW EFFICENCY! Get output to CPU, this will trigger a memory copy from GPU
// to CPU.
void GetOutputInCPU(const std::string& name, void* dst, size_t max_size);
// Fill an ITensor into map itensor_map_.
void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
// Get an ITensor called name.
nvinfer1::ITensor* GetITensor(const std::string& name);
nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
......@@ -113,6 +119,8 @@ class TensorRTEngine : public EngineBase {
std::vector<void*> buffers_;
// max data size for the buffers.
std::unordered_map<std::string /*name*/, size_t /*max size*/> buffer_sizes_;
std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
itensor_map_;
// TensorRT related internal members
template <typename T>
......
......@@ -70,7 +70,6 @@ TEST_F(TensorRTEngineTest, add_layer) {
engine_->Execute(1);
LOG(INFO) << "to get output";
// void* y_v =
float y_cpu;
engine_->GetOutputInCPU("y", &y_cpu, sizeof(float));
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册